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Abstract 

Background: Strong line of evidence suggests that the increased risk to develop AD may at least be partly mediated 
by cholesterol metabolism. A key regulator of cholesterol transport is the Apolipoprotein E4 (ApoE4), which plays a 
fundamental role in neuronal maintenance and repair. Impaired function of ApoE4 may contribute to altered cerebral 
metabolism leading to higher susceptibility to neurodegeneration.

Methods: To determine a possible link between ApoE function and alterations in AD in the brain of Apolipopro-
tein E-deficient mice (ApoE−/−) in a longitudinal manner metabolic and neurochemical parameters were analyzed. 
Cortical metabolism was measured by 2-deoxy-2-[18F]fluoroglucose  ([18F]FDG)-PET/CT and proton magnetic reso-
nance spectroscopy (1H-MRS) served to record neurochemical status.

Results: By using  [18F]FDG-PET/CT, we showed that brain metabolism declined significantly stronger with age in 
ApoE−/− versus wild type (wt) mice. This difference was particularly evident at the age of 41 weeks in almost each 
analyzed brain region. In contrast, the 1H-MRS-measured N-acetylaspartate to creatine ratio, a marker of neuronal 
viability, did not decline with age and did not differ between ApoE−/− and wt mice.

Conclusion: In summary, this longitudinal in vivo study shows for the first time that ApoE−/− mice depict cerebral 
hypometabolism without neurochemical alterations.
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Background
The Apolipoprotein E4 (ApoE4) allele is the strongest 
single genetic risk factor for sporadic Alzheimer’s dis-
ease (AD) [1, 2]. The mechanism of the ApoE4-asso-
ciated disposition to AD is still not fully understood. A 
strong line of evidence suggests that the increased risk 
to develop AD may at least be partly mediated by cho-
lesterol metabolism [3]. ApoE is the most prevalent brain 
apolipoprotein and plays a fundamental role in neuronal 

maintenance and repair [4], including cholesterol-derived 
synaptogenesis [5, 6]. Impaired function of ApoE4 leads 
to disordered cholesterol homeostasis contributing to 
increased susceptibility to neuroinflammation [7] and 
in consequence to neurodegeneration [8]. Accordingly, 
ApoE-deficient  mice (ApoE−/−), which are character-
ized by hypercholesterolemia [9] and hypertriglyceremia 
(own unpublished data), showed a significant impair-
ment of cognitive function [10] potentially related to AD 
pathology [11–13] such as tauopathy [11, 13].

In human studies, the ApoE4 genotype is associated 
with reduced cortical metabolism in AD predilection 
sites, such as the posterior cingulate gyrus. Cortical 
hypometabolism, which is not only observed in clinically 
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manifest stages of AD, but already in pre-clinical stages 
can be measured by 2-deoxy-2-[18F]fluoroglucose  ([18F]
FDG)-PET/CT [14, 15]. Furthermore, Reiman et al. [16] 
found that the human APOEɛ4 gene dose correlated 
with  [18F]FDG-PET/CT measurements of hypometabo-
lism in AD-affected brain regions in a cognitively normal 
cohort, and postulated to use PET/CT as a pre-sympto-
matic endophenotype to help assess putative modifiers of 
AD risk. Moreover,  [18F]FDG-PET/CT is a widely used 
tool in pre-clinical studies investigating AD pathology 
[17]. Here, a pre-clinical study reported that mice car-
rying the human APOE 4 isoform (hApoE4-TR) showed 
decreased  [18F]FDG uptake [18]. Complementary to  [18F]
FDG-PET/CT, proton magnetic resonance spectroscopy 
(1H-MRS) allows characterization of neurochemical 
alterations in AD brains [19]. N-Acetylaspartate (NAA) 
is considered to reflect neuronal mitochondrial function 
[20, 21]. Decreased levels of NAA may reflect alterations 
of neuronal functional viability. Since alterations in NAA 
can be detected before the clinical appearance of demen-
tia [22, 23], reduced NAA level may potentially serve as 
an early biomarker [24, 25].

In the current study we used small animal  [18F]FDG-
PET/CT and NAA levels from 1H-MRS to identify the 
effects of ApoE deficiency on cortical metabolism and 
neurochemical changes in a transgenic mouse model. We 
hypothesized that ApoE deficiency may lead to altera-
tions of metabolism and neuronal function resembling 
effects in transgenic AD models as well as in human 
AD studies. In addition, we expected that the outcome 
of this study would help us to establish these imaging 
markers as potential read outs to predict in future the 
effects of interventions into ApoE-related mechanisms 
of risk propagation, such as cholesterol metabolism or 
neuroinflammation.

Methods
Animals
Male C57BL/6 (ApoE competent; wild type mice, wt, 
n = 8) and male ApoE-deficient mice (ApoE−/−, n = 8) 
with identical genetic background (Charles River Wiga, 
Sulzfeld, Germany) were studied longitudinally at the 
ages of 15, 29, 41 and 55 weeks. Body weight and blood 
glucose level were measured before each MRI/MRS 
and  [18F]FDG-PET/CT measurement (Fig.  1a) at the 
indicated time points. Mice were housed in groups in 
standard cages with enrichments in a temperature-con-
trolled room (22  °C ± 2  °C) on a 12  h light/dark cycle 
(light turned on at 06:00 a.m.) with free access to food 
(4.2% fat) and water under specified pathogen free con-
ditions. All procedures were conducted in accordance 
with animal protocols approved by the local Animal 
Research Committee (Landesamt für Landwirtschaft, 

Lebensmittelsicherheit und Fischerei (LALLF) of the 
state Mecklenburg-Western Pomerania (LALLF M-V/
TSD/7221.3-1.1-009/15). All animals received care 
according to the German legislation on protection of ani-
mals and the Guide for the Care and Use of Laboratory 
Animals (European Directive 2010/63/EU). At the end 
of the experiment, all mice at the age of 55 weeks were 
sacrified by overdose of anesthesia, followed by harvest 
of brain tissues for immunhistological analysis.

MR imaging
All mice were anesthetized by 1–3% isoflurane in 100% 
O2. The heads of the mice were placed with the ani-
mal’s incisors secured over a bite bar and ophthalmic 
ointment was applied to the eyes. Animals were imaged 
in  vivo with a T2-weighted Turbo-RARE (Rapid Acqui-
sition with Relaxation Enhancement) and an isotropic 
T1-weighted FLASH sequence in a 7  T small animal 
MRI-scanner (BioSpec 70/30, gradient insert: BGA-12S, 
maximum gradient strength: 440 mT/m, Software inter-
face: Paravision 6.01., Bruker BioSpin GmbH, Ettlingen, 
Germany) which was equipped with a 1H cryogenic, two 
elements, transmit/receive coil array. Animal welfare was 
ensured by employing a water driven warming mat as 
well as constant respiration and core body temperature 
monitoring.

PET/CT imaging
Small animal PET/CT imaging scans were performed 
according to a standard protocol. Briefly, mice were 
not fasted and anesthetized by isoflurane (1–3%) sup-
plemented with oxygen and received a mean dose of 
17.36 ± 0.33  MBq  [18F]FDG intravenously via a micro-
catheter placed in a tail vein. The protocol was adapted 
to Wong et  al. [26] reporting no significant differences 
in the  [18F]FDG uptake in mice between fasted and 
non-fasted state [26]. Moreover, the present study was 
designed according to own previous studies [13, 27] 
showing the neuroprotective effect of caloric restric-
tion versus ad-libitum feeding in ApoE−/− mice. Simi-
larly, interval fasting also caused neuroprotective effects. 
Therefore, fasting could be viewed as an intervention 
that affects brain metabolism. To avoid this effect and to 
maintain the comparability to previous studies the mice 
were not fasted. Likewise the scanning time was derived 
from Wong et al. [26] showing the highest plasma activity 
of  [18F]FDG in the first 30 min. Therefore, after an uptake 
time of 30 min, static PET scans in head-prone position 
were acquired for 30  min using a small animal micro 
PET/CT scanner (Inveon PET/CT Siemens, Knoxville, 
TN, USA). Throughout the imaging session, respiration 
of the mice was controlled and body temperature was 
constantly kept at 38 °C via heating pad. The PET image 
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Fig. 1 a Schematic illustration of the experimental design. Body weight, blood glucose levels as well as cerebral  [18F]FDG-PET/CT and MRI/MRS 
measurement were evaluated at the age of 15, 29, 41, and 55 weeks (w) in wild type (wt, n = 8) and Apolipoprotein E-deficient (ApoE−/−, n = 8) 
mice. b, c Transversal T2 weighted TurboRARE (in-plane resolution: 65 × 65 µm, slice thickness 500 µm) and transversal T1 weighted isotropic 3D 
Flash (resolution: 120 × 120 × 120 µm) with M. Mirrione based mouse VOI template overlay (cortex—blue, striatum—red, thalamus—light green, 
hippocampus—dark green, cerebellum—yellow, brain stem—brown) of a wild type mouse. d Transversal  [18F]FDG-PET/CT and MRI with M. 
Mirrione VOI template fusion. e Body weights were measured directly before  [18F]FDG-PET/CT and MRI/MRS measurements. Values are given as 
mean ± SD; ANOVA for repeated measurements followed by Holm-Sidak comparison test: *p < 0.05 versus wt, #p < 0.05 versus 15 weeks, and p < 0.05 
versus 29 weeks
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reconstruction method consisted of a 2-dimensional 
ordered subset expectation maximization algorithm 
(2D-OSEM) with four iterations and 6 subsets, although 
3D-OSEM is more suitable for mouse brain imaging anal-
ysis. However, the protocol was used in accordance with 
Poisnel et al. [28] studying  [18F]FDG uptake in the APP/
PS1 mice. Attenuation correction was performed on the 
basis of whole body CT scan and a decay correction for 
fluorine-18 was applied. PET/CT images were also cor-
rected for random coincidences, dead time and scatter.

PET/CT‑data analysis
Image processing was performed using PMOD software 
(version 3.7; PMOD Technologies LLC, Zürich, Switzer-
land). The brain PET images of each mouse were spatially 
co-registered to a mouse MRI brain template (Fig. 1b, T2 
weighted Mouse M. Mirrione template) which is included 
in the PMOD software. The individual PET images were 
first co-registered with their individual CT and the head 
areas were cropped. To compensate differences in posi-
tioning between CT and MRI measurements, the animal 
specific CT images of the cropped brain regions were 
rigidly transformed to match corresponding MRI T1 
brain images. Afterwards, the MRI images of each mouse 
were transformed to the Mouse M. Mirrione template by 
transformations (Fig.  1c). Finally, the PET/CT transfor-
mation was normalized to the CT/MRT T1 and the MRI 
T1/Mouse M. Mirrione template transformation. The 
processed PET images were subsequently co-registered 
with the mouse brain volume-of-interest (VOI) template 
(Mouse Mirrione atlas, Fig.  1d), included in the PMOD 
software, and tracer uptake values were extracted for 
each delineated VOI. For each VOI standardized uptake 
values (SUVs) were acquired from cortex, hippocam-
pus, striatum, thalamus, and brain stem. Those SUVs 
were normalized to SUVs of the brain stem and given as 
SUVRs.

MR spectroscopy
The imaging protocol included a morphological, respi-
ration triggered, transversal T2-weighted (T2w) RARE 
(Rapid Acquisition with Relaxation Enhancement) 
sequence with following parameters: TE/TR: 39/2200 ms; 
FoV: approx. 13  mm × 17  mm; matrix: 200 pix × 260 
pix; voxel size: 0.065 mm × 0.065 mm × 0.5 mm, approx. 
18 slices. In addition, T2w images with similar reso-
lution in the transversal (a), sagittal (b) and coronal 
(c) plane were acquired for 1H-MRS voxel placement. 
Additionally, a T1w FLASH sequence (Fig.  2a–c) was 
scanned for PET/CT data co-registration with follow-
ing parameters: TE/TR: 8/80  ms; flip angle: 10°, FoV: 
17.12  mm × 14.2  mm × 8.4  mm; matrix: 143 pix × 117 
pix × 70 pix; voxel size: 0.12 mm × 0.12 mm × 0.12 mm, 

Fig. 2 Transversal (a), sagittal (b) and coronal (c) T1 weighted 
MRI images including the position of the spectroscopy voxel 
(black dashed box) of a wild type (wt) mouse. An example of a 
MRS spectrum of a wt (upper) and an Apolipoprotein E-deficient 
(ApoE−/−) mouse (lower) as derived from the voxel of interest is 
shown in (d). Two prominent metabolites, e.g. N-Acetylaspartate 
(NAA resonates at 2.0 ppm) and creatine (Cr at 3.0 ppm) are evident 
and were further evaluated. e Diagram of the NAA/Cr ratio in wt and 
ApoE−/− mice. Values are given as mean ± SD
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Avg.: 2. Respiration triggered 1H-MRS was carried out 
by means of the Stimulated Echo Acquisition Method 
(STEAM) with outer volume suppression and a voxel 
volume of approximately 10  mm3 (placed in the cortex 
and hippocampus, see Fig.  2a–c). The following param-
eters were used: acquisition bandwidth: 4.9  kHz; TE/
TR: 135/1500  ms; mixing time 11,75  ms, 512 averages; 
acquisition time: 13 min. Each free induction decay was 
recorded with 2048 complex points. The water signal 
was suppressed using the variable pulse power and opti-
mized relaxation delays scheme (VAPOR) [29]. Based 
on  B0-field map measurements, the linewidth/spectral 
resolution was optimized by adjustments of first- and (if 
necessary) second-order shims, resulting in an average 
full width half maximum linewidth of the unsuppressed 
water peak between 10 and 25  Hz. MRS spectrum was 
derived from voxel of interest and was visualized via 
jMRUI. As previously described by Kuhla et al. [30], spec-
tra were analyzed with the spectroscopy package. Metab-
olite ratios were calculated based on the area under the 
corresponding fitted curves for N-Acetylaspartate (NAA 
2.0  ppm) and creatine (Cr 3.0  ppm). For quantitation 
of the metabolites the Hankel-Lanczos Singular Value 
Decomposition (HLSVD) method with five components 
was applied [31].

Immunhistochemistry
For the assessment of a tauopathy and of neuroinflam-
mation in form of astrogliosis, AT8 and GFAP immuno-
histochemistry were performed. Brain tissue was fixed in 
4% phosphate-buffered formalin and embedded in paraf-
fin. From the paraffin-embedded tissue blocks, 4 µm thin 
sections were put on X-tra Adhesive Precleaned Micro 
Slides (Leica) and exposed to the antibodies: a mouse 
monoclonal anti-AT8 antibody (1:1.000, Invitrogen) and 
rabbit polyclonal anti-GFAP antibody (1:100; Abcam). 
For the development of the primary antibodies with DAB 
chromogen Universal LSAB® kits (System-HRP; Dako-
Cytomation, Dako) were used according to the manu-
facturer’s instructions. The sections were counterstained 
with hemalaun and analyzed with a light microscope 
(Zeiss Axiovision, Jena). Images were acquired with a 
Color View II FW camera (Color View). Within the cor-
tex (n = 8 of each mouse strain, n = 20 of visual fields), 
the number of anti-GFAP positive cells were manually 
counted and given as number per high power field (HPF).

Statistical analysis
The statistics computed included mean, standard devia-
tions, and standard error of mean for continuous 
variables and are presented as mean ± SD. Because meas-
urements of SUVs or SUVRs were made several times 
(mice at 15, 29, 41, and 55  weeks of age) on the same 

sample within two independent genotype groups (wild 
type and ApoE−/− mice), we applied the GLM repeated 
measures analysis of variance (ANOVA) followed by 
post hoc comparison test (Holm-Sidak method). We 
tested main effects for the between-subject factor “geno-
type”, within-subject factor “time”, and the interaction of 
“genotype*time”. For the pairwise comparison statistical 
differences were determined using unpaired student-t 
test and in case of failed normality Mann–Whitney Rank 
Sum test was used. All p-values were derived from two-
sided statistical tests and values of p < 0.05 were consid-
ered to be statistically significant. Statistical analysis was 
performed using the SigmaStat software package (Jandel 
Corporation, San Rafael, CA, USA). The results were pre-
sented with the program SigmaPlot 13.0 (Jandel Corpo-
ration, San Rafael, CA, USA).

Results
Body weight analysis
The body weight of both mouse strains increased signifi-
cantly over the observation period of 55 weeks (within-
subject type “time-effect”: p < 0.001; Fig.  1e). However 
weight gain with aging was significantly more pro-
nounced in the wt mice compared to the ApoE−/− mice 
(interaction “genotype*time”: p < 0.001; Fig. 1e). Further-
more, the body weight of the ApoE−/− mice was in gen-
eral lower (between subject factor "genotype”, p = 0.005) 
and was significantly reduced compared to the wt mice 
(for detailed statistics see legend of Fig.  1). Blood glu-
cose measurements revealed no differences between both 
mouse strains at each examined time point whereas the 
values slightly decreased over time (Additional file  1: 
Fig. 1S, within-subject type “time-effect”; p = 0.032).

Spectroscopy
Figure 2 shows a transversal (a), sagittal (b) and coronal 
(c) T2 weighted MRI image of a wt mouse including the 
position of the spectroscopy voxel (black dashed box). An 
example of a MRS spectrum as derived from the voxel of 
interest is shown in Fig.  2d. The NAA/Cr ratio did not 
differ between age or mouse type (Fig. 2e).

[18F]FDG‑PET/CT uptake values
Most pre-clinical  [18F]FDG-PET/CT brain studies used 
a reference region to evaluate the  [18F]FDG uptake. 
SUV data of all examined brain regions are shown in 
Additional file  2: Fig.  2S. We refrained to show SUVglc 
(SUVglc = SUV × glc), since the blood sugar concentra-
tions did not differ between the mouse strains as also 
described by Deleye et al. [32]. Since quantitative analy-
sis of SUV data in the brain stem revealed neither age-
dependent nor strain-dependent differences in  [18F]FDG 
uptake (Fig.  3), the brain stem was used as reference in 
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the present study. In doing so, analysis of SUVR data 
revealed a significant time effect in cortex (within-subject 
type “time-effect”; p < 0.001), hippocampus (within-sub-
ject factor “time”; p = 0.001), thalamus (within-subject 
factor “time”; p = 0.001) and striatum (within-subject fac-
tor “time”; p < 0.001) (Fig. 4a–d). In addition, Holm-Sidak 
comparison test revealed a strong age-dependency within 
wt mice at an age of 41  weeks in cortex, hippocampus, 
thalamus, and striatum (for detailed statistics see legend 
of Fig. 4). Furthermore, a significant genotype effect was 
detected in cortex (between-subject factor “genotype”, 
p = 0.038) and cerebellum (between-subject factor “geno-
type”, p = 0.036). Notably, the mean SUVRs of ApoE−/− 
versus wt mice showed a flatter curve with aging which 
was significant in cortex (interaction “genotype*time”: 
p = 0.044), hippocampus (interaction “genotype*time”: 
p = 0.024), thalamus (interaction “genotype*time”: 
p = 0.029) and striatum (interaction “genotype*time”: 
p = 0.030). SUVRs of ApoE−/− mice were significantly 
decreased in cortex, hippocampus, thalamus, striatum, 
and cerebellum at the age of 41  weeks when compared 
to wt mice (Fig. 4a–e, for detailed statistics see legend of 
Fig. 4). In line with these data, representative PET images 
of cerebral uptake of  [18F]FDG in a 41-week-old wt and 
ApoE−/− mouse visualized reduced  [18F]FDG uptake in 
the brain of the ApoE−/− mouse (Fig.  4f–h), especially 
in the cortex, hippocampus, thalamus, striatum, and cer-
ebellum (Fig. 4i–k).

Characterization of AD pathology
ApoE−/− mice showed typical signs of tauopathy indi-
cated by increased numbers of AT8 positive cells (Fig. 5b, 

arrows) when compared to wt mice (Fig. 5a). The analy-
sis of GFAP positive cortical cells demonstrated that 
ApoE−/− mice are characterized by a raised cortical 
astrogliosis (Fig.  5d), as indicated by an up to sixfold 
increase of GFAP positive cells when compared to wt 
mice (p = 0.002; Fig. 5e).

Discussion
AD is characterized by an alteration of the metabolic 
rate of the cerebral glucose metabolism [33, 34] possibly 
related to impairment of synaptic activity and followed 
by late neuronal loss. Interestingly, in cognitively unim-
paired ApoE4 carriers the brain glucose hypometabolism 
which is characteristic for AD precedes the onset of cog-
nitive decline [14, 17]. Consequently,  [18F]FDG imaging 
appears as an attractive translational approach to charac-
terize ApoE deficiency related failure of synaptic activity 
as an early biomarker in an ApoE−/− transgenic model.

It is a common approach in pre-clinical  [18F]FDG-PET/
CT studies investigating AD pathologies to use absolute 
SUVs [18, 35] or SUVglc [32, 36]. However, normaliza-
tion to an appropriate reference region in  [18F]FDG-PET 
imaging is a useful approach to enhance diagnostic per-
formance in neurodegenerative diseases [32, 37]. The 
cerebellum is in fact widely utilized in  [18F]FDG-PET 
research of neurodegenerative dementia [38] because 
this region is usually not affected by the AD pathology. 
Accordingly, Poisnel et  al. [28] normalized  [18F]FDG 
uptake in APPswe/PS1 mice also to cerebellum. Due to 
the fact that in the current study the brain stem showed 
neither age-dependent nor strain-dependent differences 
in  [18F]FDG uptake this brain region seems to be an 
ideal reference for normalization in the ApoE−/− mouse 
model. In doing so, we found significant overall effects 
comparing regional metabolism between ApoE−/− and 
wt mice in cortex, hippocampus, striatum, and thalamus. 
Post hoc analysis revealed reductions of regional metabo-
lism in all observed brain regions at an age of 41 weeks 
in ApoE−/− versus wt mice. Since peripheral glycemic 
levels might impact on the degree of brain FDG uptake 
[39] it is necessary to exclude this potential confounding 
factor. Though we used non-fasted mice, blood glucose 
contentrations did not differ between the mouse strains 
(e.g. 41 weeks old mice wt: 8.3 ± 2.7; ApoE−/−: 8.0 ± 2.8). 
Thus, reduced FDG uptake in ApoE−/− mice can cer-
tainly be interpreted as impaired glucose metabolism.

The molecular mechanism of metabolic changes in 
glucose levels in the brain is not fully understood, but 
is likely related to the malfunction of neuronal glucose 
transporters or glycolytic enzymes. Furthermore, the 
metabolic changes could be linked to dysregulation of 
systemic glucose metabolism in case of impaired choles-
terol transport. Comparably, it has been demonstrated 

Fig. 3 Quantification of  [18F]FDG uptake in the brain stem given as 
absolute SUVs of wild type (wt; n = 8) and Apolipoprotein E-deficient 
(ApoE−/−; n = 8) mice at the age of 15, 29, 41, and 55 weeks. Notably, 
the brain stem showed neither age-dependent nor strain-dependent 
differences in  [18F]FDG uptake. Values are given as mean ± SD
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Fig. 4 Target-to-brain stem ratio of  [18F]FDG uptake in the cortex  (SUVRCTX/BS), hippocampus  (SUVRHIP/BS), thalamus  (SUVRTH/BS), striatum  (SUVRST/

BS), and cerebellum  (SUVRCB/BS) of wild type (wt; n = 8) and Apolipoprotein E-deficient (ApoE−/−; n = 8) mice (a–e). Values are given as mean ± SD; 
ANOVA for repeated measurements followed by Holm-Sidak comparison test: *p < 0.05 versus wt, #p < 0.05 versus 15 weeks. Visual comparison of 
 [18F]FDG uptake in the brain of wt (f–h) and ApoE−/− mice (i–k). Transversal (f, i), sagittal (g, j), and coronal (h, k)  [18F]FDG-PET/CT and MRI with M. 
Mirrione VOI template overlay and fusion (template: cortex—blue, striatum—red, thalamus—light green, hippocampus—dark green, cerebellum—
yellow, brain stem—brown)
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that  [3H]-D-glucose transport is reduced up to 29% in 
hApoE4-TR mice [40]. Accordlingly, these mice showed 
decreased SUV uptakes in hippocampus and cortex 
when compared to hApoE2 TR mice [18], which was 
also shown for the first time in the present study for 
the ApoE−/− mice. In addition, Wu et al. [41] reported 

that hApoE4-TR mice revealed reduced expression of 
glucose transporter-3 (GLUT-3). Therefore, it could be 
speculated that the glucose transporters in ApoE−/− 
mice are also reduced, although a verification is still 
missing. The protein expression of GLUT3 has been 
shown to be decreased in parallel with reduced cerebral 

Fig. 5 Representative immunohistochemical images (original magnification × 400) of AT8 (a, b, arrows) and GFAP (c, d) stained brain sections 
of each 55 weeks old wild type (wt; a, c) and Apolipoprotein E-deficient (ApoE−/−; b, d) mouse as well as the quantitative analysis of cortical 
GFAP-positive cells (e, n = 8 of each mouse strains) given as number per high power field (HPF). Values are given as means ± SD. Unpaired Student-t 
test followed by Mann–Whitney Rank sum test: *p < 0.05 versus wt
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glucose metabolism in AD-vulnerable brain regions 
[42]. Therefore, lower GLUT3 expression could lead to 
insufficient energy supply and perturbation of neuronal 
function in the brain of ApoE4 carriers. In this context, 
it is described that hypometabolism of glucose per se is 
associated with cholesterol-related AD progression [16], 
which may be linked to ApoE deficiency-induced hyper-
cholesterolemia [43] and impaired glucose metabolism. 
This is supported by the fact that 27-hydroxycholesterol 
impairs neuronal glucose uptake via a dysregulation of 
IRAP/GLUT4 system [44]. In addition, it can also be 
argued that an altered cholesterol transport per se leads 
to reduced synaptogenesis due to the absence of ApoE, 
since cholesterol is required for the repair of synaptic 
connectivity [5, 6, 45]. In support of this, Zerbi et al. [46] 
reported a reduction of PSD-95 positive neurons and a 
strong decline of functional connectivity in ApoE−/− 
mice. Furthermore, ApoE−/− mice are characterized by 
a significant increase of tau-phosphorylation [13] and by 
enhanced AT8 signal (current study), contributing to the 
assumption that hypercholesterolemia causes tau hyper-
phosphorylation [43]. It is known that tau measured in 
cerebrospinal fluid (CSF) strongly correlates with the 
 [18F]FDG signal [47]. Consistently, tauopathy as demon-
strated in ApoE−/− mice may be contributing to altera-
tions of  [18F]FDG-PET signal in these mice although 
other factors such as synaptic dysfunction unrelated to 
tauopathy may play a role as well. In addition,  [18F]FDG-
PET/CT not only demonstrates synaptic activity, but 
also neuroinflammatory processes [48], which correlate 
with TSPO-PET/CT [49]. Accordingly, Poisnel et al. [38] 
detected an increased  [18F]FDG uptake in APPswe/PS1 
mice, another AD mouse model, characterized by amy-
loidosis and pronounced neuroinflammation [33, 49, 50]. 
Moreover, a significant increase of the number of GFAP 
positive cells was found in the cortex of ApoE−/− mice, 
which reflects enhanced astrogliosis [51] as an indication 
of present neuroinflammation [52, 53]. It can therefore be 
assumed that the  [18F]FDG signal in the ApoE−/− mice 
could be superimposed by neuroinflammatory processes 
and would even be lower if not masked by inflammation-
induced  [18F]FDG uptake increase.

1H-MRS is an additional in  vivo technique to charac-
terize metabolic changes in AD brains. A typical metabo-
lite is NAA which has been shown to be decreased in an 
AD mouse model (APP/PS1 mice) by the group of Chen 
[24, 54–57] and our group [29]. In addition, the NAA to 
creatine (Cr) ratio was significantly decreased in these 
mice [24, 29]. However, the present study could neither 
show age-dependent nor strain-dependent changes in 
the NAA/Cr ratio implicating that this biomarker is not 
meaningful for the characterization of metabolic changes 
in ApoE−/− mice.

Beside transgenic-related alterations of glucose 
metabolism, even wt mice showed age-dependent 
changes in glucose metabolism. This was indicated 
by an initial increase of the  [18F]FDG signal peaking 
at 41  weeks and a subsequent decline at an older age, 
reaching values as found in 55  weeks old ApoE−/− 
mice. This might be due to the physiological aging 
process as found analogous to human studies [58]. 
However, Brendel et  al. [59] reported that in contrast 
to findings in the human brain,  [18F]FDG-PET shows 
cerebral hypermetabolism of aged wt mice relative to 
younger animals, supposedly due to microglial activa-
tion. Nevertheless, this aspect suggests that the brain 
glucose metabolism shows age-related changes, inde-
pendent of the genetic status as described by Ding et al. 
[60], showing that non-transgenic mice exhibit a signif-
icant decrease of  [18F]FDG uptake already at an age of 
36 weeks. This finding is consistent with several human 
studies demonstrating age-related changes in brain glu-
cose metabolism in healthy adults [61–63].

It is interesting to emphasize, that 55  weeks old 
ApoE−/− mice are characterized by tauopathy with 
a concomitant increase of astrogliosis, while cerebral 
hypometabolism was most pronounced at the age of 
41 weeks. Based on this, it can be carefully concluded 
that the  [18F]FDG signal might be an early biomarker 
to mirror tauopathy as one hallmark of AD. In line with 
this, human studies reported that  [18F]FDG signal is 
used as an early biomarker representing cerebral meta-
bolic changes before clinical symptoms occur [64].

Conclusion
In summary, this longitudinal in  vivo study shows for 
the first time that ApoE−/− mice depict cerebral hypo-
metabolism without neurochemical alterations. To 
increase diagnostic sensitivity, a follow-up study with 
tracers targeting neuroinflammation and tauopathy is 
recommended.
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