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Abstract 

Gene expression signatures have proven their potential to characterize important cancer phenomena like oncogenic signaling pathway 
activities, cellular origins of tumors, or immune cell infiltration into tumor tissues. Large collections of expression signatures provide 
the basis for their application to data sets, but the applicability of each signature in a new experimental context must be reassessed. 
We apply a methodology that utilizes the previously developed concept of coherent expression of genes in signatures to identify 
translatable signatures before scoring their activity in single tumors. We present a web interface (www.rosettasx.com) that applies our 
methodology to expression data from the Cancer Cell Line Encyclopaedia and The Cancer Genome Atlas. Configurable heat maps 
visualize per-cancer signature scores for 293 hand-curated literature-derived gene sets representing a wide range of cancer-relevant 
transcriptional modules and phenomena. The platform allows users to complement heatmaps of signature scores with molecular 
information on SNVs, CNVs, gene expression, gene dependency, and protein abundance or to analyze own signatures. Clustered 

heatmaps and further plots to drill-down results support users in studying oncological processes in cancer subtypes, thereby providing 
a rich resource to explore how mechanisms of cancer interact with each other as demonstrated by exemplary analyses of 2 cancer types. 
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MM Trimmed mean of M-values 
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ntroduction 

The tumor-specific gene expression phenotype is the product of a
oordinated interplay of cellular and pathway-related transcription modules 
1] . These modules of coexpressed genes, also called expression signatures,
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describe many functional aspects of a tumor, like cell-type composition [2] ,
signaling pathway activities [3] , activities of fundamental cellular processes
like proliferation or interferon response [4] , or can even inform on the cell-
of-origin of a tumor. Cancer subtype signatures have been identified, for
example, for tumors of the colon [5] , breast [6 , 7] , or diffuse large B-cell
carcinoma [8] . Further, during tumorigenesis, the accumulation of somatic
alterations in tumors often results in specific expression phenotypes, enabling
cancers to develop cancer hallmark properties [9] . Therefore, the investigation
of expression signatures today plays an essential role in the elucidation of
tumor biology. 

Expression signatures have also become widely used during drug
development, for support of clinical cancer diagnosis [10] . The exploration
of signatures has become a standard component for cancer subtyping in
major multiomics patient cohort studies and often provides a framework
for the interpretation of somatic mutations [11] . Hundreds of signatures
have been proposed for concrete clinical use in the last 2 decades, either
to inform on patient prognosis [12] or to predict therapeutic efficacy based
on cancer gene expression at baseline of therapy [13] . Furthermore, the
connectivity map approach, which, for the first time, proposed the reversal
of disease signatures by therapeutic drugs, has developed into a widely used
method in drug discovery [14] . It was extended later to include gene knock-
down/out-induced perturbations. Thereby, it enables to generate a broader
understanding of the mode of actions of drugs and gene perturbations in
relation to a user-defined gene expression signature. 

Given the importance of expression signatures for understanding tumor
biology and drug response, it is essential to reliably identify sets of high-
quality expression signatures that can be used to score the activity of
functional expression modules in a new expression data set, independent
of whether it is an interventional experimental study, a study across model
organisms or a patient cohort study. To this end, a careful selection
of published high-quality gene expression signatures is crucial. It should
cover a broad range of underlying phenomena to characterize the activities
of all cancer hallmark mechanisms comprehensively [9] . Throughout
the last decades, different collections of gene modules were developed.
The MSigDB collection is one of the largest resources for published
expression signatures. Despite its comprehensive coverage of literature-
published expression signatures, it is not necessarily best suited to efficiently
characterize new cancer expression data for 2 reasons. First, the collection
comprises many noisy signatures that lack validation in independent datasets
or are strongly influenced by confounding mechanisms. For example, many
signatures are "polluted" by high fractions of cell-cycle-controlled genes,
which render their net scores like typical proliferation signatures [15] , a
problem especially in oncology with a range of mechanisms that affect cell
proliferation. As a consequence of this problem, most random gene sets
in breast cancer lead to prognostic signatures because proliferation as a
mechanism is prognostically relevant [16] . Further, redundancy and bias
create difficulties for efficient control of type I errors in statistical testing,
thereby reducing the power of analyses. 

Another collection of signatures to characterize cancer expression data is
the cancer hallmark signatures published by the MSigDB team that cover 50
carefully selected gene sets [36] . Although they probably cover the majority
of cancer-relevant expression phenotypes, the collection does not comprise
many well-known and frequently used signatures for the diagnosis of distinct
cancer subtypes. So, when using this limited collection only, the result
has shortcomings when trying to bridge own results with findings in the
literature. Also, it is advantageous for a collection to have at least a few
signatures for a single phenomenon, i.e., to cover phenomena with small,
controlled redundancy (as long as gene lists do not overlap significantly).
A limited redundancy can add credibility to results observed for a specific
phenomenon because phenomena-specific signatures originally postulated
by independent research groups can more convincingly support a particular
result. In conclusion, there is room for a curated signature collection that tries
o comprehensively capture the most prevalent signatures used in different 
ancer communities while avoiding too much redundancy and bias that 
ould blow up the multiple testing problem. 

A gene expression module might not always be relevant in a new data
et not used for its discovery. Rationales for the assessment of relevance or
ranslatability of a signature into a new data context have been published 
efore [17 , 18] . If a cancer expression module is coordinately up-regulated
cross samples of a new data set, then this is a sign of biological importance.
 footprint of pairwise correlations between module genes across all samples 
f a study justifies the relevance of a gene expression module in that specific
ata set. On the other side, biological irrelevance, technical noise or different 
atient characteristics in the investigated cohort might lead to the absence 
f such correlations. Therefore, the translatability of a signature on a new 

ataset can be assessed by analysis of the correlation structure of the signatures’
enes in the new data set. If genes of a signature do correlate with each
ther, there are some samples in the data that share high expression of the
enes in the module indicating a common positive transcriptional regulation 
f the module that can be the result of diverse biological phenomena such
s a particular differentiation state of cells or an upstream pathway activity. 
ne metric for translatability assumes pairwise correlated gene expression to 

ignify translatability of a biological signal. This rationale, to our knowledge, 
as first been proposed by Rahnenführer et al. [19] , but, since then, has been
roposed in several studies [20 , 21] . Astonishingly, although the importance 
f coexpression of signature genes has been recognized, this rationale has, 
ntil now, hardly been used in systematic approaches to remove noisy 
ignatures and distil conclusive results during the analyses of large-scale 
ignature collections on novel expression data sets. 

In this work, we aim to provide (1) a well-balanced collection of high-
delity signatures from the literature, (2) an algorithm or workflow to evaluate 
he applicability of a signature in a new data set and score it on single
umors, and (3) a web-based analytical system for analysis of activities of 
uch signatures. We introduce RosettaSX, a platform that helps users unravel 
omplex processes with robust gene expression signatures. It not only provides 
obust expression portraits based on underlying expression data, but it also 
nables users to explore the associations between signature activities and 
olecular aberrations like somatic mutations and gene copy number changes 

49,50] or even profiles from gene dependency screens [46–48] . 

aterials and methods 

Before signature assessment, for each cancer indication, we normalize each 
xpression dataset separately using the trimmed mean of M-values (TMM) 
ormalization [22] . We remove genes with low expression based on a criterion
f fewer than ten reads in 70% of the samples or less than 15 reads in the
omplete dataset before normalization. 

For the definition of a per-sample signature score (i.e., signature activity) 
e use the mean of the gene-wise expression Z-scores; a score previously 

eferred to as the deregulation index (DI) [23] . In detail, we use the average
f TMM normalized and z-scaled TPM (accounting for within-sample 
omparisons) expression values for a set of genes of a signature as a signature
core of a single sample. 

When applying and interpreting signatures - that have most often been 
reated in other experimental contexts and published in the literature - on 
 new expression data set, it is beneficial to validate their translatability to
hese new data first: here to validate the translatability of the RosettaSX 

ignature collection to the TCGA [50] and CCLE [49] expression data. 
or interpretation of signatures scores we intend to focus only on signatures 
ith strong signs of translatability, leaving aside signatures with low signs 
f translatability that could rather add noise to an analysis of the whole
ollection and cause mis- or overinterpretation. 

For the assessment of the translatability of a signature to a new data set, we
se the coherence score (CS), which is calculated for each signature on each
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Fig. 1. RosettaSX analysis workflow for expression signature analysis. Our 
workflow is an iterative procedure that uses the expression phenotypes of 
signatures to characterize an indication of interest. The user can narrow down 
the available signatures based on gene set size, availability of genes in the new 

data, or intrasignature expression coherence. Additionally, the annotation of a 
wide range of molecular and phenotypic data allows to characterize RosettaSX 

analysis findings. Depending on the research question, users can choose 
between a clustered and profile guided heatmap representation. Users can 
drill-down associations between pairs of annotation parameters or signature 
scores using box plots and scatter plots. 
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data set as previously published [21] . We refer to the Supplementary Material
for a detailed description of the CS. Although the CS has been developed by
us; we note that usage of the concept of coexpression to score the relevance
of signatures has been developed independently by other groups [19–21] .
Briefly, for a signature with n genes, we calculate the average of all pairwise
Pearson correlation coefficients of the TMM normalized Z-scaled counts
per million (CPM) values (accounting for between-sample comparisons).
A score close to the limits ( +1 and − 1 

n −1 ) indicates a coherent up- or
downregulation of all genes within a signature in a dataset under study. 

We conducted extensive assessments of the significance of CSs based
on permuted expression data and randomly sampled signatures, and also
investigated the dependence of significance on the number of genes in the
signature (see Supplementary Figure 1-4). We find that CSs greater than
0.20 (our default RosettaSX threshold) indicate high confidence in the
translatability of signatures as indicated by empirical p-values and by a very
strong correlation of signature scoring methods for such high CSs, even if
signatures are small in the number of genes. For larger signatures with more
than 20 genes even CSs between 0.12 and 0.20 already suggest that signatures
can be regarded as informative in a data set (see Supplementary Figure 1).
We also found that ours and various other signature scoring methods are in
good agreement with each other if – and only if - the CS of the signature
is high (see Supplementary Figure 4 in which correlation of various scoring
methods is excellent for a threshold of CS > 0.2) supporting our conclusion
that in these situations signatures can be called translatable to a new data
set. Whereas application of our signature collection on TCGA BRCA data
leads to dozens of signatures with CS > 0.2, not a single signature exceeds
the CS > 0.2 threshold in a collection of equally sized randomly sampled
signatures (Supplementary Figure 2). 

All this confirms (1) that our choice of scoring method is reasonable and
(2) that CS-based filtering of signatures leads to results that are robust to small
changes in methodology. Thus, the combination of signature prefiltering for
translatability using the CS with per-sample signature scoring by the DI is a
reliable approach for analysis and interpretation of whole signature collections
in tumor expression data. 

Results 

In the following, we describe how our system enables users to perform
in-depth analyses of gene expression signatures based on expression data
of cancer models or patients. Then, we demonstrate the potential of
RosettaSX to confirm known and discover new expression subtype relations:
we demonstrate this by 2 analyses of our gene expression signature collection
in breast cancer, and in diffuse large B cell lymphoma. 

RosettaSX web application enables comprehensive expression signature 
analyses 

A typical workflow for the usage of the platform is shown in Figure 1 . First,
the user selects the data source (TCGA patients or CCLE cell lines) and the
cancer type of interest. Then, the user needs to specify how to narrow down
the available signatures, each describing a biological expression phenotype.
Most available signatures in our collection have been discovered on other data
than from TCGA and CCLE. Therefore, an evaluation of the robustness or
translatability of each signature in the selected data is highly recommended.
We offer to test for the coherence of a signature on a new dataset. We consider
a signature to be translatable to the respective dataset if a certain threshold of
the coherence score is exceeded (see methods). 

After signature filtering, the user can interactively add molecular data (e.g.,
expression, copy number, and mutation data) for a gene of interest or sample
phenotype annotations (i.e., tumor subtype) or compute the signature score
for a gene set of interest. 
The web server’s key analysis output is a heat map that displays the selected
ene expression signature profiles and optionally the selected annotations. 
wo types of views allow the user to discover different research questions, the
rofile-guided and clustered view. The clustered view (the default) allows to
roup together all closely related signatures, which could highlight expression
ubtypes in the selected dataset. For the profile-guided view, we correlate
 continuous annotation with signature scores and order the signatures
escending by their correlation coefficient. This view enables discoveries 
f associations between a selected annotation and the phenotypes that are
escribed by the signatures. Through the interactive web server, the user can
hen optimize the presentation of his results with further annotations or can
djust the filter criteria. 

ntrinsic breast cancer expression subtypes rediscovered in the TCGA 

reast cancer cohort 

Today, the most essential and treatment-relevant classification of breast 
ancer depends on the expression states of the estrogen receptor (ER), the
rogesterone receptor (PR), the epidermal growth factor receptor 2 (HER2)
24] , and the assessment of cell proliferation activity like Ki67 [25] . Besides
hese classical markers, commercial gene expression signature tests are applied
n the clinical setting for prognosis of breast cancer patients. The most well-
nown assay is based on work by Perou et al. , who described 5 intrinsic
ubtypes of breast cancer (PAM50) that reconcile the states of these receptors
ith cell-of-origin expression patterns and describe specific genomic and 
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Fig. 2. RosettaSX analysis of intrinsic subtypes in the TCGA breast cancer cohort. The heatmap displays expression signature scores (threshold CS ≥ 0.2, 
80–100% genes available and expressed, signature size: 3–300) that characterize various robust expression programs and their biological contexts (left text 
and color annotations) in the PAM50 subtypes. The column (sample) annotations above the heat map display clinical patient markers [39 , 40] and molecular 
configurations of single genes (to be selected). The sample annotation comprises: estrogen receptor status (ER), progesterone receptor status (PR), HER2 
receptor status (HER2) with positive status in green, negative status in orange, ERBB2 gene amplification (light green) in the HER2 subtype (red), elevated 
ESR1 expression (orange) in the luminal subtypes (light and dark orange), TP53 mutations in the basal (yellow) subtype, high expression of the MKI67 
proliferation marker in basal, luminal B and HER subtype and low expression in the normal-like subtype) align with known properties of the intrinsic 
subtypes. Bold row labels emphasize signatures that are postulated to describe the different intrinsic subtypes. 
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clinical characteristics: luminal A and B, basal-like, normal-like, and HER2-
enriched [6 , 26] . Using RosettaSX, we reassess the PAM50 signatures in
breast cancer along with classical marker annotations and many other gene
expression signatures that were published to be informative to explain breast
cancer biology. Figure 2 shows the output of RosettaSX. The status of ER,
PR, and HER2 receptors [27 , 28] , the PAM50 subtypes [28] as provided by
the TCGA consortium, supplemented by gene expression, SNV, and CNV
ata of some breast-cancer relevant genes are displayed at the top of the
eatmap. 

The phenotypic annotations not only align with known traits of the 
ifferent subtypes but also validate our gene expression pre-processing 
pproach. The ESR1 expression agrees with the annotated ER status (two- 
ided Wilcoxon-test, P -value: < 2.2e-16, Figure 2 and Supplementary Figure 
.A). The status of ER and PR are known to be generally positive in the
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Fig. 3. RosettaSX results for the characterisation of the TCGA Diffuse Large B Cell Lymphoma cohort. We show expression signature scores per tumor for 
signatures selected by following criteria: CS ≥ 0.13; 90-100% genes available; signature size: 3-300 The annotation above the heatmap shows TCGA annotated 
GCB and ABC (light blue) subtypes with unclassified tumors in grey. In addition, the international prognostic index and the expression intensities of BCL2, 
BCL6 and MYC are given below. The uppermost and bottommost branches of the dendrogram on the left side represent clusters with ABC and GCB related 
signatures, respectively. 
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luminal PAM50 subtypes [26] , which is congruent with our findings. Our
signature collection comprises 2 signatures of Calza et al. [6] that were
postulated to characterize luminal A and luminal B subtypes, respectively.
Our results indicate that in the TCGA BRCA dataset the luminal A signature
is sufficient to identify the luminal or ER + subtype with elevated levels in
both TCGA-annotated luminal subtypes (Supplementary Figure 5.B, fourth
plot). As described by several studies, the luminal B subtype is strongly
associated with proliferation [29 , 30] . In our analysis, this is reflected by
coclustering of luminal B and proliferation signatures, both of which are
elevated in the TCGA-annotated luminal B subtype. The HER2 subtype
classification can be validated on both the genomic and transcriptomic level.
As initially postulated by Perou et al. [26] , we also observe a significant
difference of ERBB2 gene copy number (DNA level) between subtypes (chi-
square, P -value: 8.2e-5), with the highest frequency in the HER2 PAM50
expression subtype ( Figure 2 and Supplementary Figure 5.A, second plot).
Our RosettaSX heatmap comprises multiple nonidentical signatures for the
ERBB2 subtype [6 , 7] (Supplementary Figure 5.B, third plot) which match
the PAM50 HER2 annotation well but also are associated with ERBB2 gene
copy number. 

The basal subtype of breast cancer is defined by a cell-of-origin signature
expressed by epithelial cells in the basal or outer layer of the mammary gland
[26] . This subtype is a major clinical challenge because these tumors are
aggressive, prevalent in young woman, and often relapse rapidly [31] . The
basal subtype is known to be nearly congruent with the ER-negative subtype;
often also the progesterone and HER2 receptors are negative in these cancers.
Indeed, basal cancers constitute the largest fraction of the so-called triple-
negative breast cancer (TNBC) group that is difficult to treat and has a poor
prognosis [31 , 32] . In our analysis, the mRNA expression patterns of the
ESR1 and PR genes, the basal subtype signature by Calza et al. , the clinical
annotation of ER and PR status, and the TCGA annotation of the PAM50
basal subtype nicely recapitulate all these relationships ( Figure 2 ). 

Basal breast cancers also exhibit the highest frequency of TP53 mutations
according to our analysis. Further, the occurrence of TP53 mutations across
all breast cancers also correlates with strong signals of the signatures of
Miller et al. and Troester et al. [33 , 34] . Their signatures are part of a larger
cluster comprising many proliferation signatures. These relationships suggest
a link between loss-of-function of TP53 [33 , 34] , proliferative aggressiveness
of the tumors [35 , 36] , and enrichment of these molecular configurations
in the basal subtype [6 , 7] . Lehmann et al. have investigated the subtype
structure of TNBCs and described 6 TNBC subtypes [37] . Two of their
signatures can even be robustly translated into the TCGA breast cancer data
set: the immunomodulatory (IMM) subtype signature matches the profiles
of many other inflammatory signatures and marks a high fraction of basal
breast cancers as immune-hot. The basal-like 2 (BL2) signature is most
strongly up-regulated in the basal subtype in agreement with the finding
of Lehmann et al. They also described an association of the BL2 subtype
with RTK pathway activation (EGFR, NGF, MET, IGF1R) and glycolysis.
This is compatible with our findings of a weaker, but substantial BL2 subtype
signature signal in the normal PAM50 subtype, indicative of a differentiated
epithelial phenotype. 

Proliferation activity of breast cancers is strongly linked to poor prognosis
[16] . Ki67 protein expression is an important standard marker used to
determine the fraction of cells undergoing mitosis and is part of routine
diagnostics procedures for breast cancer. Our RosettaSX analysis reveals
a large cluster of signatures that are linked to proliferation, comprising,
among others signatures by Farmer et. al and Budinska et al. ( Fig. 2 ).These
proliferation signatures show a strong correlation to the mRNA expression
signal of iMKI67 (Supplementary Figure 6). High cell cycle activity can
predominantly be observed in the basal, HER2, and luminal B subtypes
(Supplementary Figure 6, first plot). This is consistent with earlier findings
of higher proliferation rates in basal, HER2, and luminal B subtypes [6 , 38] .
It is noteworthy that the luminal B signature of Calza et al. clusters with
roliferation signatures and is not primarily associated with the PAM50 
uminal B subtype, whereas the luminal A signature is indicative of all 
uminal cancers (nearly congruent with the ER + subtype). So, whereas 
he luminal cell-of-origin instead seems to be captured by the luminal A 

ignature, the luminal B signature captures the phenomenon of mitotic 
ctivity (Supplementary Figure 5.AIII), thereby providing an analogous 
lternative to traditional ER-positivity and the fraction of tumor cells 
ndergoing mitoses (Supplementary Figure 5.B, first plot). This is consistent 
ith earlier findings of higher proliferation rates in basal, HER2, and luminal 
 subtypes [6 , 38] . It is noteworthy that the luminal B signature of Calza

t al. clusters with proliferation signatures and is not primarily associated 
ith the PAM50 luminal B subtype, whereas the luminal A signature is 

ndicative of all luminal cancers (nearly congruent with the ER + subtype). 
o, whereas the luminal cell-of-origin instead seems to be captured by the 
uminal A signature, the luminal B signature captures the phenomenon 
f mitotic activity (Supplementary Figure 5.AIII), thereby providing an 
nalogous alternative to traditional ER-positivity and the fraction of tumor 
ells undergoing mitoses. 

Many further signatures yield sufficient coherence scores, thus suggest 
hat the interpretation of their scores is warranted. For example, we observe 
 high inflammation signature activity in subsets of samples within each 
AM50 subtype. This has been described before for other cohorts by one 
f us [39] and is thought to indicate immune cell infiltration. As immune
ell infiltration is a pre-requisite for anti-tumor immune response, such 
ignatures have been proposed to classify tumors into immunologically 
hot” or “cold” [40] . Furthermore, we observe the imperfect association of 
ultiple immune cell-type-specific signatures (T-cell, B-cell, and NK-cells) 
ith general immune activation signatures. Fine-grained differences in these 
atterns, pointing to the absence or presence of a specific cell type, could help
o identify the immune status of a tumor more precisely. 

A cluster of signatures at the bottom of our heatmap is related to
he differentiation status of breast cancers. Stemness or mesenchymality of 
ancer, for example, after epithelial-mesenchymal transition (EMT), is often 
ssociated with poor prognosis, tendency to metastasise, and with resistance 
o chemotherapy [ [4 , 41] ]. While studies on cell-lines suggested that EMT is
ctive in basal and claudin-low breast cancers [4] , our analysis partly aligns
ith recent studies on primary tumors that showed higher proportions of 
MT high samples in nonbasal subtypes [42] (Supplementary Figure 5.B, 

econd plot). In alignment with the work of Savci–Heijink et al. , EMT
ignatures in this TCGA cohort have higher scores in luminal A, B, and HER2
ubtypes than in the basal subtype. 

The interactions of tumor cells, tumor associated stromal cells (TASCs) 
nd extracellular matrix (ECM) are crucial for tumor development and 
rogression. In luminal breast cancer, the binding of HER3 (ERBB3) and 
euregulin 1 (NRG1) results in PI3K/AKT, MAPK and JAK/STAT signaling 
hich is associated with tumor progression [43] . Berdiel–Acer et al. showed 

hat in luminal breast cancers, cancer associated fibroblasts (CAFs) are key 
roducers of NRG1 promoting a paracrine activation of HER3 receptors. In 
ur analysis, there are increased stromal and ECM signature scores in a subset
f luminal cancers. HER3 expression is also elevated in luminal cancers and 
he profile of NRG1 expression strongly correlates with stromal/fibroblast 
ignatures (Supplementary Figure 7). Together these profiles indicate a strong 
troma-tumor interaction in a subset of luminal cells supporting NRG1 as a 
ossible biomarker for anti-HER3 therapies. 

ajor DLBCL subtypes recapitulated by RosettaSX analysis of DLBCL 

CGA cohort 

Diffuse large B-cell lymphoma (DLBCL) is a subtype of non-Hodgkin’s 
ymphoma, which is classified by the world health organization into 13 
ariants with specific morphologic or immune phenotypic features or cases 
hat are not otherwise specified [44] . A well-established gene expression 
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profiling approach for DLBCL is based on expression signatures that are
linked to the differentiation status of the tumors cell of origin. While germinal
center B-cell-like (GCB) tumors originate from an earlier stage of B cell
differentiation, the activated B-cell-like (ABC) tumors derive from a later,
more differentiated stage. 

Here, we analyze the DLBCL cohort of TCGA. We demonstrate how
available ABC and GCB expression signatures perform to classify DLBCL,
and how ABC and GCB subtypes are related to activities of other pathways
and cellular programs ( Fig. 3 ). To this end, we use TCGA-provided GCB and
ABC annotations as a reference [51] . The heatmap only shows signatures
of coherently expressed signatures (CS ≥ 0.13). Our signatures for ABC
and GCB subtypes in the heatmap match the TCGA reference annotation
very well and even inform on the cancers that remained unclassified by
TCGA. The heatmap highlights the molecular diversity of DLBCL by
the multitude of signatures for other processes that are relevant during
lymphomagenesis [8] . The heatmap highlights strongly different proliferation
activities in DLBCL samples that are mostly congruent with the ABC-vs-
GCB activation. Strongly proliferating cancers occur at higher frequency in
ABC samples as supported by many proliferation signatures, some of them
also being informative in breast and colon cancer. In addition, we observe
the activation of NF- κB or general immune activation signatures in ABC
cancers. Indeed, this is the hallmark feature of activated B cells in which
NF- κB pathway activation drives B cells into proliferation and enables them
to evade apoptosis [45] . So, the concomitant activation of proliferation and
NF- κB signatures in the majority of ABC classified tumors is in agreement
with expectations. Also, in those cancers that are tagged by TCGA as
unclassified, we can observe activation of proliferation signatures in ABC
signature-high cancers, suggesting that TCGA has conservatively assigned
subtypes and we can safely extend the annotation for several patients by
our analysis of multiple signatures. However, we also see that the association
of the ABC phenotype is not perfectly congruent with NF- κB activation
and proliferation. The existence of proliferation-high-ABC and proliferation-
low-GCB cancers could be an interesting starting point for further studies
into the molecular origins of this behavior and the clinical consequences for
prognosis and optimal treatment selection. Further, we note that there are
strong expression modules that are not at all congruent with ABC and GCB
subtypes. Multiple type-I IFN response signatures have very high coherence
scores, form a tight cluster, with their profiles being uncorrelated to ABC or
GCB signature profiles. This suggests that IFN response activity could be an
alternative phenomenon that could be relevant for diagnosis and treatment
of DLBCL. 

Discussion and conclusions 

We introduced a new workflow for gene expression signature assessment
in cancer and a web server that provides easy access to the analysis of 293
carefully selected signatures in 2 well-known large-scale cancer expression
datasets. Together, these data cover more than 30 cancer types with more than
11,000 cancer samples. Our platform supports the user in the identification
of robust signatures for subtyping of cancer models or patient cohorts with
flexible analysis options, high-quality heatmap visualizations and capabilities
to drill-down RosettaSX analysis results. To our knowledge, a comparable
system has not been made available yet: it fills a gap in the landscape of data
analysis tools for the cancer community. 

Using RosettaSX, we were able to recapitulate cell-of-origin subtypes
and major molecular pathways in 2 cancer indications. In breast cancer, we
could show that the signature collection available on RosettaSX is capable
of distinguishing luminal, basal and HER2 PAM50 subtypes, with luminal
A signature scores matching the luminal basis annotation and the luminal
B signature being tightly linked to proliferation as previously published. We
were capable to demonstrate that other robust signatures are valid indicators
of breast cancer: immune activation, proliferation, TP53 mutation signatures
mong others match only partially to PAM50 subtypes: multiple signatures
lways supported their profiles for a phenomenon. Similarly, for DLBCL,
e were able to recapitulate the known major expression-based subtyping

chemes, the ABC-vs-GCB classification. Still, we could also show that other
obust signatures, e.g., related to interferon response, or proliferation, play
mportant roles and are not congruent with subtyping schemes. We argue
hat our methodology is well suited to study these landscapes of nonmutually
xclusive subtyping schemes. 

One strength of our approach is our curated collection of signatures. It
overs a wide range of biological phenomena and well-accepted subtyping
ignatures that are specifically relevant for distinct cancer types. Over the
ast, the provided signatures proved their integrity in a wide range of
pplications (unpublished work). We argue that rigorous filtering by signature
oherence (with significant empirical p-values) combined with a controlled 
edundancy of non-overlapping signatures is a distinctive and favorable 
haracteristic of our approach. It eliminates signatures with spurious gene-by-
ene correlation before performing downstream analyses (here hierarchically 
lustered heatmaps of signatures). Examples illustrated that using our method
e very often identify multiple coherent signatures for major known

ubtypes (e.g., for PAM50 and ABC/GCB subtypes and proliferation in
LBCL). 

Our main criterion for filtering signatures for translatability and 
escribing their activity in a new dataset is the coherence score. We have
ested similar metrics [17 , 18] earlier (unpublished results) and found it to
ield similar results to the coherence score. Furthermore, the recapitulated
ajor literature findings described in the results section, proved, that our

roposed scores represent signature activity and pinpoint relevant signatures 
ell. The proposed thresholds for coherence scores yield significant empirical
-values for signatures of size greater than ten genes (and even below). Our
nalyses on the significance of CS based on randomly sampled signatures
Supplementary Figures 1 and 2) or shuffled expression data (Supplementary
igure 3), the agreement of signature scoring approaches only when the CS is
igh (Supplementary Figure 4), supplemented by coclustering of multiple 
ignatures for the same phenomena ( Fig. 2 and Fig. 3 ) confirm that our
pproach does not only yield statistically but also biologically significant
esults. Signature and data permutation approaches show that our approach
s valid for signatures of a wide range of sizes, down to only few genes. In
he RosettaSX analytical web platform, we link the signature translatability 
ssessment with downstream tools that allow disentangling biological gene 
xpression phenotypes in large-scale datasets. 

Gene expression signatures are a key element to reduce complexity
nd add interpretability in analyses of expression phenotypes. RosettaSX 

rovides access to signature scores and analysis options for more than 11,000
ancer samples of patients and tumor models in more than 30 different
ancer indications. Relying on efficient and straightforward established 
ethods that are distilled into our workflow, this resource can help users to

obustly characterize signatures as biomarkers in widely used multiomics data
ets. 
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