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A B S T R A C T   

Plants have various cell types that respond to different environmental factors, and cell–cell communication is the 
fundamental process that controls these plant responses. The emergence of single-cell techniques provides op
portunities to explore features unique to each cell type and construct a comprehensive cell–cell communication 
(CCC) network. Although the most current successes of CCC inference were achieved in animal research, 
computational methods can also be directly applied to plants. This review describes the current major models for 
cell–cell communication inference and summarizes the computational tools based on single-cell omics datasets. 
In addition, we discuss the limitations of plant cell–cell communication research and propose new directions to 
expand the field in meaningful ways.   

1. Introduction 

Plants consist of various cell types that form a complex cell–cell 
communication (CCC, also known as cell–cell interaction) network, 
which is crucial for responding to a dynamic environment [1]. To better 
understand biological processes in plants, it is necessary to study the 
mechanisms by which CCCs control environmental responses and 
explore the unique features and roles of each cell type. Previous studies 
have investigated plant CCCs using experimental methods, such as 
fluorescence microscopy and laser ablation, and microdevice-based 
methods, such as microwells, single-cell traps, and droplet micro
fluidics [2,3]. Many molecules, including small RNAs, reactive oxygen 
species, and novel peptides, act as mobile signals in plant CCCs [4–6]. 
However, the low throughput of these technologies, which only focus on 
two cell types and a few signal candidates, has hindered their broad 
application in plant CCC research. Recent advances in high-throughput 
single-cell sequencing, including single-cell RNA sequencing (scRNA-
seq) and single-nucleus RNA sequencing (snRNA-seq), have enabled the 
characterization of cellular composition and function at the single-cell 
level. Several studies have explored cell activities, differential trajec
tories in various plant tissues (e.g., root [7–15], leaf [16–23], stem [24], 
shoot apical meristem [25–28], ear [29], seedling [30], seed [31], xylem 
[32] and flower [33–35]), and plant responses to different environ
mental stresses (e.g., low-nitrogen/high-salinity/iron-deficiency [36], 

heat and sucrose deficiency [9,37]). The emergence of spatial tran
scriptome (ST) technologies, such as Slide-seq [38], DBiT-seq (deter
ministic barcoding in tissue for spatial omics sequencing) [39], the 10X 
Genomics Visium platform [40], and scStereo-seq (single-cell 
Stereo-seq) [41], has facilitated the understanding of spatial cell and 
gene expression features. Gene expression information provided by 
single-cell omics data has facilitated the exploration of large-scale 
intercellular communication in plants. For instance, using a public 
scRNA-seq dataset from Arabidopsis heat-shocked roots, Xu et al. found 
that the AT1G28290–AT2G14890 ligand-receptor pair may play 
important roles in atrichoblast–cortex cell communication [42]. In 
addition, they found that genes downstream of the 
AT1G28290–AT2G14890 pair were enriched in the ribosome pathway, 
which provided new clues about the mechanism of plant response to 
heat stress. However, the majority of the currently published plant 
single-cell studies did not include CCC analysis. 

Based on single-cell omics data, it is possible to infer plant CCCs 
using various bioinformatics and computational methods [42]. There 
are two widely accepted strategies in animal research [43]: 
ligand-receptor (LR) signal based mode and physical location based 
mode (Fig. 1). In this review, we outline various computational methods 
and tools for CCC inference and discuss the limitations and future per
spectives of single-cell omics techniques in deciphering plant CCCs. 
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2. LR signal-based mode to infer CCCs 

In the LR signal-based mode, individual cells are first clustered based 
on their gene expression patterns, and cell types are assigned to different 
clusters based on known marker genes or golden reference datasets [44]. 
The intercellular interactions between the source and target clusters are 
explored. These interactions are normally achieved by a “sender” pro
tein from the source cluster and a “receiver” protein from the target 
cluster, which are referred to as “ligand” and “receptor”, respectively 
[45]. If the ligand and receptor are from the same cell/cluster, the 
interaction is autocrine. In contrast, if the ligand and receptor belong to 
different clusters, the interaction is paracrine [45]. Therefore, to accu
rately identify CCCs, a precise LR database must be created. LR infor
mation is typically extracted from various sources (Table 1). Most of the 
current resources for LRs are based on human or other animal models, 
which may be the reason for the lack of CCC analysis in plant research. 
To date, ScTensor [46] and PlantPhoneDB [42] are the only two data
bases to contain plant LR information (Table 1). ScTensor only collects 
Arabidopsis LR information extracted from protein-protein interaction in 
the STRING database with a combined confidence score over 400 for 
usage. The ligand and receptor candidates are retrieved from the 
SWISSPROT database and TrEMBL database. A total of 8697 and 94 
Arabidopsis LR pairs were obtained by SWISSPROT and TrEMBL anno
tation in ScTensor. The current PlantPhoneDB contains 3514 unique LR 
pairs for Arabidopsis, which are curated from seven resources, including 
STRING, text-mining from the literature [42]. Compared with Arabi
dopsis in ScTensor, PlantPhoneDB contains 2727 unique LR pairs. 
Moreover, it also stores LR information for the other four plant species 
(e.g., maize, rice, poplar, and tomato), which are retrieved by orthologs 
with Arabidopsis using InParanoid [47]. 

Once sufficient LR information is available, a suitable method to 
measure CCCs should be determined. This process is usually performed 
in three major steps: score each LR pair based on expression patterns, 
aggregate LR scores from different cell types, and compute the signifi
cance of the CCC score. By systematically comparing 16 CCC inference 
resources and seven scoring methods, Dimitrov et al. found that both 
resources and methods have a considerable impact on CCC predictions 
[48]. However, Xu et al. attempted to use four different scoring methods 
to infer CCCs from a scRNA-seq dataset and found that the four scoring 
methods identified almost the same top-communicating CCCs [42]. Two 

methods, SingleCellSignalR and CellPhoneDB, were both evaluated by 
Dimitrov et al. and Xu et al., but different conclusions were achieved. 
Therefore, users should carefully consider different scoring functions 
and choose the most suitable methods for their dataset. Numerous 
computational tools based on the LR mode have been developed to infer 
CCCs for both individual cells and cell clusters, but they have mainly 
focused on humans and animals (Table 1). Erick et al. reviewed and 
grouped most tools into four categories according to the mathematical 
models used: differential combination-, network-, expression permuta
tion-, and tensor-based tools [49]. We compared the different methods 
based on these criteria and their unique features. Most methods have 
tried to predict CCCs between different cell clusters, while SoptSC was 
able to infer individual cell interactions [50]. iTALK [51] and PyMINEr 
[52] first attempted to identify the differentially expressed genes be
tween cell clusters and used them as candidates for final LR pair in
teractions. CellPhoneDB [53], CellChat [54], ICELLNET [55], 
CellTalkDB [56], Celllinker [57], CellCall [58], NATMI [59] and Sin
gleCellSignalR [60] are expression permutation-based tools that calcu
late the interaction score for each LR pair and evaluate their significance 
via cluster label permutation, nonparametric tests, or empirical 
methods. Notably, CellPhoneDB, CellChat, and ICELLNET consider 
multisubunit complexes for ligands and receptors. In addition, CellChat 
integrates other important signaling cofactors, including soluble ago
nists and antagonists. Other methods, including NicheNet [61], SoptSC 
[50], CCCExplorer [62], and SpaOTsc [63], have been used to investi
gate the features of the connections between genes as a network. 
Intracellular gene–gene interactions were considered in the receiver 
cells of NicheNet and SoptSC. CCCExplorer considers crosstalk signaling 
pathways as a directed and connected network from LR interactions to 
transcription factors (TFs) and their target genes. Optimal transport is 
used in SpaOTsc to hypothesize intercellular communication. In contrast 
to these methods, which focus on pairwise analysis between different 
cell clusters, scTensor explicitly models LR interactions using a tensor 
decomposition involving multiple cell clusters. Two recent open-source 
tools, LIANA [48] and PlantPhoneDB [42], were developed to facilitate 
the incorporation of different methods and resources. In addition, some 
downstream analyses based on cell–cell interactions, including pathway 
or Gene Ontology enrichment and TF or target gene enrichment ana
lyses, are conducted using multiple tools to determine the significant LR 
pairs (Table 1). Although these methods have been developed primarily 
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Fig. 1. Two modes used to infer plant cell-cell communications.  
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Table 1 
Comparison between methods developed to infer cell-cell interaction using single-cell omics data.  

Mode Tool [Ref] Species for 
LR 

Detail of LR Resource Visualization Downstream 
Analysis 

Method Overview 

Ligand- 
Receptor 
Signal 
based 

Expression Permutation 
CellChat [54] Human, 

Mouse 
1939 and 2021 LRs for human 
and mouse, supporting multi- 
subunit complexes and 
cofactors 

Circle plot, Bubble 
plot, Sankeyl plot, 
heatmap 

Pathway 
enrichment 

Score probabilities were calculated using 
law of mass action 

CellPhoneDB [53] Human 1396 LRs for human, 
supporting multi-subunit 
complexes 

Circle plot, Bubble 
plot, heatmap 

NA Randomly permute cluster labels to 
generate null distribution of LR scores to 
identify significant interactions 

SingleCellSignalR  
[60] 

Human 3251 LRs for human Circle plot, Bubble 
plot, heatmap 

Pathway 
enrichment 

Score probabilities were calculated using 
a nonlinear function of the product of LR 
expressions 

ICELLNET [55] Human 380 LRs for human, 
supporting multi-subunit 
complexes 

Circle plot, Bubble 
plot 

NA Interaction scores were calculated by 
multiplying the geometric means of 
ligand and receptor expressions 

CellTalkDB [56] Human, 
Mouse 

3398 and 2033 LRs for human 
and mouse, supporting multi- 
subunit complexes 

Circle plot NA Use score functions from 
SingleCellSignalR 

Celllinker [57] Human, 
Mouse 

3700 and 3200 LRs for human 
and mouse 

Bubble plot NA Significant interactions were calculated 
by permuting cell labels 

CellCall [58] Human, 
Mouse 

19,144 and 12,069 LRs-TFs 
for human and mouse, 
supporting multi-subunit 
complexes 

Circle plot, Bubble 
plot, Sankeyl plot, 
heatmap 

Pathway 
enrichment; TF 
enrichment 

CCC scores are calculated by integrating 
the norm of LR interaction and score of 
downstream TFs 

NATMI [59] Human 2293 LRs for human Circle plot, Bubble 
plot, heatmap 

NA Interaction scores were calculated by the 
product of normalized LR expressions 

Network based 
NicheNet [61] Human 12,019 LRs for human, 

supporting cofactors 
Circle plot, Sankeyl 
plot 

TF and target gene 
analysis 

LR links were predicted by combining 
their expression data with prior 
knowledge on signaling and gene 
regulatory networks 

CCCExplorer [62] Human 1433 LRs for human NA TF and target gene 
analysis 

Develop a computational model for 
crosstalk signaling discovery based on 
ligand-receptor interactions and 
downstream signaling networks 

SoptSC [50] Human 1288 LRs for human Circle plot NA Integrate downstream signals into LR 
score function 

SpaOTsc [63] NA LRs from Ramilowski et al.,  
[75] 

Circle plot, 
heatmap 

NA An optimal transport was used to infer 
cell interactions between different 
clusters. Also support physical location 
based inference 

Differential Combination 
iTALK [51] Human 2648 LRs for human Circle plot NA Scores are calculated by differentially 

expressed LRs 
PyMINEr [52] Human 52,612 LRs for human Circle plot Pathway 

enrichment 
Enriched interactions are calculated by a 
Gaussian null distribution between cell 
clusters 

Tensor based 
ScTensor [46] Arabidopsis, 

11 animals 
12 species (21,882 
[SWISSPROT]/472[TrEMBL] 
LRs for human, 8697/94 LRs 
for Arabidopsis) 

NA Pathway/GO 
enrichment 

Tucker decomposition on a tensor of 
order three to identify key LRs in certain 
cell types 

Combination 
LIANA [48] NA NA NA NA 7 methods from other tools 
PlantPhoneDB  
[42] 

Arabidopsis, 
rice, 
tomato, 
maize, poplar 

3514, 3762, 1751, 2823, 3110 
LRs for Arabidopsis, rice, 
tomato, maize, poplar 

Circle plot, 
heatmap 

NA Provide four scoring approaches to 
calculate interaction scores 

Physical 
Location 
based 

Cell2Cell [66] Human 2005 LRs for human, 
supporting multi-subunit 
complexes 

Circle plot Pathway 
enrichment 

Infer communication distance using 
Gaussian mixture model 

Giotto [67] NA NA Circle plot, Bubble 
plot, heatmap 

NA ST data was used to filter interactions 
between cells 

stLearn [69] NA NA Circle plot, heatmap GO enrichment Significant LR pairs were determined 
using CellPhoneDB based on normalized 
gene expression across spatial location 

SVCA [70] NA NA NA NA Model gene expression as a function of 
intrinsic cell state effects, environmental 
effects and cell-cell interactions 

MISTy [68] NA NA NA NA Interactions are calculated by weighting 
the gene expressions of local cell 
neighborhood 

DeepLinc [71] NA NA NA NA Use a variational graph autoencoder with 
an adversarial network for regularization 
to infer cell interactions  
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for humans and other animal models, they can also be directly applied to 
plant datasets. For instance, PlantPhoneDB provides four different 
scoring methods and LIANA allows users to select any combination of 
resources and methods. 

3. Physical location-based mode to infer CCCs 

Generally, cells can only interact with each other in a limited space, 
which is missed in scRNA-seq or snRNA-seq data [49]. Some studies 
have attempted to de novo map scRNA-seq transcriptomes for a 
computational spatial representation of the studied organ [34,64,65]. 
The studies utilizing these methods tried to place single cells in space 
based on different assumptions. In some studies, it was assumed that 
cells with similar expression patterns were regarded as nearby [65], and 
other studies considered colocalized cells should have coexpressed li
gands and receptors [64]. To reduce the false-negatives of CCC infer
ence, it is crucial to incorporate the spatial location of mediators within 
the cells. This limitation is improved by the use of single-cell ST tech
nologies. Most recent methods, such as Cell2Cell [66], Giotto [67], 
MISTY [68], SpaOTsc [63], stLearn [69] and SVCA [70], integrate 
scRNA-seq and additional intercellular distance information provided 
by ST. Commonly, these methods attempt to estimate similarity between 
single cells based on overlapping genes, and the similarity will be 
improved using ST information. Although CCC prediction is empowered 
by integrating scRNA-seq and ST, many methods have tried to use ST 
data directly to analyze CCC. All the above six tools could achieve this 
goal. Another tool, DeepLinc, attempts to reconstruct cell interaction 
networks de novo from ST data alone on the basis of a deep generative 
model of variational graph autoencoder (VGAE) [71]. Unfortunately, 
CCC analysis is still not prioritized in current ST studies in plants [41,72, 
73]. 

ScRNA-seq offers a means of precisely quantifying the state and 
trajectory/pseudotime of individual cells and thus may enable the 
construction of explicit, genome-scale dynamic cellular models [74]. 
Similarly, CCCs are also a temporal process during the life cycle of cells. 
However, there is still no method that considers this dynamic spatio
temporal aspect using ST data. With the improvement of the resolution 
of ST techniques, it will be possible to explore spatiotemporal CCC based 
on trajectories constructed by ST information. 

4. Limitations and future perspectives 

Despite the fact that CCC analyses are widely conducted in animals 
and humans, their application in plants is still rare. A major reason for 
this may be the rarity of single-cell-related studies in plants because of 
the difficulties in protoplast isolation and preparation due to the pres
ence of cell walls [1]. With the improvement and increase in scRNA-seq 
and ST datasets in plants, it will be interesting to explore the activities of 
CCCs in different plants. Most of the current methods and tools can be 
directly applied to plant single-cell omics datasets. However, there are 
still several limitations to consider when investigating plant CCCs. Until 
now, ScTensor and PlantPhoneDB have only collected or curated LR 
pairs for Arabidopsis, and LR information for other plant species has been 
retrieved computationally by the InParanoid algorithm in PlantPho
neDB. Therefore, curated and precise LR information is required for 
other model plant species. Similar to CellChat, multisubunit complexes 
and other important signaling cofactors should be considered for plant 
LR pairs. Moreover, benchmarks or golden datasets must be established 
in plants so that researchers can compare different methods and choose 
the most appropriate one. The preparation of a real golden CCC network 
is challenging. Since plant cells are confined to their relative positions by 
cell walls, spatially adjacent cell types may have strong CCC. Compared 
with human and animal analysis, ST data is a good choice for parallel 
validation in plants. Most current CCC studies only focus on individual 
species/tissues; therefore, it will be interesting to compare the networks 
between tissues and species in the future. 

As considerable efforts have been made to develop various CCC 
methods and tools, we can expect more novel insights into plant CCCs at 
the single-cell level in the future. Due to the increase in the number of 
single-cell atlases for different plants, scRNA-seq, ST, and single-cell 
proteomics and metabolomics can be used to expand the field of plant 
CCC research. 
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