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Trunk and head muscles originate from distinct embryonic regions: while the trunk
muscles derive from the paraxial mesoderm that becomes segmented into somites, the
majority of head muscles develops from the unsegmented cranial paraxial mesoderm.
Differences in the molecular control of trunk versus head and neck muscles have been
discovered about 25 years ago; interestingly, differences in satellite cell subpopulations
were also described more recently. Specifically, the satellite cells of the facial expression
muscles share properties with heart muscle. In adult vertebrates, neck muscles
span the transition zone between head and trunk. Mastication and facial expression
muscles derive from the mesodermal progenitor cells that are located in the first and
second branchial arches, respectively. The cucullaris muscle (non-somitic neck muscle)
originates from the posterior-most branchial arches. Like other subclasses within the
chemokines and chemokine receptors, CXCR4 and SDF-1 play essential roles in the
migration of cells within a number of various tissues during development. CXCR4
as receptor together with its ligand SDF-1 have mainly been described to regulate
the migration of the trunk muscle progenitor cells. This review first underlines our
recent understanding of the development of the facial expression (second arch-derived)
muscles, focusing on new insights into the migration event and how this embryonic
process is different from the development of mastication (first arch-derived) muscles.
Other muscles associated with the head, such as non-somitic neck muscles derived
from muscle progenitor cells located in the posterior branchial arches, are also in the
focus of this review. Implications on human muscle dystrophies affecting the muscles of
face and neck are also discussed.

Keywords: CXCR4, SDF-1, facial expression muscles, non-somitic neck muscles, cell migration

INTRODUCTION

Remarkably, skeletal muscles in the trunk and head regions differ in a number of important
aspects (Lescroart et al., 2010). The primary function of trunk skeletal muscles is locomotion,
whereas craniofacial skeletal muscles do not serve in locomotion (Schubert et al., 2019).
Instead, they are essential for controlling eye movements, facial expression and mastication
(Sambasivan et al., 2011; Schubert et al., 2019). Trunk and head muscles also have distinct
embryonic origins (Noden and Francis-West, 2006; Lescroart et al., 2010). Differences can already
be observed in the myogenic programmes controlling head and trunk myogenesis (Grifone and
Kelly, 2007; Sambasivan et al., 2011; Schubert et al., 2019; Vyas et al., 2020). In addition to these
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distinguishing criteria, it should also be mentioned that the
head mesoderm includes a common progenitor pool contributing
to the heart and the skeletal muscles (Vyas et al., 2020). The
most remarkable feature of the head musculature is that its
connective tissue originates from a different source than that
of the trunk muscle (Christ et al., 1982; Noden and Trainor,
2005; Noden and Francis-West, 2006; Masyuk and Brand-Saberi,
2015). Neck muscles link the head to the trunk and derive from
dual mesodermal (somitic and non-somitic) origins (Theis et al.,
2010; Lescroart et al., 2015; Heude et al., 2018). Interestingly,
non-somitic neck muscle share a common set of gene regulatory
networks with head muscles and cardiac progenitors of the
second heart field (Lescroart et al., 2015). In the trunk, the dorsal
domain of the somite, the dermomyotome, retains its epithelial
structure for longer and contributes to all the skeletal muscles of
the trunk and limbs (Buckingham and Rigby, 2014; Buckingham
and Relaix, 2015). The premyogenic progenitor cells delaminate
from the dermomyotome (ventrolateral lip) and undertake a
long-range migration from the somite to more distant sites of
myogenesis such as the limbs, diaphragm and tongue (Vasyutina
et al., 2005; Buckingham and Relaix, 2015; Masyuk and Brand-
Saberi, 2015). Migration of skeletal muscle progenitor cells is
a complex process and involves chemokines and chemokine
receptor signaling that allow the cells to stay motile and find their
final destination. CXCR4/SDF-1 axis has previously been shown
to play a role in the development of migrating muscle progenitor
cells of the limb, tongue, pectoral girdle and cloaca (Odemis et al.,
2005; Vasyutina et al., 2005; Yusuf et al., 2006; Rehimi et al., 2010;
Masyuk et al., 2014). Furthermore, SDF-1 positively regulates the
expression of irregular connective tissue markers during limb
development and controls the formation of blood vessels in the
somite (Abduelmula et al., 2016; Nassari et al., 2017). Recently,
we reported that CXCR4/SDF-1 axis has a crucial role in facial
and neck muscle development (Yahya et al., 2020b).

In this Review, we intend to provide an update of the research
data concerning the origin and gene regulatory networks of
vertebrate facial and neck muscles, taking into account the
evidence for common embryonic origins of these muscles with
heart muscle. We also discuss the roles of SDF-1 and its receptor
CXCR4 in the development of skeletal muscles. Since search data
concerning the role of chemokines in trunk muscles development
have been previously reviewed by Masyuk and Brand-Saberi
(2015), we discuss them only briefly here and focus instead
on the role of the CXCR4/SDF-1 axis during head muscles
development and summarize recent findings of its role in the
migration of the second arch-derived and non-somitic neck
muscle progenitor cells.

HEAD MUSCLE ORIGIN

Trunk and head muscles originate from distinct embryonic
regions: trunk muscles from paraxial mesoderm that becomes
segmented into somites, but the majority of head muscles
are developed from unsegmented cranial mesoderm (Lu et al.,
2002; Noden and Francis-West, 2006; Lescroart et al., 2010).
Neck muscles span the transition zone between head and trunk

(Theis et al., 2010; Lescroart et al., 2015; Sefton et al., 2016;
Heude et al., 2018). Even though the myogenic regulatory
factors orchestrate a developmental program shared by all body
muscles, there is clear evidence that muscle development in
the head and trunk differ with regard to the initial phases in
myogenic lineage specification (Lu et al., 2002). Craniofacial
muscles can be arranged into several groups: (1) muscles that
control eye movement (extraocular), (2) muscles in or associated
with the head (somite-derived tongue and neck muscles), and
(3) branchiomeric muscles that are involved in mastication,
facial expression and function of the pharynx and larynx
(Lescroart et al., 2010). Branchiomeric muscles originate from the
mesodermal core of the branchial arches (BAs), which consists
of cells from both cranial paraxial mesoderm (CPM) and lateral
splanchnic mesoderm (SPM) (Lescroart et al., 2010). In chicken,
CPM cells give rise to the proximal region of the mesodermal
core, whereas SPM cells give rise to the mesodermal cells in
the distal region of the BAs (Nathan et al., 2008). Mastication
and facial expression muscles originate from the mesodermal
progenitor cells that are located in the BA1 and BA2 (Figure 1
and Table 1), respectively (Noden and Francis-West, 2006;
Lescroart et al., 2015). In avians, the second arch-derived muscles
include the muscle of the mandibular depressor, the muscle of
columella (stapedial), the constrictor colli, the stylohyoid, the
serpihyoid, the mylohyoid (caudal) and the interceratobranchial
muscles (Figure 2B and Table 1; McClearn and Noden, 1988).
Unlike in mammals, they participate in food uptake by rotating
the lower jaw, raising the floor of the mouth, retraction of
the hyoid apparatus and intraoral food transport (Jones et al.,
2019). Non-branchiomeric head muscles include tongue muscles
derived from muscle progenitor cells located in the anterior-
most somites, and extraocular muscles derived mainly from the
prechordal mesoderm (Kelly et al., 2004; Noden and Francis-
West, 2006; Lescroart et al., 2010).

DISTINCT ORIGINS OF THE NECK
MUSCLE

There are approximately 80 skeletal muscles in the human neck
that control the processes of respiration, vocalization, swallowing
and head mobility (Heude et al., 2018). Neck muscles are
classified based on their anatomical location within the neck: for
instance, cucullaris-derived muscles (Figure 1B), ventral hypaxial
muscles, pharyngeal, laryngeal and esophageal striated muscles
located medioventrally and epaxial back muscles (Figure 1B
and Table 1; Heude et al., 2018). The amniote homolog of
the cucullaris muscle is divided dorsoventrally into the larger
dorsally positioned (trapezius) muscles and ventrally positioned
(sternocleidomastoideus) muscles (Theis et al., 2010). Recently,
interest in cervical musculature has significantly increased, with
the application of clonal analysis, gene targeting, and molecular
profiling studies. The origin of the cucullaris muscle or its
mammalian homologs the sternocleidomastoideus and trapezius
has been the subject of considerable debate (Theis et al., 2010;
Heude et al., 2018). Previous findings in different organisms
including mice, lungfish, amphibians and shark suggest that the
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FIGURE 1 | Muscles of the mouse head and neck. (A) Lateral view of a stage E10.5 mouse embryo hybridized with a MSC (MyoR) probe. (A′) Schematic
representation of E10.5 mouse embryo in the panel (A). In pink: first arch-derived muscle anlage. In blue: second arch-derived muscle anlage. In pale blue: cucullaris
muscle anlage. MSC marked the myogenic core of the BA1 and BA2. Cucullaris muscle anlage is also labeled with MSC. (B) Lateral view of a stage E13.5 mouse
embryo hybridized with a MyoD probe. (B′) Schematic representation of E13.5 mouse embryo in the panel (B). MyoD is expressed in all branchiomeric muscles and
cucullaris muscle anlage. a-trap, acromio-trapezius; au, auricularis; BA1-2, branchial arches 1–2; bu, buccinator; ccl, cucullaris anlage; fr, frontalis; ma, masseter; oc,
occipitalis; oo, orbicularis oculi; ov, otic vesicle; qua, quadratus labii; sp, splenius; stm, sternocleidomastoideus; s-trap, spino-trapezius; te, temporalis; zy,
zygomaticus.

cucullaris develop from posterior BAs (Matsuoka et al., 2005;
Noden and Francis-West, 2006; Ericsson et al., 2013; Diogo et al.,
2015; Lescroart et al., 2015; Sefton et al., 2016; Naumann et al.,
2017; Noda et al., 2017; Ziermann et al., 2018). In chicken,
several embryological origins involving lateral plate mesoderm
(Figures 2A,C) and somites have been described for the cucullaris
muscles (Huang et al., 2000; Theis et al., 2010; Nagashima
et al., 2016). Interestingly, a recent lineage-tracing study in mice
using lineage-specific Cre drivers for Pax3, Islet1, Mef2c-AFH
(anterior heart field) and Mesp1 suggests that the cucullaris
muscle anlage develops as part of the mesodermal core of BA 3-
6 and anterior-most somites (S 1–3), but extends caudally into
the lateral plate mesoderm and is innervated by the accessory
nerve XI (Heude et al., 2018). In their study, the Tajbakhsh

group reported that the cucullaris-derived myofibres are not part
of the lateral plate mesoderm based on their expression profile
(Prx1 lineage). The lateral plate mesoderm instead gives rise to
the associated connective tissue of the cucullaris-derived muscles
(Heude et al., 2018). Thus, sternocleidomastoideus and trapezius,
although being called “non-somitic,” they are of mixed origin,
head and somitic mesoderm contribute to their formation.

SKELETAL MUSCLE ELEMENTS OF THE
HEAD AND NECK

In the body, the central functions of connective tissues are to
link up cells and tissues and to support organs. Connective tissue
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TABLE 1 | Avian and mouse facial and neck muscle.

Muscles References

Avian First arch Adductor mandibulae externus
Adductor mandibulae caudalis Pseudotemporalis profundus
Pseudotemporalis superficialis
Pterygoideus
Protractor of quadrate
Intermandibularis (dorsal and ventral)

McClearn and Noden, 1988

Second arch Depressor mandibulae
Muscle of the columella (stapedial)
Constrictor colli
Mylohyoideus caudalis
Serpihyoideus
Stylohyoideus
Interceratobranchialis

McClearn and Noden, 1988

Neck Cucullaris muscle (cucullaris capitis and cucullaris cervicis) Theis et al., 2010

First arch Temporalis and Masseter Lescroart et al., 2010

Mouse Second arch Auricularis
Buccinator
Frontalis, Occipitalis
Orbicularis oculi
Quadratus labii and
Zygomaticus

Lescroart et al., 2010

Neck (non-somitic) Acromio-trapezius
Spino-trapezius
Sternocleidomastoideus

Heude et al., 2018

Neck (somitic) Epaxial neck muscles (Levator scapulae, Semispinalis, Splenius, suboccipital,
postvertebral muscles and rhomboid occipitalis)
Hypaxial neck muscles (infrahyoid muscles, longus capitis and longus colli)

Heude et al., 2018

generates a broad range of derivatives, which can be classified
into three groups: specialized connective tissue (corresponds to
cartilage and bone), loose connective tissue and dense connective
tissue, which is subdivided into regular (refers to tendon and
ligament) and irregular. Irregular connective tissue includes
cartilage perichondrium, muscle epimysium and connective
tissue inside the muscle (Clemente, 1985; Omelyanenko
et al., 2014; Nassari et al., 2017). BAs are composed of two
mesenchymal cell populations (Figure 3), originating from
cranial paraxial mesoderm and from the neural crest cells
(Grenier et al., 2009). The neural crest cells can be grouped
into two categories, ectomesenchymal (Figures 3A,C), and
non-ectomesenchymal (Figures 3B,D). The ectomesenchymal
neural crest cells migrate into the BAs and form connective
tissue, whereas the non-ectomesenchymal crest cells give rise
to neurons, glia and pigment cells (Blentic et al., 2008). More
recently, however, it has been reported that the neural crest cells
give rise to the muscle connective tissue that connect the head
and shoulders, while mesodermal cells contribute to attachment
sites of muscles linking the trunk and limbs (Heude et al., 2018).
Mesodermal and neural crest cells seem to differ in the manner
of developing bones: mesodermal cells form endochondral
skeleton in the trunk whereas neural crest cells form dermal
and endochondral bones in the head (Matsuoka et al., 2005).
In zebrafish, Kague et al. (2012) demonstrated neural crest cells
contribution to many bones of the craniofacial skeleton and for
some later developing cartilage elements, as well as to a subset
of myocardial cells. Unlike in other model vertebrates, the trunk
neural crest cells in zebrafish have realized their capacity to
differentiate into osteoblasts (Kague et al., 2012). In chicken

and mouse, neural crest cells are an established source for the
vertebrate craniofacial skeleton. Although many similarities
between mouse and chicken, there are also clear variations in the
contribution of the neural crest cells (Kague et al., 2012). In the
chicken, neural crest cells do not contribute to any part of the
shoulder girdle (Epperlein et al., 2012). In mouse, neural crest
cells give rise to the attachment points of the cleidohyoideus
and trapezius muscles inside the shoulder girdle endoskeleton
(Matsuoka et al., 2005). In contrast to this finding, a recent study
in mouse reported that the neural crest cells reveal restricted
contribution to cucullaris attachment sites and do not give
rise to osteoblasts at the posterior attachment regions (Heude
et al., 2018). This view suggests that the gradient of mesodermal
and neural crest cells contributions to neck connective tissue
relies on the cellular origin of associated skeletal components
(Heude et al., 2018).

THE GENETIC REQUIREMENTS FOR
THE FORMATION OF HEAD AND NECK
MUSCLES

Myogenic programmes are distinct not only between head and
trunk muscles, but also amongst neck muscles. Likewise, within
the head muscles, extraocular muscles differ from branchial
muscles, and myogenic programmes that lead to the formation
of branchial muscles vary considerably among the different
BAs (Nathan et al., 2008). A comparison of the molecular
signature in the satellite cells of mastication and extraocular
muscles to limb muscles in the adult reveals more differences
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FIGURE 2 | Muscles of the chicken head and neck. (A,C) Lateral view of chicken embryos hybridized with DIG-probes for either MyoR (A) or MyoD (C). (A′,C′)
Schematic representation of chicken embryos in the panels (A,C). (B) Lateral view of head muscles of a stage HH41 chicken embryo. The MyoD and MyoR
delineated the BA1-derived muscles (pink), the BA2-derived muscles (blue) and the cucullaris muscle (pale blue). ame, adductor mandibulae externus; 1-2, branchial
arches 1-2; ccl, cucullaris anlage; cm, caudal mylohyoideus; dm, depressor mandibulae; eam, external auditory meatus; h, heart; icb, interceratobranchialis; im,
intermandibularis; lam, lateral plate mesoderm; ov, otic vesicle; se, serpihyoideus; st, stylohyoideus.

(Sambasivan et al., 2009). Sambasivan et al. reported that EOM
are absent in Myf5/Mrf4 double mutants, which shows a unique
genetic programm, different from all other skeletal muscles in the
embryo. In contrast, BA1-derived muscles are not affected by the
inactivation of these two genes. In the limb, Pax3 compensated
for the lack of Myf5 and Mrf4 functions (Sambasivan et al.,
2009). In their work from Harel et al. (2009) show that the
bone morphogenetic protein 4 (BMP4) effectively downregulated
myogenic differentiation markers (MyHC and MyoG) in trunk-
derived, but less so in head derived satellite cells. Moreover,
BMP4 induced greater expression of cardiac markers (Tbx20
and Isl1) in head satellite cells, but not trunk satellite cells.
Thus, head satellite cells may retain cardiogenic competence and
could provide a future source of cell-based therapy to repair
cardiac damage (Rios and Marcelle, 2009). Furthermore, studies
of satellite cells from the head and limb muscles exhibit differing
regenerative capacities in their response to injury (Pavlath et al.,
1998). This lineage heterogeneity is found within the craniofacial
muscle progenitor and satellite cells, as a result of their distinct
embryonic origins (Harel et al., 2009). Recently, many studies

of developmental myogenesis have focused on head and trunk
muscles, however, little is known regarding the development
of neck muscles. New genetic studies are starting to shed light
on the mechanisms governing skeletal myogenesis in the neck
(Figure 4). Apart from differences of neck muscle formation
based on origin, it has recently been shown that they develop
according to unique genetic programmes. A number of recent
findings have established that an unexpected diversity occurs
among different neck muscle groups (Heude et al., 2018).
Such molecular diversity in terms of the expression of specific
upstream regulators of the neck myogenic program has begun to
be understood in the last few years.

Pax transcription factor family 3 (Pax3) marks trunk skeletal
muscle progenitor cells and controls their entry into the muscle
differentiation program (Buckingham and Relaix, 2007). In
Pax3/Myf5 double mutants trunk muscles are absent, whereas
head muscles are not affected (Tajbakhsh et al., 1997). In
the head muscle satellite/progenitor cells, the role of Pax3
is replaced by Tbx1, Isl1, Pitx2, Capsulin and MyoR (Shih
et al., 2007; Sambasivan et al., 2009, 2011; Theis et al., 2010;
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FIGURE 3 | Comparative analysis of the mesodermal and neural crest cell
makers. (A,B) Whole-mount chicken embryos were hybridized with
DIG-labeled probes for Ap2α and Sox10. (C) Whole-mount embryos are
labeled with MyoD probes in blue and Ap2α probe in red. (D) Whole-mount
embryos are labeled with MyoR probes in blue and Sox10 probe in red. Ap2α

marked the ectomesenchymal neural crest cells (green arrows), whereas
Sox10 labeled non-ectomesenchymal neural crest cells (red arrows). The
myogenic cells are marked by MyoD and MyoR (black arrows). 1-2, branchial
arches 1-2; ov, otic vesicle.

Moncaut et al., 2012; Buckingham and Relaix, 2015), indicating
that myogenesis in the head is regulated by a distinct mechanism
(Sambasivan et al., 2011; Lescroart et al., 2015). Previous studies
in chicken, mouse, frog and zebrafish reported that head skeletal
muscle satellite cells do not have an earlier history of Pax3 and
instead, Pax7 develops later and marks satellite cells (Buckingham
and Rigby, 2014; Nogueira et al., 2015). Pax7 mutant (whole
body mutant) offspring are viable within three weeks after birth
(Mansouri et al., 1996). In Pax7 mutants, skeletal muscle forms
normally, whereas facial skeletal structures are affected which
could be linked to neural crest cells defect (Mansouri et al., 1996).
Pax7 is detected in mandibular adductor (CPM-derived), but not
intermandibular muscle (SPM-derived) myoblasts, while Isl1 is
detected in the intermandibular muscle (Nathan et al., 2008).
In SPM-derived branchiomeric muscle progenitor cells, Isl1 was
reported to delay MyHC expression in a manner similar to its
expression in undifferentiated second heart field cells (Nathan
et al., 2008). Thus, Isl1 might have a role in the control of self-
renewal of satellite cells in branchiomeric muscles (similar to the
role of Pax7 in trunk) (Nathan et al., 2008). In chicken and turtles,
the cucullaris muscle develops in a Pax3-independent manner
(Theis et al., 2010). Pax7 is not detected during early cucullaris
muscle formation, but is slightly found at stage HH28. Likewise,
Myf5 expression starts late (HH26) in the cucullaris muscle
compared with trunk and head muscles (Theis et al., 2010). The
lack of the early Myf5 and Pax7 expression in the cucullaris
muscle reveals that it forms during the period of phasing out of
the trunk myogenic programme (Theis et al., 2010).

The pituitary homeobox 2 (Pitx2) is expressed in the head
mesoderm and BA1-mesodermal core. In Pitx2 mutants, the
EOM and BA1-derived muscles were affected, whereas BA2-
derived muscles were merely altered (Shih et al., 2007). Thus,
Pitx2 seems to be required for the specification of BA1-derived
muscles by controlling MyoR, Capsulin and Tbx1 in early
stages (Shih et al., 2007). Likewise, in Capsulin/MyoR double
mutant mice BA1-derived muscles were absent, whereas BA2-
derived muscle were present (Lu et al., 2002). These findings
identify Pitx2, Capsulin and MyoR as unique gene regulators
for the formation of BA1 muscles (Lu et al., 2002; Shih et al.,
2007). The onset of myogenic program in the BA2 mesodermal
core is regulated by Tbx1, which controls Myf5 and MyoD
expressions (Kelly et al., 2004; Shih et al., 2008). Analyses of
Tbx1 mutant embryos revealed that muscles derived from BA2
were absent (Kelly et al., 2004). In contrast, skeletal muscle
progenitor cells derived from BA1 were present (Kelly et al.,
2004). Thus, Tbx1 is not necessary for migration of cranial
mesodermal progenitor cells into the BA1 (Kelly et al., 2004).
In chicken, the expression of Tbx1, MyoR, Pitx2, and Capsulin
were found to mark the cucullaris muscle anlagen from its earliest
stage (HH14) of development (Theis et al., 2010). In mouse,
the above-mentioned recent study indicates that transcription
factors involved in trunk myogenesis are not important for
the development of anterior somites neck muscles in contrast
to more posterior somites neck (hypaxial) muscles (Heude
et al., 2018). Interestingly, the cucullaris muscle is formed from
progenitor cells that have expressed Mesp1, Mef2-AHFc, Tbx1,
and Islet1 markers (transcription factors regulating head muscle
formation) (Kelly et al., 2004; Theis et al., 2010; Lescroart et al.,
2015; Heude et al., 2018). The absence of transcription factors
involved in trunk myogenesis and the late expression of Myf5
and Pax7 supported the hypothesis that the cucullaris muscle
develops according to a head muscle programme (Theis et al.,
2010). Additionally, mesoderm posterior homolog transcription
factor 1, Mesp1, is considered as the master regulator of cardiac
mesodermal cells that contribute to both the first and the second
heart fields (Chan et al., 2013). Mesp1 is a context-dependent
transcription factor, combining the signals and the phase of
differentiation to promote other mesodermal lineages, namely
cardiac, skeletal muscle and hematopoietic (Saga et al., 1996,
2000; Chan et al., 2013). A recent study in mice demonstrates that
Mesp1 widely expresses in the cranial mesoderm and anterior
somites 1–6, whereas its expression declines in more posterior
somites (Heude et al., 2018). Furthermore, all epaxial/hypaxial
neck muscles originate from cranial somitic Mesp1 + cells,
while trunk/limb muscles deriving from more caudal somitic
Pax3+ cells (Heude et al., 2018).

CLONAL RELATIONSHIP BETWEEN
FACIAL EXPRESSION, NON-SOMITIC
DERIVED AND CARDIAC MUSCLES

Cardiac and skeletal muscles are both striated. In tune with this
issue, another peculiarity of the head mesoderm is its ability
to generate craniofacial and cardiac muscles progenitor cells
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FIGURE 4 | Model of myogenic programs in the facial and neck muscles. Pitx2, Capsulin and Msc are required for the Myf5 and MyoD activation in the BA1-derived
muscle progenitor cells. Tbx1 is required for initiation of myogenic progression in the BA2. Non-somitic neck (cucullaris) muscle development is controlled by
Mef2c-AHF, Isl1 and Mesp1. The genetic network for somite-derived (epaxial) neck muscles involves both Mesp1 and Pax3 genes. CXCR4 is required for the
migration of the BA2-derived and non-somitic neck muscle progenitor cells. MRF, Myogenic regulatory factors.

(Sambasivan et al., 2011; Vyas et al., 2020). In the past, the
heart muscle was thought to originate from a single source
of myocardial progenitor cells. However, an additional source
of common mesodermal progenitor cells that contribute to
descendants in both types of striated muscle has been discovered
(Tirosh-Finkel et al., 2006; Lescroart et al., 2010, 2015; Chan et al.,
2016; Vyas et al., 2020). Retrospective clonal analysis experiments
had indicated two branchiomeric muscle lineages, both of
which also contribute myocardium. The first lineage derives
from BA1 mesoderm and contributes to BA1-derived muscles
(temporalis and masseter muscles) and myocardium of the right
ventricle. The second lineage gives rise to BA2-derived (facial
expression) muscles and outflow myocardium (Lescroart et al.,
2010). Likewise, clonal analysis study in the mouse revealed that
cardiac progenitor cells in pharyngeal mesoderm of the second
heart field share a gene regulatory network with non-somitic neck
muscles (Lescroart et al., 2015). In the same year, a different group
has identified the third lineage of cardio-pharyngeal mesoderm.
They have reported that esophageal striated muscles are derived
from pharyngeal mesoderm that contributes to head muscles and
derivatives of the second heart field (Gopalakrishnan et al., 2015).
In the adult, branchiomeric muscles are equipped with quiescent
satellite (stem) cells which are marked by Pax7. These satellite
cells however are not derived from the trunk mesoderm (Pax3+
lineage). Instead, they are derived from the head mesoderm and
continue to express the early head muscle markers (Nogueira
et al., 2015). In both chicken and mouse models, lineage studies
show that Isl1 + lineage of the SPM generates satellite cells of

subset of branchiomeric skeletal muscles, whereas Mesp1+ head
mesoderm lineage give rise to satellite cells in extraocular and
CPM-branchiomeric muscles (Harel et al., 2009). In addition
to lineage distinction, a difference regarding the developmental
potential was observed between head and trunk satellite cells.
In vitro experiments revealed a cardiogenic potential of head,
but not trunk-derived satellite cells (Harel et al., 2009). The
ability of head satellite cells to retain some of the early head
mesoderm properties and contribute to heart muscle have
important implications in developing specialized muscle stem
cells and cardiac cells for therapy (Nogueira et al., 2015).

CELL MIGRATION

During embryogenesis, there are several incidents where
tissue or organ development depends on precise migration
of progenitor cells from their respective sites of emergence
(Miller et al., 2008). Cell migration plays a fundamental role in
development, regeneration and disease. This migration requires
chemokine/chemokine receptor signals that allow the cells to stay
motile and find their targets (Vasyutina et al., 2005). Chemokines
are small chemoattractant cytokines that are classified according
to positioning of certain conserved N-terminal cysteine residues
(C) (Pawig et al., 2015; Scala, 2015). The cysteine residues can be
adjacent (CC-family) or spaced from each other by one or three
amino acids (CXC and CX3C families) (Scala, 2015). Chemokine
receptors are classified in CR, CCR, CXCR, and CX3CR receptors
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in relation to nomenclature aligns with their ligands (Pawig et al.,
2015; Pozzobon et al., 2016). Chemokine receptors belong to G
protein-coupled receptors, which signal via trimeric G proteins
(Pawig et al., 2015). The best described chemokine is SDF-
1 (Stromal Derived Factor 1, also known as CXCL12), whose
functions are mediated by two chemokine receptors (CXCR4 and
CXCR7) (Garcia-Andres and Torres, 2010). Although the first
known activity of CXCR4 was the regulation of HIV- infection
and cancer metastasis (Bleul et al., 1997; Helbig et al., 2003; Doi
et al., 2018; Shanmugam et al., 2018; Bianchi and Mezzapelle,
2020), CXCR4 is also an abundantly expressed chemokine
receptor throughout embryogenesis (Yusuf et al., 2005; Yusuf
et al., 2006). The functions of the CXCR4/SDF-1 axis during
embryogenesis include heart ventricular septum formation, gut
vascular morphogenesis, sympathetic precursor cell migration,
dentate granule cell migration, B lymphocyte migration, sensory
neuron clustering, limb neuromuscular development and palatal
osteogenesis (Bagri et al., 2002; Odemis et al., 2005; Kasemeier-
Kulesa et al., 2010; Escot et al., 2013; Mahadevan et al., 2014;
Terheyden-Keighley et al., 2018; Laparidou et al., 2020; Verheijen
et al., 2020; Yahya et al., 2020a).

CXCR4 Signaling Pathways
Upon SDF-1 binding CXCR4 at the N-terminal domain, the
receptor undergoes a conformational change, which activates the
associated trimeric G protein. Next, the receptor undertakes a
second conformational change that induces G protein subunits to
dissociate into Gα subunit and Gβγ dimer (Arnolds and Spencer,
2014; Pozzobon et al., 2016). Each subunit can activate a variety of
biological responses such as cell migration, proliferation, survival
and differentiation. CXCR4-oriented migration is facilitated by
several members of the phosphoinositide 3-kinase (PI3-kinase)
family, which can be exerted by both Gα and Gβγ subunits
(Ward, 2006; Pozzobon et al., 2016). PI3-kinases promote cell
migration and gene transcription by the phosphorylation of pro-
survival effector AKT (also known as protein kinase B) (Teicher
and Fricker, 2010; Pozzobon et al., 2016). Furthermore, Gβγ

dimer can trigger phospholipase C (PLC), leading to calcium
mobilization, activation of protein kinase C (PKC) and mitogen
associated protein kinase (MAPK) (Arnolds and Spencer, 2014;
Pozzobon et al., 2016). The CXCR4/SDF-1 signaling cascade
can take various routes, but ultimately leads to cell migration,
survival, and proliferation (Arnolds and Spencer, 2014).

We and others have identified the CXCR4/SDF-1 axis as
major players in cell migration, proliferation and survival during
development of limb and cloacal muscles (Odemis et al., 2005;
Vasyutina et al., 2005; Yusuf et al., 2005, 2006; Odemis et al.,
2007; Rehimi et al., 2010; Masyuk et al., 2014). In contrast to
our understanding of the role of CXCR4/SDF-1 axis in the trunk
muscles development, less is known about its role in formation of
the head and neck muscles. We have recently provided evidence
that disruption of CXCR4/SDF-1 signaling also impairs facial and
non-somitic neck muscles formation (Yahya et al., 2020b). This
review summarizes the main roles of the CXCR4/SDF-1 axis in
skeletal muscle development, concerning the special emphasis on
the development of the BA2 and non-somitic neck muscles.

The CXCR4/SDF-1 Axis Participates in
Specific Facial and Neck Muscles
Development
Development and patterning of the BAs play key roles in
craniofacial formation (Kelly et al., 2004). We have previously
documented that both CXCR4 and SDF-1 were expressed in the
chicken BAs (Yusuf et al., 2005; Rehimi et al., 2008). However,
the function of this axis in the BAs was not clear. Later study
documented that cardiac neural crest cells migrating toward BA3
and BA4 express CXCR4 and that SDF-1 shows a complementary
expression pattern in the ectodermal cells beside their migratory
way (Escot et al., 2013). More recently, it has been recognized
that absence of CXCR4 signaling results in misrouting of BAs
neural crest cells and massive morphological modifications in the
mandibular skeleton, cranial sensory ganglia and thymus (Escot
et al., 2016). However, their role in the development of facial
muscles development remains to be fully clarified.

More recently, we revealed that the chemokine receptor
CXCR4 and its ligand SDF-1 have a critical role in the facial
muscles development in the chicken and mouse embryos. At
E10.5, we found that CXCR4 is expressed in the migrating muscle
progenitor cells in the core of the BA2 and SDF-1 is detected
in the BA2 endoderm in proximity to these progenitor cells
(Yahya et al., 2020b). Later, CXCR4 is already transcribed in
all BA2-derived muscle progenitor cells, but not BA1-derived
muscle progenitor cells (Figure 5A). CXCR4 is also noticed in
non-somitic neck muscles (sternocleidomastoideus, s-trapezius
and a-trapezius) (Figure 5A). SDF-1 showed a complementary
expression pattern in the regions that correspond to the BA2-
derived muscle anlagen (Figure 5B) (Yahya et al., 2020b). Thus,
these CXCR4 and SDF-1 expression patterns correlate closely
with the migration of second arch-derived muscle progenitor
cells, as well as the non-somtic neck muscle cells. In mice carrying
a mutation in the CXCR4 gene, the BA2-derived muscles were
nearly completely missing. Most strikingly, first arch derived
muscles were not affected. Interestingly, the cucullaris muscle
group (sternocleidomastoideus, s-trapezius and a-trapezius) and
part of splenius (non-somitic part) muscles were also impaired
(Yahya et al., 2020b). We next turned to the chicken model to
check whether CXCR4/SDF-1 axis might be involved in BA2-
derived muscle formation. Indeed, CXCR4 is expressed in the
BA2 mesodermal core (Figure 5C). CXCR4 positive cells are
also observed in the BA1 (Yahya et al., 2020b). AMD3100 is
novel antagonists of CXCR4 and it was previously reported
to competitively inhibit SDF-1 binding to CXCR4 in various
chicken embryo tissues (Katsumoto and Kume, 2011; Mahadevan
et al., 2014). Inhibition of CXCR4 by implantation of AMD3100
beads into the cranial paraxial mesoderm (Figure 6aA) disturbed
the migration of Tbx1-expressing cells, which then caused a
reduction in Tbx1-expressing muscle progenitor cells in the
BA2 mesodermal core (Figure 6aB). Moreover, misregulating
this signal at a later stage by application of the same inhibitor
beads into the BA2, resulted in decreased expression of myogenic
markers (Figure 6bD). Conversely, ectopic application of SDF-
1 protein (Figure 6bA) (gain-of-function approaches) in the
chicken BA2 lead to an attraction of myogenic progenitor cells,
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FIGURE 5 | Expression of CXCR4 and its ligand SDF-1 during head and neck
muscle development. (A,B) Whole-mount in situ hybridization of CXCR4 (A)
and SDF-1 (B) in mouse embryos at E12.5. Note labeling of BA2-derived
muscles anlage (fr, bu, oo, zy, au, qua) by CXCR4. CXCR4 is also expressed
in non-somitic neck muscles (a-trap, s-trap). SDF-1 is expressed in the
adjacent mesenchyme of the face. (C,D) Whole-mount in situ hybridization of
CXCR4 (A) and SDF-1 (B) in chicken embryos at HH22. CXCR4 and SDF-1
are expressed in complementary patterns in the chicken branchial arches.
Black and red arrows mark CXCR4 and SDF-1 in the BAs. a-trap,
acromio-trapezius; au, auricularis; BA1-2, branchial arches 1–2; bu,
buccinator; fr, frontalis; oo, orbicularis oculi; ov, otic vesicle; qua, quadratus
labii; s-trap, spino-trapezius; zy, zygomaticus.

which was reflected in an enlargement of the expression domain
of myogenic regulatory factors around SDF-1 beads (Figure 6bC;
Yahya et al., 2020b). In contrast, control PBS beads didnt’t show
any change in the expression (Figures 6aC,6bB). Additionally,
we could show the importance of the SDF-1 for the migration of
BA2 cells in chicken embryo by injection of quail cells into the
CPM (Figure 7A) at HH11 followed by SDF-1 bead implantation
(Figure 7B) at HH16 (Yahya et al., 2020b,c). Application of these
SDF-1 beads in the BA2 enhanced the migration of the QCPN-
positive cells from the CPM into BA2 (Figure 7D), which led
to their accumulation around the SDF-1 source. In contrast,
the AMD3100 bead prevented the quail cells from entering the
BA2 (Figure 7E). PBS beads did not show any change in the
expression (Figure 7C).

It is now well established that the control of myogenesis of BA1
and BA2-derived muscles is differentially regulated (Moncaut
et al., 2012). Tbx1 is expressed in the mesodermal core of the
BAs, which gives rise to facial expression and non-somitic neck
muscles (Kelly et al., 2004). In Tbx1 mutant, the skeletal muscle
progenitor cells in the BA2 and caudal BAs are severely disturbed
or absent, suggesting that the majority of facial expression
and non-somitic neck muscles do not form in Tbx1 null
embryos (Kelly et al., 2004). A significant Tbx1 binding site was
documented at the CXCR4 promoter (Escot et al., 2016). It has
been reported that CXCR4 and SDF-1 are genetically downstream
of Tbx1 in the course of BAs colonization by neural crest cells
(Escot et al., 2016). Furthermore, CXCR4 and SDF-1 expression

levels are reduced in Tbx1 knockout embryos (Escot et al., 2016).
At the SDF-1 locus, Pitx2 binding sites were found, but not at
the CXCR4 locus (Mahadevan et al., 2014). Additionally, Pitx2
was needed to initiate expression of premyogenic markers in the
BA1. In Pitx2 knockout mice embryos, the BA1 muscle precursor
cells failed to expand after E9.5, while the BA2 cells were not
affected (Shih et al., 2007). Since Tbx1 but not Pitx2 is required
for the initiation of the myogenic program in the BA2, we suggest
a direct link between CXCR4 and Tbx1 during development of
the specific head and neck muscles. Disrupting of this link could
ultimately cause many of the facial and neck myopathies.

The Role of the CXCR4/SDF-1 Axis in the
Limb and Cloacal Muscles Development
CXCR4 transcripts were expressed in the somites and lateral
plate mesoderm at stages HH9–HH10 (Yusuf et al., 2005). The
earliest expression of SDF-1 in the paraxial mesoderm and lateral
plate mesoderm was noticed at stage HH12 (Yusuf et al., 2005).
Later, CXCR4 was expressed in migrating muscle progenitor cells
toward limb buds, whereas SDF-1 was detected in the limb buds
mesenchyme (Vasyutina et al., 2005; Yusuf et al., 2006). CXCR4
expression pattern in the migrating limb muscle progenitor cells
was restricted to the dorsal and ventral locations (Vasyutina et al.,
2005; Yusuf et al., 2005). SDF-1 transcripts are detected in the
central limb mesenchyme close to the locations occupied by
muscle progenitor cells (Vasyutina et al., 2005). Thus, SDF-1 is
needed to sustain CXCR4- expressing skeletal muscle precursors
at dorsal and ventral locations (Garcia-Andres and Torres, 2010).
In CXCR4 mutant embryos, changes in the distribution and
survival of muscle progenitor cells in the dorsal limb were
observed (Vasyutina et al., 2005).

We have also reported that SDF-1 is expressed in the cloacal
cleft and the proximal region of the hindlimb, while migrating
cloacal muscle progenitor cells express CXCR4 (Rehimi et al.,
2010). Disruption of CXCR4/SDF-1 signaling in the proximal
hindlimb altered their ability to migrate toward the cloaca region
and ultimately leads to defects in cloacal muscle development
(Rehimi et al., 2010). Moreover, misregulation of CXCR4/SDF-
1 signaling impairs dorsal root ganglion neurons and spinal
cord motoneurons formation, leading to reduce innervation
of the developing mouse limbs. In developing limbs, SDF-
1 impact on perichondrium and epimysium involves CXCR4
and vessels. Those new function of CXCR4/SDF-1 axis in
the connective tissue and neuromuscular development might
open new perspectives to a better understanding of the fibrosis
mechanisms and neuromuscular disorders in the trunk region.

Role of CXCR4/SDF-1 Axis in Muscle
Regeneration and Diseases
Alongside CXCR4/SDF-1 axis influences on muscle
development, the impact of this axis on muscle regeneration
and diseases has been under closer investigation (Brzoska
et al., 2006, 2012, 2015; Perez et al., 2009; Bobadilla et al.,
2014; Kowalski et al., 2017; Kasprzycka et al., 2019). Many
studies indicated that muscle committed stem/progenitor and
satellite cells express CXCR4 and their migration depends on
an SDF-1gradient (Ratajczak et al., 2003; Kucia et al., 2006;
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FIGURE 6 | Disruption of CXCR4 signaling in the early head mesoderm and BA2 inhibits migration of the BA2-mesodermal progenitor cells. (aA) Schematic
representation of chicken embryo at HH11 implanted with beads soaked with the CXCR4 inhibitor AMD3100 or with PBS in head mesoderm. The embryos were
re-incubated until they reached stages HH20 and hybridized with a Tbx1 probe. (aB,aC) Schematic representation showing the head region and the location of
mesodermal cells in the BA2 at HH20. Tbx1 expressing area in the BA2 (black arrow) was diminished in AMD3100-treated embryos (B) in comparison with the
PBS-treated embryos (C). (bA) Schematic representation of embryo at HH16 implanted with beads soaked with the AMD3100 or with SDF-1 in head mesoderm.
PBS bead used as control. Myf5−expressing region (blue arrow in bC) was increased in SDF-1-treated embryo. The BA2 myogenic core region (black arrow in bD)
was reduced in AMD3100-treated embryos, but not in PBS-treated embryos (bB). Green arrows show the location of the implanted beads.

Odemis et al., 2007; Brzoska et al., 2012). Human cord blood
stem cells mobilization following transplantation depends on
SDF-1 overexpression in damaged skeletal muscle (Brzoska et al.,
2006). Analysis of endogenous and ex vivo cultured satellite cells
revealed that SDF-1 stimulated mobilization of the myoblasts in
CXCR4-dependent manners (Brzoska et al., 2012). Furthermore,
a role for the CXCR4/SDF-1 axis in muscle maintenance and
repair has recently been discovered (Bobadilla et al., 2014).
CXCR4 and SDF-1 are highly expressed in damaged muscles.
Delayed muscle regeneration in injured muscle treated with
CXCR4 inhibitor was observed, whereas the application of SDF-1
protein accelerated repair (Bobadilla et al., 2014). Recent study

by Brzoska et al. (2015) suggested that SDF-1 improves skeletal
muscle regeneration by increasing expression of the tetraspanin
CD9 adhesion protein involved in myoblasts fusion (Brzoska
et al., 2015). A more recent study by Kowalski et al. (2017)
showed that SDF-1 altered the actin organization via Ras-Related
C3 Botulinum Toxin Substrate 1 (Rac-1), cell division control
protein 42 (Cdc42), and focal adhesion kinase (FAK). They also
indicated that SDF-1 altered the transcription profile of genes
encoding the most potent regeneration factors involved in cells
movement and adhesion (Kowalski et al., 2017). Additionally,
expression of CXCR4 in engrafted myogenic progenitors
derived from the adult skeletal muscle into dystrophic fibers
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FIGURE 7 | SDF-1 guides the migration of the second arch-derived muscle progenitor cells. To further test the role of CXCR4 in early head muscle development, we
injected quail cells into the right side of the head mesoderm of recipient chicken embryos at HH11 (A) followed by AMD3100, SDF-1 or PBS beads implantation (B).
The quail cells emigrated from the head mesoderm and populated BA2 of hosts. The quail cells were traced by whole-mount immunostaining for QCPN (C–E).
Whole-mount immunostaining revealed that the positive quail cells were prevented from entering the BA2 in AMD3100 implanted embryos, but not PBS-treated
embryos. In the case of SDF-1 treated embryos, the quail cells were expanded and attracted.

was up-regulated, suggesting its involvement in the cell-based
therapy (Perez et al., 2009).

Facio-scapulo-humeral muscular dystrophy (FSHD), an
autosomal dominant disease, affects in its early stage the muscle
of the eye (orbicularis oculi muscle) and the mouth (orbicularis
oris muscle). Later, the weakness of the muscles progresses to the
upper torso, the muscles connecting shoulder girdle to the thorax,
in particular the trapezius muscle. Being the third most common
muscular dystrophy with an incidence of 12:100.000 (Deenen
et al., 2014) after Duchenne muscular dystrophy and myotonic
dystrophy, it will be very interesting to find out if the disruption
of the CXCR4/SDF-1 axis as essential regulators of BA2-derived
and non-somitic neck muscle development, is responsible for this
illness. Although at first view, the affected muscle groups seem to
be unrelated, a common origin of the facial and neck muscles was
recently demonstrated. The critical role of muscle development
and repair by the CXCR4/SDF-1 axis suggests that it may be a
promising therapeutic target for particular muscular dystrophies
(Hunger et al., 2012).

CONCLUSION

It has been more than 2 decades since the emergence of a
new concept of the cardiopharyngeal field, which proposes
that the pharyngeal mesoderm gives rise to second heart field

(SHF) and branchiomeric muscles. In recent years, a wide
range of investigations have been carried out to reveal the
relationship between branchiomeric and heart muscles. However,
the mechanisms of the migration of SHF progenitor cells has
been largely ignored. We have recently revealed the importance
of the CXCR4/SDF-1 for the migration of myogenic progenitor
cells during development of branchiomeric muscles. It will be
of great interest to investigate the role of the CXCR4/SDF-1
axis in migration of the newly discovered SHF progenitor cells.
Understanding the mechanisms that control SHF cells migration
is certainly crucial if these cells are intended to be used for
therapeutic applications.
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