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Abstract 

Background:  Diffusion-weighted (DW) imaging is a well-recognized magnetic reso-
nance imaging (MRI) technique that is being routinely used in brain examinations in 
modern clinical radiology practices. This study focuses on extracting demographic and 
texture features from MRI Apparent Diffusion Coefficient (ADC) images of human brain 
tumors, identifying the distribution patterns of each feature and applying Machine 
Learning (ML) techniques to differentiate malignant from benign brain tumors.

Methods:  This prospective study was carried out using 1599 labeled MRI brain ADC 
image slices, 995 malignant, 604 benign from 195 patients who were radiologically 
diagnosed and histopathologically confirmed as brain tumor patients. The demograph-
ics, mean pixel values, skewness, kurtosis, features of Grey Level Co-occurrence Matrix 
(GLCM), mean, variance, energy, entropy, contrast, homogeneity, correlation, promi-
nence and shade, were extracted from MRI ADC images of each patient. At the feature 
selection phase, the validity of the extracted features were measured using ANOVA 
f-test. Then, these features were used as input to several Machine Learning classifica-
tion algorithms and the respective models were assessed.

Results:  According to the results of ANOVA f-test feature selection process, two attrib-
utes: skewness (3.34) and GLCM homogeneity (3.45) scored the lowest ANOVA f-test 
scores. Therefore, both features were excluded in continuation of the experiment. From 
the different tested ML algorithms, the Random Forest classifier was chosen to build 
the final ML model, since it presented the highest accuracy. The final model was able 
to predict malignant and benign neoplasms with an 90.41% accuracy after the hyper 
parameter tuning process.

Conclusions:  This study concludes that the above mentioned features (except skew-
ness and GLCM homogeneity) are informative to identify and differentiate malignant 
from benign brain tumors. Moreover, they enable the development of a high-perfor-
mance ML model that has the ability to assist in the decision-making steps of brain 
tumor diagnosis process, prior to attempting invasive diagnostic procedures, such as 
brain biopsies.
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Background
Brain tumors are neoplastic tissue masses in which cells multiply and grow uncon-
trollably without being checked by the mechanisms that control normal cell division. 
It can occur at any age [1] and is one of the major diseases that affects the human 
central nervous system (CNS). According to a study done in United States, 29.9 per 
100000 adults (20 years or older) are vulnerable to have a brain tumor at any stage of 
their life time [2]. Approximately one-third of these brain tumors are malignant and 
the others remain as benign tumors [2, 3].

Although the computed tomography (CT), positron emission tomography (PET) 
medical imaging techniques are frequently involved in brain tumor diagnosis process, 
MRI is considered the most effective tumor imaging method due to its superior con-
trast properties in current radiological practices [4]. However, the noise within medi-
cal images, including MRI ones, and non-systematic search of patterns by humans 
(radiologists) affects the accuracy of the diagnosis. Therefore, patients often need to 
go through invasive biopsy procedures to confirm, through histopathological analysis, 
the type (including its malignant or benign status) and the WHO grade of the tumour 
[5].

Magnetic resonance imaging

Diffusion Weighted (DW) imaging is a form of magnetic resonance imaging (MRI) 
technique that is widely used in tumor identification and classification in modern 
clinical radiology practices [6, 7]. This technology is based on measurements of ran-
dom Brownian motion of water molecules within a voxel of a biological tissue [8–10]. 
The technique allows to visualize the net direction of diffusion of water molecules 
or collective flow of water molecules in a live tissue. Hence, it has the ability to pro-
vide information on the microscopic behaviour of living biological tissues (such as the 
presence and permeability of membranes and the presence of macro-molecules and 
intracellular–extracellular water equilibrium) by measuring and imaging the transi-
tional mobility of water molecules [11–14]. Due to the characteristic features of DW 
images, they are appreciated as an indispensable tool for investigating   CNS diseases, 
such as brain neoplasms, brain and spinal cord injuries, degenerative brain diseases, 
etc.

The resistance for the diffusion of water molecules inside a tissue is quantitatively 
assessed by calculating the apparent diffusion coefficient (ADC) values [10]. To gen-
erate an ADC map, there should be at least two types of DW images differing from 
each other in terms of the diffusion sensitization level (b value). In most cases, it is 
common to utilize b = 0  s/mm2 for the lower limit and images with b value in the 
range of 600 to 1000 s/mm2 for the upper limit [15, 16]. However, there are evidences 
of using a b value greater than 1000 s/mm2 as the upper limit of ADC image genera-
tion [17].



Page 3 of 21Vijithananda et al. BioMedical Engineering OnLine           (2022) 21:52 	

Texture features

The generated ADC images reflect the magnitude of diffusion of water molecules 
within tissues and these images are rich in texture allowing the analysis of image in 
terms of these features. The texture of an image can be defined as a constant repeti-
tion of an element or pattern on the surface of an image which represents its struc-
ture [18, 19]. Texture analysis focuses on finding a specific way of representing the 
hidden characteristics of textures and express them in a simplified and unique form. 
Grey level co-occurrence matrices (GLCM) of MRI ADC images can be identified as 
a rich source of statistical texture features which can be utilized in training robust 
machine learning (ML) models, which is a powerful method that is commonly utilize 
to identify the unique patterns of the distribution of texture features within an image 
[20–22].

GLCM texture feature extraction can be defined as a statistical method that reveals 
specific properties about the spatial distribution of gray levels in image texture consider-
ing the spatial relationship of pixels [23]. Here measures the relation of grey intensities 
between two adjacent pixels [reference pixel (i), neighbor pixel (j)] of an image at a time 
to have information about variation in intensity at a pixel of interest. The GLCM matri-
ces are computed using two parameters such as the relative distance between the pixel 
pair and the relative orientation (angular relationship) of the pixel pair. Most frequently, 
the orientation quantified as 0 ◦ , 45◦ , 90◦ and 135◦ angles and the average of the resultant 
values for all four directions used to extract the features [24, 25].

Higher order moments

Higher order moments can be identified as functions that use high power of a sample 
(higher than second-order statistics), that is opposed to the conventional first- or sec-
ond-order statistics (lower order statistics). The higher order statistic provides powerful 
tools in identifying problems in non linear systems [26]. However, skewness and kurtosis 
are the examples of third-order and fourth-order statistics, respectively’ [8, 27]. Here, 
skewness measures the asymmetry around the mean of probability distribution of a real 
valued random variable and the values for skewness can be zero (0), positive (+), nega-
tive (−) or undefined. The kurtosis use to describe the shape of a probability distribution 
of a real valued random variable and measures the tailedness of it. The kurtosis values 
for any uni-variate normal distributions remain as 3. However, the distributions with 
kurtosis values more than 3 are considered as platykurtic distributions while considering 
the distributions with kurtosis values less than 3 as leptokurtic distributions [28].

The above mentioned features of MRI brain can be extracted from ADC images of 
brain neoplasms and used by machine learning techniques to train classifiers.

Machine learning

Machine Learning (ML) is a scientific area that allows computers to “learn” from 
data. The algorithms are used to find out natural patterns in data aiming to aid and/
or support decisions and predictions. Considering the goal and the nature of data, 
ML methods can be further classified as supervised learning, unsupervised learn-
ing, semi-supervised learning, reinforcement learning, transduction and learning to 
learn [29]. Among the above mentioned machine learning techniques, the supervised 
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learning is one of the most common ML paradigms that uses known input and out-
put data to train a model [30–32] to solve classification, regression and forecasting 
problems [29, 33]. In supervised learning, correct answer to the problem is pre-
defined and the ML algorithm identifies the pattern within data correlated with the 
answer to a particular question. The algorithm make predictions using the observed 
correlations and the predictions are corrected by the operator. The process iterates 
until the algorithm achieves highest prediction accuracy. The application workflow 
of supervised learning method to differentiate brain neoplasms is illustrated in a few 
basic steps in Fig. 1.

Machine learning algorithms

Logistic Regression, K-Nearest Neighbors (KNN), Linear Discriminant Analysis, Naïve 
Bayes, Decision Trees and Random Forest are few of the most common supervised 
learning algorithms frequently used to solve classification problems.

Logistic regression is a ML algorithm that is designed to solve classification problems 
by mapping functions from attributes of a data set to its targets. The developed func-
tions are introduced to new examples and predict the probability that the new example 
belongs to one of the target classes.

K-Nearest Neighbors algorithm is a supervised machine learning algorithm that can 
be applied on both regression and classification problems. The KNN algorithm assumes 
that similar data points in a data set exist nearby.

Linear Discriminant Analysis is a ML algorithm that was developed to find a lin-
ear combination of features of a data set that separates the data set into two or several 
classes.

Naïve Bayes is a learning algorithm that is based on the Bayes’ rule to solve classifica-
tion problems. To apply the Naïve Bayes algorithm, it is crucial to assume that the attrib-
utes are conditionally independent in each class. In practice, the above assumption is 
frequently violated and yet provides competitive classification accuracy [34].

Decision tree is a simple algorithm that often applied to solve both classification and 
regression problems. It represents the decision workflow to identify the class of an 
instant within the data set. The algorithm creates the most suitable decision tree models 
for a training data set by placing the name of the class and specific tests that partitions 
the space of instances on each node in the process of learning simple decision rules.

Random Forest is a meta estimator that generates a cluster of decision trees on vari-
ous sub-samples of the provided data set aiming at improving the prediction accuracy of 
the model while controlling over-fitting by averaging. The variables and thresholds that 
control the number of decision trees create during the learning process, the maximum 
number of features considered in splitting a node, maximum number of levels included 
in each decision tree within the algorithm, the minimum number of data points contain 
in a node prior to split the node, the minimum number of data points allowed to remain 
in a leaf node, sampling method of the data points (without or with replacement) are 
optimized as the model returns highest accuracy level avoiding over-fitting.
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Objectives

The main goal of this study is to propose a Machine Learning classification model that 
can be used to differentiate benign and malignant brain tumors using different types of 

Fig. 1  Supervised learning method applying to tumor classification. The flow chart illustrates the steps of 
building a classification model to differentiate brain neoplasms using supervised learning technique. Here, 
the problem was identified as a classification problem at the initial stage and then the necessary data was 
collected as the second step. Data pre-processing was executed as the third step and at the fourth step, 
the data set was split into training and testing sets. Then a suitable ML algorithm for the collected data was 
selected as the fifth step of the study flow and then, the selected algorithm was trained with the training data 
as the sixth step. Finally, the developed algorithm was evaluated with the test data and the hyperparameter 
of the developed model was tuned to reach the optimum accuracy level of the model
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features: demographics of patients and statistical ones extracted from ADC images of 
malignant and benign brain tumors. Statistical features include GLCM texture [1, 35, 36] 
and higher order moments: skewness (third-order statistics) and kurtosis (fourth-order 
statistics) [8, 21].

Main contributions

The main contributions of this work are:

•	 A collection of 1599 MRI image slices, gathered from 195 patients with brain tumors;
•	 A vector based data set, where each observation describes a slice and the correspond-

ing type of tumor. This vector is composed of 2 demographic attributes (describing 
the patient) and 14 numerical attributes (describing the texture of the tumor region), 
plus the tumor classified as malignant or benign;

•	 The ANOVA f-test analysis of the statistical measures extracted from the MRI-ADC 
images;

•	 The proposal of a Machine Learning model that, given a patient tumor, described by 
a set of MRI image slices, predicts if the tumor is malignant or benign; this model has 
an estimated precision of 85% and recall of 92% for malignant tumors.

•	 The developed machine learning model is optimized/tuned as it returns best preci-
sion and recall scores.

Previous studies
In literature, there are several studies can be found that utilized the GLCM statistical 
texture features of medical images to differentiate benign and malignant tumor types 
with the assistance of ML algorithms. The study conducted by Xian et al. [37] in year 
2010 found the possibilities for utilization of GLCM texture features of ultrasound 
images to identify malignant and benign liver images and they could predict the tumor 
type with 97% using fuzzy support vector machine (FSVM) learning method. According 
to the study conducted by Mohanty et  al. [38] able to develop a computer-aided clas-
sification model with 94.9% accuracy to differentiate benign and malignant breast car-
cinomas by analyzing GLCM texture features extracted from digital mammograms of 
breast carcinomas. Vaidehi et al. [39] in the year 2015 developed an automated breast 
mass characterization system using the GLCM texture features extracted from mammo-
grams of breast tumors, and the model developed using sparse representation classifi-
ers was able to predict malignant and benign breast tumors with an accuracy of 93.75%. 
According to the study [40], the researchers were able to utilized two automated meth-
ods; artificial neural network (ANN) and cellular neural network (CNN), to differentiate 
benign and malignant breast carcinomas. At the first stage, CNN was utilized to select 
the appropriate features among the, intensity, and shape features of the mammograms 
and the classification problem was addressed by applying ANN. As a result the study was 
able to make predictions with 96.47% accuracy at high sensitivity (96.87%) and specific-
ity (95.94%).

In addition, several recently conducted studies utilized the GLCM statistical texture 
features of MRI brain tumors to distinguish brain tumor types, including benign and 
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malignant brain tumors. In year 2014, Preethi et al. [41] implemented the probabilistic 
neural network with radial basis function (PNN–RBF) to analyze GLCM texture features 
of brain images of MRI and classify the brain images into healthy, benign, and malig-
nant brain categories. In addition, in year 2016, Kumar et al. [24] developed a computer 
assisted diagnostic method to demarcate benign, malignant and healthy brain tissues 
using GLCM texture features of MRI brain images. Here they have observed the differ-
ences of values for each type brain pathology/healthy.

Sharma et  al. [30] in the year 2014 proposed an automated method to detect brain 
tumors in MRI images. The researchers extracted the GLCM texture features and fed the 
feature values into two learning classification algorithms; Multi-Layer Perceptron (MLP) 
and Naive Bayes for classification. However, the developed classification model using 
MPL has classified the normal and abnormal brain images with an accuracy of 98.6% 
and, the Naive Bayes classification model classified the normal and abnormal brain 
images with an accuracy of 97.6%.

Jain [42] developed a classification model using Artificial Neural Network (ANN) that 
classified the types of MRI images of astrocytomas. The extracted statistical texture fea-
tures of GLCM were fed into algorithm. Here the back propagation algorithm was uti-
lized in the learning process while using the tan-sigmoid (tansig) function for the hidden 
layer and logsigmoid (logsig) function for the output layer.

Byale [43] in 2018, introduced an automated system to classify the MRI images of 
brain tumors in to benign and malignant categories. They utilized the Gaussian Mix-
ture Model (GMM) to find the region of interest (ROI) and the GLCM texture features 
of the selected ROIs were extracted. The Neural Networks (NN) was trained using the 
extracted texture features and the developed model was able to classify tumors with the 
accuracy of 93.33%.

Compared to the literature, the authors of this study have utilized a novel technique 
to develop an automated method using ML to differentiate benign and malignant brain 
tumors by extracting GLCM texture features from the ADC images of brain tumors.

Results
According to Table 1 skewness (3.3444) and GLCM Homogeneity (3.4572) reported the 
minimum scores at the ANOVA f-test feature selection experiment while the feature 
“patient gender” reporting the highest (73.7926) score (see Fig.  4).

As a result of ten-fold cross-validation experiment for the training and testing data 
sets, the Random Forest Classifier expressed the highest accuracy level (84.36%) while 
Logistic Regression, Linear Discriminant Analysis, k-Nearest Neighbors Classifier, 
GaussianNB and SVC obtained 75.33%, 74.89%, 82.84%, 80.07%, 74.89%, and 81.50% 
accuracy levels, respectively (see Table  2). Hence, the study was continued through the 
Random Forest Classifier to build most accurate ML model to differentiate malignant 
and benign brain tumor MRI–ADC images.

As a result of training the Random Forest Classifier, the generated model acquired the 
ability to predict the tumor type (malignancy and benign status) with 85% accuracy level. 
The model performance over the test data is presented in Table 3 and revealing that the 
ML model was able to identify the malignant tumors with 85% Precision, 92% Recall 
which corresponds to a 89% F1-score. Moreover, a performance of 85% for Precision and 
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Table 1  ANOVA f-test feature selection

The table visualize the performance of each feature at the ANOVA f-test Feature Selection process. The data set went 
through the ANOVA f-test Feature Selection process for 5 times and the mean values were calculated. There were slight 
differences of values received at each time due to stochastic nature of the algorithm, or differences in numerical precision or 
evaluation procedure

Feature ANOVA f-test 
score (mean 
value)

Mean pixel value of ADC 32.3343

Skewness 3.3444

Kurtosis 9.6250

GLCM mean 1 32.6372

GLCM mean 2 29.1327

GLCM Var 1 14.0761

GLCM Var 2 27.5219

GLCM energy 33.9675

GLCM entropy 4.989

GLCM contrast 47.9462

GLCM homogeneity 3.4572

GLCM correlation 48.6392

GLCM prominence 15.4134

GLCM shade 17.1677

Patient age 9.4337

Patient gender 73.7926

Table 2  Results of the cross validation experiment

The table visualize the performance of each machine learning algorithm received at the cross-validation experiment over 
the training data set and the standard deviations for each result

Algorithm Mean accuracy Accuracy as percentage 
(%)

Standard 
deviation 
(SD)

Logistic regression 0.753378 75.33 0.034451

Linear discriminant analysis 0.748898 74.89 0.036810

k-Nearest neighbors classifier 0.828459 82.84 0.030710

Decision tree classifier 0.800764 80.07 0.045553

GaussianNB 0.748922 74.89 0.052582

SVC 0.815082 81.50 0.043396

Random forest classifier 0.843629 84.36 0.042054

Table 3  Classification report (without optimizing the model) shows a binary classification of the 
data set with Random Forest Classifier

Tumor type Precision (%) Recall (%) F1-score (%) Support

Malignant 85 92 89 299

Benign 85 73 79 181

Accuracy 85 480

Macro average 85 83 84 480

Weighted average 85 85 85 480
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73% for Recall (which corresponds to a F1-score of 79%) was obtained for the benign 
tumors.

The best hyper-parameters for maximum Precision were max_depth = 70 , 
max_features = 10 , min_samples_split = 2 and n_estimators = 500 , and the ML model 
predicted 229 malignant and 117 benign tumors correctly with 34 false negatives and 
20 false positives from the test data (see Table 4). The best parameters which returned 
the maximum recall score was max_depth : 30, max_features : 10, min_samples_split : 
2, n_estimators : 300 (see Table  5) and 231 malignant tumors, 119 benign tumors were 
accurately predicted while expressing 32 fails negatives and 18 fails positives (see 
Table 6).

Finally the decision threshold was adjusted to 0.45 with the assistance of the informa-
tion provided by the precision and recall curve (see Fig.  5). As a result, the accuracy 
score of the optimized ML classification model increased up to 90.41% while the preci-
sion, recall and f1 score for predicting malignant tumors maintaining at 92.02%, 92.64% 

Table 4  Classification report: performance of Random Forest after hyperparameter optimization to 
have best precision score

Tumor type Precision (%) Recall (%) F1-score (%) Support

Malignant 89 94 92 299

Benign 90 81 85 181

Accuracy 89 480

Macro average 89 87 88 480

Weighted average 89 89 89 480

Table 5  Optimum level of hyper parameters for maximum precision score and the maximum 
Recall score for the selected features, where n estimators is the number of trees in random forest, 
min sample split is the minimum number of samples required to split a node and max depth is the 
maximum number of levels in tree

Hyper parameter Best condition for Precision Best 
condition for 
Recall

n estimator 500 300

Min sample split 2 2

Max features 10 10

Max depth 70 30

Table 6  Classification report: performance of Random Forest after hyperparameter optimization to 
have best recall score

Tumor type Precision (%) Recall (%) F1-score (%) Support

Malignant 91 93 92 299

Benign 88 85 86 181

Accuracy 90 480

Macro average 87 85 86 480

Weighted average 87 87 87 480
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and 92.33%, respectively. In addition, for the benign tumor prediction, the precision, 
recall and f1 scores reported as 87.71%, 86.74% and 87.22% (see Fig. 2).

Discussion
The excellent soft tissue differentiation ability of MRI allows to visualize the exact loca-
tion of the tumor, and aids to therapeutic, diagnosis and evaluation process of human 
brain tumors [30, 44, 45]. Moreover, the modern MRI techniques used in clinical setup 
such as DWI, DTI and DSCI utilize to assist in tumor characterization and treatment 
process [46]. This study focused on developing an automated method using currently 
available MRI technique (DWI) to differentiate malignant and benign brain tumors. 
However, developing an accurate, automated and noninvasive method to differentiate 
benign and malignant brain tumors leads to increase the accuracy of the diagnosis pro-
cess in terms of sensitivity and the specificity. Since such a tool has the ability to assist 
the clinician in decision-making at the brain tumor diagnosis process, it can be applied 
as an intermediate step in between tumor imaging and the brain biopsies which allows 
the clinician to decide the necessity of requesting a biopsy for further investigation.

To achieve these goals, a ML model was developed using extracted features from 
DWI images and the demographics of patients. The mean pixel value, skewness, kur-
tosis, GLCM features (mean, variance, energy, entropy, contrast, homogeneity, corre-
lation, prominence and shade values) and demographic features (age and gender) were 
extracted using BLeDIA, an home made software which was specifically designed for 
this study. We hypothesized that the above mentioned features correlate with malignant 
and benign brain tumors in complex and non-linear ways. Therefore, the combination of 
all features except skewness and GLCM homogeneity were used to develop a machine 
learning model able to distinguish the malignant and benign status of brain tumors. 
As a byproduct of ANOVA f-test feature selection process, we have observed that the 

Fig. 2  Final confusion matrix. The confusion matrix express the performance of the optimized benign 
malignant brain tumor brain tumor classification model over the test set
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feature “patient gender” showed the highest ANOVA f-test score (73.7926) (see Table 1). 
Therefore, it is possible to assume that the patient’s gender has high impact on predict-
ing benign and malignant brain tumors. Such information can be studied as an extension 
of this study.

The Selected normalized features were used on several classification algorithms to find 
out the best fit algorithm for the data set. According to performance obtained (presented 
in Table 2) cross validation test, the Random Forest Classifier showed the highest score 
being then selected to develop a ML model.

The Random Forest Classifier could predict the malignant and benign brain tumors 
with 85% accuracy level (see Table   3). However, the accurate interpretation is not 
straightforward due to the numeric nature of the extracted features. Therefore, hyper 
parameter tuning and the decision threshold adjustment was utilized to increase the 
overall accuracy level of the ML model in terms of sensitivity and specificity. As visual-
ized in Table 5 the optimized Hyper parameter values for precision and the recall was 
measured. However, according to precision recall curve (see Fig. 5) and the ROC curve 
(see Fig. 6) the decision threshold value was adjusted as the ML model returns the opti-
mum precision and recall values. As result of tuning the ML model in two steps, finally 
the ML model able to predict the malignant and benign brain tumors with 90.41% accu-
racy level with high recall score (92.64%) for malignant tumor identification which indi-
cates that there is less probability to not detect malignant tumors (see Fig. 2).

Conclusions
The study concludes that mean ADC, kurtosis of ADC and the GLCM features of ADC 
(mean, variance, energy, entropy, contrast, correlation, prominence and shade) and 
demographics features can be used as potential bio-markers to identify and differentiate 
benign and malignant brain tumors.

Given the findings just presented, one can say that this study reveals that there is a 
great potential on using the developed ML mode in clinical practices to differentiate 
benign and malignant brain tumors. The results of this study encourage to develop an 
advanced ML model to predict WHO grading of brain tumors and specifically identify-
ing brain tumors.

Methods
This prospective study was designed to address the above mentioned objectives of the 
study and hypothesized that there is a correlation between the extracted features and 
the benign and malignant status of the tumors. According to the nature of the features 
extracted, the study plan was designed and Fig. 1 summarises the supervised learning 
process which was used to develop a robust automated technique to discriminate malig-
nant from benign brain tumors.

Data acquisition and preparation

This study includes 1599 MRI brain image slices from 195 patients of both sexes (53.41% 
male and 46.59% female) and all the subjects were within the 12–80 year age range with 
an average of 45.51 years. The MRI Digital Imaging and Communications in Medicine 
(DICOM) data of each subject was acquired after confirming the pathological condition 
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by referring both radiological and histopathological reports of each patient. All patients 
data was obtained from the Departments of Radiology and Histopathology, National 
Hospital of Sri Lanka (NHSL) and Anuradhapura Teaching Hospital, Sri Lanka, followed 
by the informed consent of the patients and ethical clearance certificate from the insti-
tutional ethical review committee of NHSL and the Faculty of Medicine, University of 
Peradeniya.

From the initial set of 1896 ADC image slides, 297 were removed according to the 
exclusion criteria such as lack of information, corrupted MRI images, and the selected 
tumor not within the considered area (Brain). Therefore, the study was conducted with 
the reaming 1599 image slices which was consisted with 62.22% malignant tumours and 
37.77% benign brain tumor slices (see Table 7).

All scans in this study were performed with a 3T Siemens Skyra MR system using head 
coil and utilized the EPI (Echo Planner Imaging) sequence to acquire axial DW MRI 
data in both b = 0 and b = 1000 diffusion sensitization levels with a flip_angle = 90◦ , 
TE = 68ms and TR = 4300ms (being TE the time of echo and TR the time of repeti-
tion), FOV = 219mm× 219mm , matrix_size = 124 × 124 and slice_thickness = 1mm.

ADC image generation and ROI selection

The ADC images were generated by merging two different DW images with different dif-
fusion sensitization levels ( b = 0 and b = 1000 ) according to Eq. 1, where i is the image 

Table 7  Tumor types and percentages belonging to each benign and malignant categories

According to the radiological and histopathological reports, there were 995 malignant brain image slices, including 
WHO (World Health Organization) Grade IV tumors; 442 glioblastomas, 109 medulloblastoma, 170 metasasis/residual 
malignancies, and WHO Grade III tumors; 147 high grade gliomas, 22 anaplastic astrocytomas, 11 anaplastic meningioma, 
29 anaplastic oligodendro glioma, 65 central astrocytomas within the population. Also there were 604 benign brain 
tumors slices with WHO Grade I; 13 pilocytic astrocytoma, 262 meningioma, 135 shwannoma, 16 hemangioblastoma, 11 
craneopharyngioma, 13 Dermoid cysts, and WHO Grade II; 10 astrocytoma, 21 meningiomas, 112 low grade gliomas, 7 
ependymomas, 4 frontal cavernoma

Category WHO grading Tumor type Image slices Percentage (%)

Benign WHO I Meningioma 262 43.38

Schwannoma 135 22.35

Pilocytic astrocytoma 13 2.15

Hemangioblastoma 16 2.65

Craneopharyngioma 11 1.82

Dermoid cyst 13 2.15

WHO II Low grade gliomas 112 18.54

Meningioma 21 3.48

Astrocytoma 10 1.67

Ependymoma 7 1.16

Frontal cavernoma 4 0.66

Malignant WHO III High grade gliomas 147 14.77

Anaplastic astrocytomas 22 2.21

Anaplastic meningioma 11 1.10

Anaplastic oligodendro glioma 29 2.91

Central astrocytomas 65 6.53

WHO IV Glioblastomas 442 44.42

Medulloblastoma 109 10.95

Metasasis 170 17.08
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number, Si the ith image (image acquired with a diffusion pulse of i), S0 the first image 
(image acquired without any diffusion pulses), n the number of images and bi the diffusion 
gradient value. A homemade computer program was utilized to achieve all the image pro-
cessing goals, such as image selection, visualization, ADC image generation, ROI selection 
and feature extraction. All the ROIs were selected manually under the supervision of con-
sultant radiologists:

The tumor area of each 2D ADC image slice was selected by drawing a 3D region of 
interest (ROI) encompassing the tumor (see Fig. 3) and extracted the pixel values within 
the selected area.

Feature extraction

We have evaluated the mean, higher order moments skewness ( n = 3 ) and kurtosis ( n = 4 ) 
and GLCM based statistical texture features of MRI–ADC brain tumors and the patients 
demographics. The mean pixel value and the higher order moment values were calculated 
within the ROI using Eqs. 2 and 3, respectively. Here, Pi represents the signal intensity in ith 
pixel and N is the total number of pixels within the ROI, P is the mean of the pixel values 
and f (Pi) the probability of the signal intensity of pixel:

(1)ADC =

n
∑

i=1

ln
Si

S0
bi

(2)Mean =

∑

i=1 Pi

N

Fig. 3  MRI ADC brain image of a 14-year-old female patient diagnosed with pilocytic astrocytoma which was 
radiologically and histo-pathologically identified as a benign tumor. The tumor area is surrounded by the ROI. 
The texture features were extracted form the selected area
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MATLAB 2019 Simulink software was used in all the image processing steps and Python 
3.7 in all the feature extraction and analysis processes [8]. The GLCM matrices of each 
2D parametric map of ADC brain tumor were derived according to Eq. 14 (see Appen-
dix). The statistical texture features of GLCM (mean, variance, energy, entropy, contrast, 
homogeneity, correlation, prominence and shade values) were extracted from the gener-
ated GLCM matrices. Moreover, the GLCM features were extracted according to Eqs. 5 
to 13 (see Appendix) [24, 25, 47]:

Here the f consider as 2D parametric ADC map, Mf ,δ(k , l) is the co-occurrence matrix 
which represents the joint probability occurrence of pixel pairs with grey level value k 
and l for, δ = (δx, δy) specific spatial offset between the pixel pair. n is the bar of grey lev-
els in 2D parametric ADC map of brain tumor.

However, lower and higher order moments (see Eq. 3); mean pixel value (n = 1), skew-
ness (n = 3), kurtosis (n = 4) and texture features of GLCM such as mean, variance, energy, 
entropy, contrast, homogeneity, correlation, prominence and shade values were studied in 
this pattern recognition process; The GLCM features were extracted according to Eqs.  5,  6
, 7, 8, 9, 10, 11, 12 and  13 respectively [24, 25, 47]. Here Pi,j be the co-occurrence matrix, N 
be the number of grey levels in the image, µ be the mean of Pi,j , µi be the mean of row i, µj 
be the mean value of column j, σi be the standard deviation of row i and σj be the standard 
deviation of column j. The extracted feature values were stored in a CSV file for data prepa-
ration and further analysis.

GLCM mean

Left-sided equation calculates the mean based on the reference pixel (µi) while right-sided 
equation calculates the mean using neighbouring pixels (µj):

GLCM variance

Left-sided equation calculates the dispersion of the reference pixel values (σ 2
i ) around (µi) 

and the right-sided equation calculates the dispersion of the neighbour pixel values (σ 2
j ) 

around (µj):

(3)nth moment =
∑

i

(Pi − P)nf (Pi)

(4)Mf ,δ(k , l) =

n
∑

x,y=1

{

1 if f (x, y) = k and f (x + δx,y + δy) = y
0 otherwise

(5)µi =

N−1
∑

i,j=0

i
(

Pi,j
)

µj =

N−1
∑

i,j=0

j
(

Pi,j
)

(6)σ 2
i =

N−1
∑

i,j=0

Pi,j(i − µi)
2σ 2

j =

N−1
∑

i,j=0

Pi,j
(

j − µj

)2
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GLCM energy (En)

Energy expresses the uniformity of the texture (within a scale between 0 and 1) by measur-
ing the sum of squared elements in the GLCM. GLCM energy value is 1 when the texture is 
uniform:

Entropy (Etr)

Entropy describes the degree of disorder among pixels within the matrix, which is approxi-
mately inversely correlated with uniformity. The Larger the number of grey levels within the 
image express larger entropy values:

GLCM contrast (Con)

GLCM Contrast expresses the amount of local gray level variation in an image. Presence of 
edges, noise, or wrinkled textures within an image returns high contrast values:

Homogeneity (Hom)

Homogeneity expresses the smoothness of the distribution of gray levels within an image, 
which is approximately, inversely correlated with contrast:

Correlation (Cor)

Correlation expresses the amount of linear dependency of gray levels among two neigh-
bouring pixels within the matrix. Texture with high GLCM correlation has high predict-
ability of pixel relationships:

(7)En =

N−1
∑

i,j=0

P2
i,j

(8)Etr =

N−1
∑

i,j=0

Pi,j
(

− ln Pi,j
)

(9)Con =

N−1
∑

i,j=0

Pi,j
(

i − j
)2

(10)Hom =

N−1
∑

i,j=0

Pi,j

1+
(

i − j
)2

(11)Cor =

N−1
�

i,j=0

Pi,j









(i − µi)
�

j − µj

�

�

�

σ 2
i

�

�

σ 2
j

�








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Cluster shade (Shd)

Cluster Shade evaluates the tendency of clustering of the pixels by measuring the skewness 
of pixel values within the matrix:

Cluster prominence (Prom)

Cluster Prominence measures local intensity variation of pixels and the asymmetry of an 
image. The high prominence value indicates less symmetry of an image, while image with 
less cluster prominence value shows peak in GLCM matrix around the mean:

Feature selection and model training

The full set of image slices was split into train and test subsets (70% and 30% of data, respec-
tively) in a stratified way, resulting in sets of 1119 image slices for training and 480 for 
testing.

The extracted feature values were normalized utilizing Python 3.7 along with scikit-learn 
library to have zero mean and unit variance (see Eq.  14, where Xn is the feature normalized 
value, X is the feature value and Xmin and Xmax are the minimum and the maximum values 
for the particular feature):

(12)Shd =

N−1
∑

i,j=0

{

i + j − µi − µj

}3
Pi,j

(13)Prom =

N−1
∑

i,j=0

{

i + j − µi − µj

}4
Pi,j

(14)Xn =
X − Xmin

Xmax − Xmin

Fig. 4  ANOVA f-test results chart. ANOVA f-test score for attributes 0 to 15 are illustrated in the graph; mean 
pixel value of ADC 32.3343, Skewness 3.3444 Kurtosis 9.6250, GLCM Mean1 32.6372, GLCM mean2 29.1327, 
GLCM variance1 14.0761, GLCM variance2 27.5219 GLCM energy, GLCM Homogeneity 3.4572, 33.9675, GLCM 
Entropy 4.989, GLCM contrast 47.9462, GLCM Correlation 48.6392, GLCM prominence 15.4134, GLCM Shade 
17.1677, Patient Age 9.4337 and Patient Gender 73.7926
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A subset of the normalized features most relevant to the target variable (malignant 
or benign) was selected using the ANOVA (Analysis of Variance) f-test technique. To 
reduce the effect of the stochastic nature of the algorithm and differences of numerical 
precision, the process was repeated 5 times and the mean score for each attribute was 
calculated (see Table 2). Figure 4 presents them graphically [48].

A tenfold cross-validation method was used to figure out the most promising algo-
rithm at discriminating malignant and benign brain tumors. The following algorithms 
were tested using the default parameters in all of them: Logistic Regression, Linear Dis-
criminant Analysis, K-Nearest Neighbor, Decision Tree Classifier, Gaussian Naive Bayes 
(GaussianNB), Support Vector Classifier (SVC) and Random Forest. The results are pre-
sented in Table 3.

Parameter tuning and prediction

Then the selected normalized features were fed into the Random Forest Classifier to 
develop a tumor classification model and the performance was evaluated for different 
parameters of the algorithm. The accuracy, Precision, Recall and F1 measures obtained 
with the set of parameters that produced the best model is presented in Table 4.

To search for the best set of parameters, a random grid search was performed aiming 
to increase the tumor prediction accuracy and a decision threshold adjustment was done 
to optimize the sensitivity and specificity of the classification model [49]. The consid-
ered tunable hyperparameters of the algorithm were: min_samples_split , n_estimators , 
max_depth and max_features and each hyper parameter was tested within a pre-defined 
ranges of values ( min_samples_split : [2, 5, 10], n_estimators : from 200 to 1000 (with step 
of 10), max_depth : 10 to 100 (with step of 10), and max_features : [3, 5, 10, 20]). Here the 
optimum values for each hyperparameters that maximize the precision and recall of the 
developed classification model were measured separately (see Table 7).

The decision threshold (the operating point) of the developed ML model was adjusted 
to improve either sensitivity or specificity of the model. It was adjusted with the guidance 
of the precision–recall curve shown in Fig. 5 and the receiver operating characteristic 
(ROC) curve utilized to estimate the performance of the developed classification model 
(see Fig. 6). In addition, performance of the tuned classification model was assessed by 
observing accuracy score, precision, recall and F1 scores over the test set (Eqs. 16, 17, 
18):

where TP, TN, FP, and FN indicate True Positive, True Negative, False Positives and 
False Negatives, respectively. The accuracy express the proportion of all correct predic-
tion from the total number of predictions made by the machine learning model:

where TP is true positives and FP indicates the false positives. Precision indicates 
the performance of a machine learning model by measuring the quality of positive 
predictions:

(15)Accuracy =
TP+ TN

TP+ TN+ FP+ FN

(16)Precision =
TP

TP+ FP
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where TP is true positives and the FN indicates false negatives. Recall measures the cor-
rectly predicted positive cases out of all the positive individuals:

The harmonic mean of precision and recall is represent by the F 1 score
The precision and recall curve (see Fig. 5) utilized to visualize sensitivity and specific-

ity trade-off in the classifier. With the assistance of the information from precision and 
recall curve, the decision threshold was adjusted and set to 0.45 which maximize the 
sensitivity and specificity of the developed ML model. The ROC curve (see Fig. 6) was 
implemented visualize the performance of the ML model at all classification thresholds. 
As a result of adjusting the decision threshold and the hyperparameter tuning process, 
the prediction accuracy of the developed ML model increased up to a considerable level.

Appendix
See Figs. 5 and 6.

(17)Recall =
TP

TP+ FN

(18)F1 = 2 · Precision·Recall
Precision+Recall

Fig. 5  Precision–recall curve; visualize the sensitivity–specificity trade-off in the classifier the information 
provided by the curve used to set the decision threshold of the model to maximize the sensitivity and 
specificity
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