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Abstract: Background: Low urine pH and volume are established risk factors for uric acid (UA)
stone disease (UASD). Renal tubular epithelial cells exposed to an acidic pH and/or UA crystals
can shed extracellular vesicles (EVs) into the tubular fluid, and these EVs may be a pathogenic
biomarker of UASD. Methods: Urinary EVs bearing UA transporters (SLC2A9, SLC17A3, SLC22A12,
SLC5A8, ABCG2, and ZNF365) were quantified in urine from UA stone formers (UASFs), calcium
stone formers (CSFs), and age-/sex-matched non-stone formers (NSFs) using a standardized and
published method of digital flow cytometry. Results: Urinary pH was lower (p < 0.05) and serum and
urinary UA were greater (p < 0.05) in UASFs compared with NSFs. Urinary EVs carrying SLC17A3
and SLC5A8 were lower (p < 0.05) in UASFs compared with NSFs. Urinary EVs bearing SLC2A9,
SLC22A12, SLC5A8, ABCG2, and ZNF365 were lower (p < 0.05) in CSFs than UASFs, while excretion
of SLC17A3-bearing EVs did not differ between groups. Conclusion: EVs bearing specific UA
transporters might contribute to the pathogenesis of UASD and represent non-invasive pathogenic
biomarkers for calcium and UA stone risk.

Keywords: urine pH; urinary vesicles; renal epithelial cells; nephrolithiasis; aciduria

1. Introduction

The incidence and prevalence of urinary stone disease (USD) appears to be increasing
worldwide [1]. In the United States, uric acid (UA) stone disease (UASD) constitutes
approximately 8–10% of total stone formers [2,3]. The most important metabolic risks for
UASD include a low urine pH (<5.5) and low urine volume, or a combination of both [4,5].
Low urinary pH increases the risk of UASD because the acid form of UA (pKa 5.4) is
poorly soluble [6]. In the kidney, filtered UA undergoes a complex series of reabsorption
and secretion along the proximal nephron, the result ultimately determining urinary UA
excretion [7,8]. A body of evidence, including human genome-wide association studies,
suggests that the urate transporters SLC2A9 (solute carrier family 2, glucose transporter
member 9), ABCG2 (ATP-binding cassette transporter G2), SLC17A3 (solute carrier family
17 member 3; a voltage-driven transporter excreting intracellular urate and organic anions
from the blood into renal tubule cells), SLC22A12 (solute carrier family 22 member 12;
organic anion/cation transporter), urate transporter 1 (URAT1), and SLC5A8 (solute carrier
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family member 8; an electrogenic sodium (Na+) and chloride (Cl−)-dependent sodium-
coupled solute transporter) together regulate blood and urine UA concentrations [9–13].
ZNF365 (zinc finger protein 365) has also been associated with UA stones in both children
and adults [14,15], and is thought to play a role in the expression of renal UA transporters.
The relative expression of UA transporters and their proposed functions within the proximal
and distal tubule are presented in Figure 1.
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 Figure 1. Diagrammatic presentation of the renal expression of six renal tubular uric acid (UA)
transporters and their functions in the proximal and distal nephron. SLC2A9 (solute carrier family 2,
glucose transporter member 9) is expressed in both the apical and basolateral membrane of proximal
and distal tubular cells, and functions as a urate uniporter/urate reabsorption. SLC17A3 (solute
carrier family 17 (organic anion transporter), member 3) is expressed on the apical membrane of the
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proximal tubular epithelium and transports urate and anionic compounds into the tubular fluid.
SLC22A12 (solute carrier family 22 (organic anion/cation transporter member 12) or urate trans-
porter 1 (URAT1) is expressed on the apical membrane of the proximal tubular epithelium and
functions as a urate monocarboxylate exchanger to reabsorb urate from tubular lumen into the cy-
tosol. SLC5A8 (solute carrier family 5, member 8) is expressed on the apical membrane of proximal
tubular epithelium and functions as an electrogenic Na+ and Cl− dependent sodium-coupled solute
transporter/urate reabsorption. ABCG2 (ATP-binding cassette transporter G2) is expressed in both
the apical and basolateral membranes of the proximal tubular epithelium and functions as a urate
extrusion pump to aid in UA excretion. ZNF365 (zinc finger protein 365) is expressed on proximal
tubular epithelial cells, has been associated with UA stones, and is proposed to contribute to UA
excretion. The pre-selected renal UA-transporters play an important role in the pathophysiology of
UA secretion and reabsorption, and urinary pH regulation in the kidney.

Extracellular vesicles (EVs) act as important mediators in normal physiology as well
as many pathological states [16,17]. After release from parent cells, EVs affect the function
of recipient cells via delivery of biologically active molecules that include proteins, lipids,
and nucleic acids (DNA, mRNAs, and miRNAs) [18]. Recent studies have indicated that
EVs can be used for the diagnosis, prognostic assessment, and management of individuals
with suspected renal diseases [19]. Specific populations of urinary EVs appear to reflect
underlying renal cell processes that might be associated with USD [20,21]. However,
the pathophysiological association between EVs bearing UA transporters and UA stone
formation has not been investigated.

The present study was designed to test the hypotheses that urinary EVs might carry
renal UA transporters as signaling molecules, and urinary EV populations carrying specific
UA transporters may differ in UA stone formers (UASFs) as a group. Thus, specific
populations of urinary EVs bearing UA transporters could represent a biomarker of UA
stone risk and provide clues regarding pathogenic steps. To test these hypotheses, we
quantitated urinary EVs that contained six renal transporters associated with UA stone risk
in cell-free urine samples from UASFs, calcium stone forms (CSFs), and age-/sex-matched
non-stone formers (NSFs).

2. Methods
2.1. Study Participants

USD patients and non-stone forming controls were recruited at the Mayo Clinic
O’Brien Urology Research Center from participants in IRB: 08-006541 (Epidemiology of
nephrolithiasis and chronic kidney disease: Prospective Cohort) and IRB: 09-002083 (CT
and Urinary Correlates of Renal Stone Precursor Lesions). Blood and 24 h urine samples
(collected using toluene as a preservative) were obtained at the time of a Mayo Stone Clinic
visit (UASFs and CSFs) or study visit (NSFs). Aliquots of the 24 h urine samples were
centrifuged at 2100× g/3000 rpm for 10 min at 4 ◦C to remove the cells and larger molecular
weight protein aggregates before freezing to −80 ◦C for future analysis [20,21].

All UASFs and CSFs had a complete evaluation in the Mayo Stone Clinic and those
with secondary causes (enteric hyperoxaluria, primary hyperoxaluria, primary hyper-
parathyroidism, or renal tubular acidosis) were excluded. CSFs had stones composed of
a majority calcium oxalate or hydroxyapatite. UASFs had a stone composed of a majority
UA [20]. Age-/sex- matched NSFs were recruited form the general population. Stored
urine samples from 18 UASFs (11 men and 7 women), 26 CSFs (16 men and 10 women), and
65 NSFs (39 men and 26 women) were used in the current study. This study was approved
by the Institutional Review Board at Mayo Clinic, Rochester, MN, USA and all participants
gave written informed consent for future analysis.

2.2. Laboratory Measurements

Clinical laboratory analyses were performed in the Clinical Laboratory Improvement
Amendments (CLIA)-certified Mayo Clinic Renal Testing Laboratory, Rochester, MN, USA.
Serum (uric acid, calcium, phosphorus, creatinine) and urine (sodium, potassium, chloride,
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uric acid, calcium, magnesium, phosphorus, citrate (via citrate lyase), oxalate (via oxalate
oxidase)) biochemistries were analyzed using a Roche/Cobas C501 Autoanalyzer (Roche
Diagnostics, Indianapolis, IN, USA); pH using a pH meter; and osmolality using a freez-
ing point osmometer. The EQUIL2 computer program was utilized to calculate urinary
supersaturations [22]. Serum and urine creatinine were measured using an isotope dilu-
tion mass spectrometry (IDMS)-traceable enzymatic creatinine assay (Roche Diagnostics,
Indianapolis, IN, USA), and the serum creatinine-based Chronic Kidney Disease Epidemi-
ology Collaboration (CKD-EPI) 2009 equation was used to determine estimated glomerular
filtration rate (eGFR) [20,21].

2.3. Quantification of Extracellular Vesicles (EVs) by Digital Flow Cytometer

Frozen (−80 ◦C) cell-free urine samples were thawed in a 37 ◦C waterbath for 5 min
prior to EV analysis by digital flow cytometry (BD FACSCanto™) using a size between
200 nm to 1000 nm in diameter and annexin-V positivity using the cross-validated protocol
previously described by our group [20,21,23,24]. Previous analysis suggests EVs are stable
under these conditions [20]. This analysis protocol detects both types of EVs, exosomes
and microvesicles, carrying one of the six candidate UA transporter biomarkers. It is not
possible to accurately differentiate between these two types of vesicles based on currently
available surface markers, and evidence suggests both types of EVs have similar and
overlapping bioactivities [25]. The absolute EV count either in the absence or presence of
single or dual fluorophore-conjugated antibody staining was calculated using a previously
validated method [20,21,23,24]. The number of EVs/µL urine was used to calculate EV
excretion per 24 h and also normalized to EVs/mg urine creatinine [20,21,24,26–28]. All
antibodies were fully validated with reagent controls and appropriate isotype control
antibodies conjugated with the same fluorophores together with negative controls, as
per our previous publications [20,21,23,24]. To prevent antibody–antibody interactions
or binding, each fluorophore-conjugated antibody was used with and without dilutions
with reagents only (without samples) and quantified by flow cytometer for optimization
of antibodies, in order to prevent non-specific binding during quantification. We have
also validated non-specific binding of each antibody using dose-response relationships in
cell-free urine sample from the same patient or control.

Candidate EV-associated proteins for the current study were chosen from those that
have been demonstrated to be, or might plausibly represent, a monogenic cause of UASD
via literature review and the online database Genetics Home Reference (https://ghr.nlm.
nih.gov/ accessed on 1 November 2018), and then narrowed down to those associated with
urinary UA excretion or pH regulation: SLC2A9, SLC17A3, SLC22A12, SLC5A8, ABCG2,
and ZNF365 (Figure 1) [9–15].

2.4. Chemicals, Reagents, and Antibodies

Fluorescein isothiocyanate (FITC) and phycoerythrin (PE)-conjugated recombinant
annexin-V protein (catalog#: 55419-FITC; 563544-PE), mouse anti-human CD63 antibody
conjugated with PE (catalog#: 556421), and TruCOUNT™ (4.2 µm) beads were obtained
from BD Biosciences (San Jose, CA, USA); FITC-conjugated rabbit anti-human SLC2A9 (cat-
alog#: abx316565), ZNF365 (catalog#: abx313505), and SLC17A3 (catalog#: abx305326)
antibodies from Abbexa Ltd. (Cambridge, UK); FITC-conjugated rabbit anti-human
SLC22A12 (catalog#: bs-10357R-FITC) from Bioss (Boston, MA, USA); Alex Fluor488-
conjugated mouse anti-human SLC5A8 (catalog#: FAB8398G) antibody from R&D Systems
(Minneapolis, MN, USA); and PE-conjugated mouse anti-human ABCG2 (catalog#: 332008)
antibody from BioLegend (San Diego, CA, USA). HEPES and Hanks’ balanced salts were
purchased from Sigma Chemicals Co., St. Louis, MO, USA. All other reagents and solvents
used in this study were of analytical/reagent grade.

https://ghr.nlm.nih.gov/
https://ghr.nlm.nih.gov/
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2.5. Data Analysis

Baseline clinical characteristics and serum and urine biochemical data were presented
as the median with interquartile range for continuous variables, and number [percentage]
for categorical variables of NSFs, UASFs, and CSFs. The numbers of EVs bearing UA
transporters were presented on a log10 scale due to the range and non-normal distribution
of the data. The statistical significance of differences between groups were examined using
a non-parametric Wilcoxon rank sum test for continuous variables and Chi-square (Fisher’s
exact) test for categorical variables using JMP software (SAS, Cary, NC, USA). p <0.05 was
considered a statistically significant difference between groups.

3. Results
Baseline Clinical Parameters

Age, sex, and systolic blood pressure; percentage of persons with malabsorption
syndrome (but without enteric hyperoxaluria) or hypertension; serum calcium; and urine
volume were all similar between groups (Table 1). Body mass index (BMI), serum UA, and
creatinine; urinary excretions of protein, UA, phosphorous, and creatinine; and urinary
supersaturation of UA were significantly greater in UASFs vs. NSFs (p < 0.05), whereas
diastolic blood pressure, estimated glomerular filtration rate (eGFR), and urine pH were
significantly lower (p < 0.05) in UASFs vs. NSFs (Table 1). Serum UA, phosphorous, and
creatinine; urinary excretions of UA, phosphorous, calcium, and creatinine; and urinary
supersaturation of calcium oxalate and UA were all significantly greater, while eGFR, and
urine pH and osmolality were significantly lower in CSFs compared with NSFs (Table 1).
Only the urinary excretion of calcium was significantly higher in CSFs compared with
UASFs (Table 1).

Table 1. Baseline clinical characteristics of study participants.

Clinical Parameters NSFs (n = 65) UASFs (n = 18) CSFs (n = 26)

Age (years) 63 (56, 73) 64 (55, 74) 65 (59, 74)
Female, n [%] 26 [40] 7 [39] 10 [38]
Body mass index (kg/m2) 27 (24, 30) 32 (27, 42) * 29 (26, 34)
Systolic blood pressure (mm Hg) 126 (111, 138) 130 (112, 143) 127 (113, 136)
Diastolic blood pressure (mm Hg) 73 (66, 82) 69 (58, 72) * 70 (61, 78)
Malabsorption syndrome, n [%] 3 [5] 2 [11] 2 [8]
Hypertension, n [%] 18 [28] 9 [50] 12 [46]
Diabetic mellitus, n [%] 11 [17] 9 [50] 8 [31]
Estimated GFR (mL/min/1.73 m2) 78 (62, 91) 67 (46, 76) * 62 (51, 76) *

Blood biochemistry

Serum uric acid (mg/dL) 5.0 (4.0, 6.2) 6.7 (5.6, 7.0) * 5.8 (4.8, 6.5) *
Serum phosphorous (mg/dL) 3.3 (3.0, 3.7) 3.3 (2.9, 3.6) 3.6 (3.2, 3.8) *
Serum calcium (mg/dL) 9.3 (8.9, 9.6) 9.3 (9.2, 9.8) 9.5 (9.3, 9.7)
Serum creatinine (mg/dL) 0.9 (0.69, 1.1) 1.1 (0.9, 1.4) * 1.0 (0.9, 1.2) *

Urine biochemistry

Urine pH 6.0 (6.0, 7.0) 5.7 (5.4, 6.1) * 6.0 (5.5, 6.2) *
Osmolality (mOsm) 528 (388, 763) 495 (346, 726) 409 (241, 580) *
Urine volume (mL/24 h) 1955 (1402, 2634) 2167 (1518, 2544) 2064 (1443, 2680)
Protein (mg/24 h) 26 (10, 42) 71.5 (22, 303) * 33 (16, 61)
Uric acid (mg/24 h) 376 (295, 581) 580 (431, 710) * 584 (456, 775) *
Phosphorus (mg/24 h) 516 (353, 826) 872 (714,1406) * 942 (713,1304) *
Calcium (mg/24 h) 139 (99, 200) 140 (105, 236) 255 (168, 327) *,†

Creatinine (mg/24 h) 939 (644, 1325) 1384 (1117, 1715) * 1573 (1235, 1977) *
CaOx (supersaturation, dG) 1.2 (0.8, 1.9) 1.5 (0.9, 1.9) 1.8 (1.2, 2.3) *
Uric acid (supersaturation, dG) −0.7 (−6, 0.2) 0.8 (0, 3.9) * 0.8 (−1, 1.9) *

Continuous variables data were presented as median (interquartile range) and categorical variables data were
reported as the number [percentage] (n, [%]) of non-stone formers (NSFs), uric acid stone formers (UASFs), and
calcium stone formers (CSFs). Significant differences between groups were determined by Wilcoxon rank sum test.
* p < 0.05 compared with NSFs; † p < 0.05 compared with UASFs. Abbreviations: dG, ∆Gibbs; GFR, glomerular
filtration rate; CSFs, calcium stone formers; CaOx, calcium oxalate; NSFs, non-stone formers, UASFs, uric acid
stone formers.
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Representative scatter and fluorescence dot plots of a single subject from the FAC-
SCanto™ flow cytometer are shown in Figure 2. This particular subject had a significant
number of urinary EVs carrying SLC2A9, SLC17A3, and ZNF365, but not SLC22A12 or
SLC5A8. In the entire cohort, compared with NSFs, urinary excretion of EVs carrying
SLC17A3 and SLC5A8 were significantly lower (p < 0.05), while urinary excretion of EVs
carrying SLC2A9, SLC17A3, SLC22A12, ABCG2, and ZNF365 trended lower in UASFs
(Figure 3). Urinary excretion of EVs bearing SLC2A9, SLC17A3, SLC22A12, SLC5A8,
ABCG2, and ZNF365 were significantly lower in CSFs compared with NSFs (p < 0.05,
Figure 3). Urinary excretion of EVs carrying SLC2A9-, SLC22A12-, SLC5A8-, ABCG2-,
and ZNF365 were lower in CSFs compared with UASFs, while SLC17A3-bearing EVs did
not differ between these two groups (Figure 3). Trends were similar when data for these
six biomarker-expressing EVs were expressed as EVs excreted per 24 h, with numbers
being lowest in CSFs, while UASFs were intermediate and closer to NSFs (Table 2).

Table 2. Twenty-four-hour excretion of urinary extracellular vesicles (EVs; microvesicles and exo-
somes) bearing six uric acid (UA)-transporters from UA stone formers (UASFs) and calcium stone
formers (CSFs) and age-/sex-matched non-stone formers (NSFs).

Uric Acid Transporter-Positive EVs
Excreted (106 per 24 h) NSFs (n = 65) UASFs (n = 18) CSFs (n = 26)

SLC2A9 positive 1477 (477, 2872) 963 (342, 3089) 399 (167, 1450) *
SLC17A3 positive 2786 (1047, 4549) 2148 (507, 4977) 1305 (587, 2343) *
SLC22A12 positive 52 (24, 102) 41 (14, 119) 13 (6, 22) *,†

SLC5A8 positive 98 (48, 188) 129 (14, 257) 13 (7, 28) *,†

ABCG2 positive 183 (66, 763) 228 (31, 612) 47 (25, 187) *
ZNF365 positive 1404 (519, 2968) 1448 (336, 3401) 316 (71, 1146) *,†

Data were presented as median (25th, and 75th percentiles), EVs × 106/24 h. * p < 0.05 UASFs or CSFs vs. NSFs;
† p < 0.05 UASFs vs. CSFs (Wilcoxon rank sum test). The excretions of SLC2A9, SLC17A3, and ZNF365-bearing
EVs were greater than SLC22A12, SLC5A8, and ABCG2-expressing EVs in human urine.
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Figure 3. Urinary extracellular vesicles (EVs; microvesicles and exosomes) bearing six uric acid
(UA)-transporters from UA stone formers (UASFs) and calcium stone formers (CSFs) and age-/sex-
matched non-stone formers (NSFs). Urinary EVs were presented as the log10 of EVs/mg creatinine.
* p < 0.05 UASFs or CSFs vs. NSFs; † p < 0.05 UASFs vs. CSFs (Wilcoxon rank sum test). The
concentrations of SLC2A9, SLC17A3, and ZNF365-bearing EVs were greater than SLC22A12, SLC5A8,
and ABCG2-expressing EVs in human urine.
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4. Discussion

Low urine pH and urine volume are the major factors affecting urinary UA supersatu-
ration (SS) and risk of UA stone formation [4–6,29–31]. In this study, urine pH and eGFR
were lower, whereas BMI, serum UA, and creatinine; and urinary excretion of protein, UA,
phosphorous, and creatinine, and urinary UA supersaturation were all greater in UASFs
compared with NSFs. These findings are as expected from previous studies [31].

Tubular fluid pH and/or uric acid concentration, both risks for UA crystallization,
could potentially be altered by EVs carrying transporters. In this study, urinary EVs carrying
SLC17A3 and SLC5A8 were significantly lower in UASFs compared with NSFs. Urinary
EVs carrying SLC2A9, SLC22A12, SLC5A8, ABCG2, and ZNF365 were lower in CSFs
than UASFs, while EVs carrying SLC17A3 were not different between these two groups.
SLC17A3 is a voltage-driven transporter of intracellular urate and organic anions from
blood into renal tubular epithelial cells, and it thus plays an important role in metabolic
disorders including serum uric acid concentration. Our current results suggest that renal
tubular cells might respond to a specific type(s) of urinary crystals and tubular fluid
compositions and release EVs containing specific UA transporters, and those changes may
in turn reflect underlying UASD risk. These EVs could also potentially serve as a signaling
mechanism that mediates UA stone risk (positively or negatively). For example, increasing
tubular fluid uric acid concentration might downregulate proximal tubular cell secretion of
EVs carrying SLC17A3 and SLC5A8 as a negative regulatory or unknown mechanism.

EVs can serve as potential mediators of intercellular signal communication via their
bioactive molecules (proteins, lipids, and nucleic acids) [16–18,25]. Published studies sug-
gest that the interaction between kidney epithelial cells and UA crystals could play a critical
role in UA nephrolithiasis [32–34]. In vivo tubular fluid UA crystals could conceivably
induce renal tubular epithelial cell injury, triggering EV secretion and initiating cellular
processes related to UA stone formation. It is of note that in the current study, specific
urinary EVs bearing UA-relevant transporters were reduced in CSFs compared with both
NSFs and UASFs. The relative decrease of urinary EVs carrying UA transporters among
CSFs compared with UASFs may reflect different degrees of ongoing UA crystal exposure
that occur in vivo in these two groups of patients. The decrease in urinary excretion of
EVs bearing UA transporters might reflect inhibition of EV excretion from tubular cells
by urinary uric acid crystals and low urinary pH, since the urine pH of CSFs and UASFs
were both reduced compared with controls, with the low urinary pH more pronounced
among the UASF group. Furthermore, our study used the CSFs as a comparison group to
analyze whether changes in urinary EV populations were a marker of stone former status
in general, or more specific to the UASF group.

EV surface expression of SLC2A9, SLC5A8, SLC17A3, SLC22A12, ABCG2, and ZNF365
might reflect altered UA transport capacity of tubular epithelial cells in a given individual,
and could also signal other distally located tubular epithelial cells. The populations of uri-
nary EVs carrying SLC2A9, SLC17A3, and ZNF365 were greater than SLC22A12, SLC5A8,
and ABCG2, and differed between UASFs and CSFs. These results suggest that urinary
EVs could potentially represent pathogenic biomarkers of CSF vs. UASF risk. Thus, the use
of EVs as noninvasive diagnostic biomarkers would enhance their clinical applicability.

This study has certain limitations. Only six pre-selected UA-transporters were mea-
sured in urine. This study also analyzed CSFs as a group, which is clinically relevant
and commonly done but also represents a phenotypically diverse group. More evidence
and mechanistic studies are needed to further define the precise relationship between
urinary EVs carrying different transporters and stone pathogenesis. Furthermore, given the
limited number of UASFs, we were not powered to do multivariable analysis and take into
account the possible independent effect of urinary composition (as opposed to stone former
type) on EV numbers. The candidate EV proteins were detected using flow cytometry
with fluorophore-conjugated antibodies. In the future, it would be optimal to rigorously
validate the expression of protein markers on purified urinary EVs using quantitative
Western blot and/or mass spectrometry. Furthermore, the number of UASFs was relatively
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modest in comparison to the number of CSFs. The EV candidate biomarker pool could
also potentially be increased, perhaps using an unbiased approach, such as by systematic
bioinformatic analysis, and not only assessing EV-associated proteins but also bioactive
nucleic acids (miRNA, mRNA, and DNA). Nevertheless, this is the first study to assess UA
transporter-carrying EV populations in human urine from UASFs, CSFs, and NSF controls.

5. Conclusions

This study demonstrated that reduced urinary excretion of EVs carrying UA trans-
porters by UASFs and CSFs might reflect the lower urine pH, volume, and resulting
increased number of intratubular UA crystals that are associated with these two disease
groups. The varied populations of EVs between disease groups might also reflect ongoing
cell–cell communication. For example, renal UA transporter-carrying EVs could merge
into a target cell membrane of recipient cells, which could in turn alter UA absorption and
secretion, or otherwise alter the expression of this family of UA-transporters through mech-
anisms yet to be determined (e.g., EV-associated mRNA or miRNA, lithogenic proteins
or UA nanocrystals). This process could protect against further renal injury when cells in
one part of the nephron are exposed to low pH and/or UA crystals. If the physiological
processes resulting in a lower urinary pH and/or hyperuricosuria and low urine flows are
pronounced, the mechanisms that physiologically alter EV excretion from renal tubular
cells might be overcome. Cellular responses to the UA and COM crystals could also play
a role in the progression of chronic kidney disease that has been associated with hyper-
uricemia [35], and nephrolithiasis [36]. More mechanistic validation studies are needed to
define the pathogenic role(s) of UA transporter-carrying urinary EVs in UA and calcium
stone formation and their interrelationships, crystal nephropathy, and associated chronic
kidney disease risk.
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Abbreviations

ABCG2 ATP-binding cassette transporter G2
CSFs calcium stone formers
eGFR estimated glomerular filtration rate
EVs extracellular vesicles
FITC Fluorescein isothiocyanate
NSFs non-stone formers
PE phycoerythrin
SLC2A9 solute carrier family 2, glucose transporter, member 9
SLC5A8 solute carrier family 5, member 8
SLC17A3 solute carrier family 17, organic anion transporter, member 3
SLC22A12 solute carrier family 22, organic anion/cation trans-porter, member 12
UA uric acid
UASD stone disease
UASFs UA stone formers
URAT1 urate transporter 1
USD urinary stone disease
ZNF365 zinc finger protein 365
COM calcium oxalate monohydrate
CKD chronic kidney disease
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