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Abstract

Oxalobacter formigenes is a unique intestinal organism that relies on oxalate degradation to meet 

most of its energy and carbon needs. A lack of colonization is a risk factor for calcium oxalate 

kidney stone disease. The release of the genome sequence of O. formigenes has provided an 

opportunity to increase our understanding of the biology of O. formigenes. This study used mass 

spectrometry based shotgun proteomics to examine changes in protein levels associated with the 

transition of growth from log to stationary phase. Of the 1867 unique protein coding genes in the 

genome of O. formigenes strain OxCC13, 1822 proteins were detected, which is at the lower end 

of the range of 1500–7500 proteins found in free-living bacteria. From the protein datasets 

presented here it is clear that O. formigenes contains a repertoire of metabolic pathways expected 

of an intestinal microbe that permit it to survive and adapt to new environments. Although further 

experimental testing is needed to confirm the physiological and regulatory processes that mediate 

adaptation with nutrient shifts, the O. formigenes protein datasets presented here can be used as a 

reference for studying proteome dynamics under different conditions and have significant 

potential for hypothesis development.
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Introduction

Oxalobacter formigenes is a Gram-negative, obligate anaerobic bacterium that commonly 

inhabits the human gut and degrades oxalate as its major energy and carbon source [1,2]. A 

review of colonization frequencies conducted worldwide indicated that 38–77% of a normal 

population is colonized with O. formigenes [3]. Recent evidence suggests a lack of 

colonization with O. formigenes may increase the risk for recurrent idiopathic calcium 

oxalate kidney stone disease [4,5]. Protection against calcium oxalate stone disease appears 

to be due to the oxalate degradation that occurs in the gut on low calcium diets [6] with a 
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possible further contribution from intestinal oxalate secretion [7–9]. Despite the role this 

organism may play in reducing oxalate levels in the host and reducing the risk of calcium 

oxalate stone disease, there is scant information on how this organism colonizes the host and 

adapts to new environments. The release of the genome sequence of a Group 1 (OxCC13) 

and a Group 2 strain (HOxBLS) as part of the Human Microbiome Project has provided a 

genetic framework for investigating important biological properties of the organism [10]. In 

this study, we performed mass spectrometry (MS)-based shotgun proteomics of both log and 

stationary growth phase cultures of O. formigenes. These proteomic analyses of O. 

formigenes cultures provide insight into the physiological response associated with nutrient 

shifts and entry into stationary phase growth.

Methods

Culture conditions

Stages of O. formigenes growth in optimal laboratory broth culture conditions have been 

previously described [11]. Pure cultures of O. formigenes, strain OxCC13, were grown 

anaerobically at 37°C in 100 ml Schaedler broth (SBO, BD Biosciences) supplemented with 

100 mM sodium oxalate and 10 mM sodium acetate. For generation of samples for 

proteomic analysis, O. formigenes cells were taken at OD595 0.05 and 0.13 (n=4 each 

growth stage). These OD595 measurements correspond to mid-log and early stationary, and 

to 5.5 × 107 and 1.4 × 108 CFU/ml, respectively. Cells were washed three times with 0.9% 

saline prior to protein extraction.

Oxalate ion chromatography—Oxalate in culture media was quantified by ion 

chromatography (IC) using an AS22 2 mm column, as previously described [11].

Proteomics experiments

Each cell pellet was lysed in B-per supplemented with lysozyme, Dnase I, and EDTA using 

the B-PER Kit (Pierce, Thermo Fisher Scientific) following manufacturers’ instructions. 

Protein concentrations of the cell lysates were determined with the BCA protein assay 

(Pierce, Thermo Fisher Scientific). Twenty micrograms (20 µg) of protein from each sample 

was diluted in LDS PAGE buffer (Invitrogen) followed by reducing, heat denaturing, and 

separation on a 10% SDS Bis-Tris gel (Invitrogen). The gel was stained overnight with 

Colloidal Blue (Invitrogen), and the two most abundant bands, A and B (Figure 1), were 

first carefully excised. Based on staining intensities, the rest of the gel lane was then cut into 

six nearly equal fractions from the top to bottom, and all eight of the resultant gel bands 

were then equilibrated in 100 mM ammonium bicarbonate (AmBc). Gel slices were reduced, 

carbidomethylated, dehydrated, and digested with Trypsin Gold (Promega) as per 

manufacturers’ instructions. Following digestion, peptides were extracted, volumes were 

reduced in a SpeedVac to near dryness, and re-suspended to 20 µL using 95% ddH2O/5% 

ACN/0.1% formic acid (FA) prior to analysis by 1D reverse phase LC-ESI-MS2 (as outlined 

below).

Mass spectrometry—Peptide digests were injected onto a Surveyor HPLC plus (Thermo 

Scientific) using a split flow configuration on the back end of a 100 micron I.D. × 13 cm 
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pulled tip C-18 column (Jupiter C-18 300 Å, 5 micron, Phenomenex). This system runs in-

line with a Thermo Orbitrap Velos Pro hybrid mass spectrometer, equipped with a nano-

electrospray source (Thermo Scientific, San Jose CA), and all data were collected in CID 

mode. The HPLC was set up with two mobile phases that included solvent A (0.1% FA in 

ddH2O), and solvent B (0.1% FA in 85% ddH2O /15% ACN), programmed as follows; 15 

min @ 0%B (2 µL/min, load), 65 min @ 0%–40% B (~0.5 nL/min, analyze), 20 min @ 0% 

B (2 µL/min, equilibrate). Following each parent ion scan (350–1200 m/z), fragmentation 

data was collected on the top most intense 15 ions. During data collection, the instrument 

was configured as follows: spray voltage 1.9 kV, capillary temperature 170°C, 1 microscan 

with a maximum inject time of 25 ms for all modes. The fragmentation scans were obtained 

at 60 K resolution with a minimum signal threshold of 2000 counts. The activation settings 

were set to charge state 3, isolation width 2.0 m/z, normalized collision energy 30.0, 

activation Q 0.250, and activation time 25 ms. For the dependent scans, charge state 

screening was enabled with 1+ ions excluded, and dynamic exclusion was enabled with the 

following settings: repeat count 2, repeat duration 15.0 s, exclusion list size 500, and 

exclusion duration 60.0 s.

MS Data conversion and searches—The XCalibur RAW files were collected in 

profile mode, centroided and converted to MzXML using ReAdW v. 3.5.1. The mgf files 

were then created using MzXML2Search (included in TPP v. 3.5) for all scans with a 

precursor mass between 350 Da and 1,200 Da. The data was searched using SEQUEST, 

which was set for three maximum missed cleavages, a precursor mass window of 20 ppm, 

trypsin digestion, variable modification C at 57.0293, and M at 15.9949. Searches were 

performed with a Human subset of the UniRef100 database.

Peptide filtering, grouping, and quantification—A list of peptide IDs were generated 

based on SEQUEST search results, which were filtered using Scaffold (Protein Sciences, 

Portland Oregon). Scaffold was applied in order to filter and group all of the matching 

peptides to generate and retain only high confidence IDs while also generating normalized 

spectral counts (N-SC’s) across all samples for the purpose of relative quantification. The 

filter cut-off values were set with peptide length (>5 AA’s), no peptides with a MH+1 

charge state were included, peptide probabilities were calculated and set to >80% C.I., with 

the number of peptides per protein set at 2 or more, and protein probabilities were set to 

>99% C.I. and an FDR<1.0. Scaffold incorporates the two most common methods for 

statistical validation of large proteome datasets, the false discovery rate (FDR) and protein 

probability [12–14]. Relative quantification across experiments were then performed via 

spectral counting [15,16], and when relevant, spectral count abundances were then 

normalized between samples [17].

Statistical and systems analysis—For the proteomic data generated two separate non-

parametric statistical analyses were performed between each pair wise comparison. These 

non-parametric analyses include 1) the calculation of weight values by significance analysis 

of microarray (SAM; cut off >|0.6|combined with 2) T-Test (single tail, unequal variance, 

cut off of P<0.05), which then were sorted according to the highest statistical relevance in 

each comparison. For SAM [18,19], whereby the weight value (W) is a statistically derived 
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function that approaches significance as the distance between the means (μ1−μ2) for each 

group increases, and the SD (δ1−δ2) decreases using the formula, W= (μ1−μ2) / (δ1−δ2). 

For protein abundance ratios determined with N-SC’s, we set a 1.5-fold change as the 

threshold for significance, determined empirically by analyzing the inner-quartile data from 

the control experiment indicated above using ln-ln plots, where the Pierson’s correlation 

coefficient (R) was 0.98, and >99% of the normalized intensities fell between ± 1.5-fold. In 

each case, any two of the three tests (SAM, T-test, or fold change) had to pass.

Results and Discussion

Culture medium oxalate concentration was determined at each phase of growth by ion 

chromatography. At log phase growth, media oxalate concentration was 54 ± 8 mM, 

indicating 54% of the oxalate in the culture medium had been degraded. At stationary phase, 

oxalate was not detected (<25 µM) indicating the cells were in a starved state.

Closer analysis of the annotated genome of O. formigenes strain OxCC13 revealed that 209 

of the 2076 protein coding genes share the same gene annotation and amino acid sequence 

as other genes on different loci, indicating the genome of OxCC13 contains 1867 unique 

protein coding genes. Of these 1867 proteins, 663 (34%) are predicted or hypothetical 

proteins with no known function.

A proteomic dataset of O. formigenes OxCC13 was initially constructed from O. formigenes 

cells harvested from an early stationary culture (Supplemental Table S1). This dataset can be 

used as a reference for studying proteome dynamics under different conditions. This analysis 

identified 1822 proteins of the 1867 unique proteins of O. formigenes strain OxCC13. The 

proteomic approach was then used to identify proteome changes associated with the 

transition from log phase growth to stationary phase, offering a dynamic view of the 

different processes associated with entry into stationary phase.

Following gel electrophoresis, the two most abundant bands, A and B (Figure 1), were found 

to largely consist of oxalyl-CoA decarboxylase (569 amino acids) and formyl-coenzyme A 

transferase (429 amino acids), respectively, major proteins involved in oxalate catabolism 

[10]. The very high expression of these oxalate degrading proteins, highlighted in Figure 1, 

makes O. formigenes one of the most efficient oxalate degrading systems known. Of note, 

oxalyl-CoA decarboxylase (OFBG_01523), formyl-Co A transferase (OFBG_01036), and 

the oxalate (in):formate (out) antiporter OxlT (OFBG_01510), which is also central to 

oxalate metabolism in this organism, were all unchanged in log phase compared to 

stationary phase (Supplemental Table S2).

A total of 206 proteins with predicted function were found at significantly elevated or 

lowered levels when log was compared with stationary phase growth. Of these 206 proteins, 

109 were detected at lower levels and 97 at higher levels, respectively, in cells from log 

phase versus stationary phase. The list of these 206 increased or decreased proteins with fold 

change (log versus stationary) and predicted functional category, membrane association, and 

molecular weight, are shown in Table S2 in the Supporting Information. Figure 2 gives the 
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fold change in relative abundance from log to stationary of these 206 proteins, as 

categorized by predicted functional category.

Log versus stationary phase

The majority of proteins that showed a higher relative abundance in log phase growth 

compared to stationary phase were involved in ribosomal structure and biogenesis, energy 

production, replication, and cell wall/membrane biogenesis (Figure 2 and Table S2). An 

ABC transporter like protein (OFBG_01114), an AAA-type ATPase (OFBG_00088), and a 

membrane bound pyrophosphate-energized proton pump (OFBG_02044) were more than 5-

fold increase in log versus stationary cells. The major function of ABC import systems is to 

provide essential nutrients to bacteria, and AAA-type ATPases form a large protein family 

involved in a number of roles including protein proteolysis and disaggregation. The almost 

8-fold increase in levels of a pyrophosphate-energized proton pump in log phase growth 

compared to stationary phase is in keeping with a proton motive force being the most 

important mechanism of energy production from oxalate catabolism in O. formigenes during 

maximal cell division [20]. Five proteins under the functional category, “Intracellular 

trafficking, secretion, and vesicular transport”, were elevated in log versus stationary, 

including a translocase SecD subunit protein (OFBG_01850), which is part of a protein 

export complex required to maintain a proton motive force, and three biopolymer transporter 

ExbB proteins (OFBG_02038, OFBG_02039 and OFBG_01048), which use a proton 

gradient across the inner bacterial membrane to transport large molecules across the outer 

bacterial membrane. These data together highlight the need of a proton motive force during 

maximal cell division.

As expected, ribosomal proteins were elevated in log phase relative to stationary (Figure 2). 

In E. coli, there are 21 small ribosomal proteins and 36 large ribosomal proteins. Many of 

the genes are encoded in an operon, and O. formigenes OxCC13 maintains this same 

structure. Proteomic analysis detected all these proteins, except S20/L26. The S20/L26 

protein encoding gene is not annotated in the O. formigenes OxCC13 genome; however, is 

present in the HOxBLS genome (OFAG_01539). By comparing the location of 

OFAG_01539 with the OxCC13 genome, we identified OFBG_01579 (predicted protein) as 

the probable S20/L26 ribosomal protein encoding gene. Both genes are 273 nucleotides. 

DNA sequence alignment of HOxBLS gene OFAG_01539 with OxCC13 gene 

OFBG_01579 showed an 84% similarity, and the protein sequence was 94% similar 

suggesting that OxCC13 gene OFBG_01579 is in fact the 30S ribosomal protein S20 gene. 

Several, but not all, of the ribosomal proteins were significantly increased during log-phase 

growth.

Stationary phase versus log phase growth

The protein found to increase the most in stationary relative to its level in log phase (4.6-fold 

increase, stationary versus log) was a peptidyl-prolyl-cis/trans-isomerase (PPIase) 

(OFBG_00644). The genome of O. formigenes contains 7 proteins with predicted PPIase 

activity. In addition to OFBG_00644, two other PPIases at loci OFBG_00237 and 

OFBG_01547 were also increased 2.2-fold and 1.6-fold, respectively, in stationary versus 

log phase. PPIases function as protein folding chaperones for proteins containing proline 
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residues and have been found to be involved in a plethora of biological processes such as 

gene expression, signal transduction, protein degradation and protein secretion [21]. In 

bacteria, PPIases can be divided into soluble and membrane-bound subgroups. The PPIase at 

locus OFBG_00664 in O. formigenes is predicted to be membrane-bound, whereas the 

PPIases at loci OFBG_01547 and OFBG_00237 are predicted to be soluble proteins. 

OFBG-00644 and OFBG_00237 are periplasmic FKBP-type PPIases [22]. FKBP-type 

PPIases very often have a C-terminal PPIase and N-terminal domain usually involved in 

homodimerization, as is the case for FkpA of Escherichia coli [23]. OFBG_00644 seems to 

have a unique N-terminal domain. Further work to assess the function of the N-terminal 

domain of OFBG_00644 is of interest. OFBG_01547 shows homology with SurA, which in 

E.coli has been shown to be involved in the assembly of outer membrane porins [24], and in 

Brucella abortus is known to be secreted into the supernatant where it may play a role in 

virulence [25]. In prokaryotes, several PPIases are upregulated by stress factors, such as cold 

shock [26], due to accumulation of misfolded proteins under these conditions. Interestingly, 

deletion of all periplasmic PPIases of Yersinia pseudotuberculosis, despite showing no 

measurable phenotype under laboratory conditions, impaired colonization of mice [27]. 

These experiments and others indicate the contribution of PPIases to cellular physiology is 

likely to be very specific and dependent on growth conditions and the niche in which the cell 

resides. Examination of the role of PPIases to O. formigenes survival and colonization both 

in vivo and in vitro warrants further investigation.

There was a higher abundance of proteins predicted to be associated with defense 

mechanisms and stress resistance in stationary versus log phase. This is in keeping with 

studies with other Gram-negative bacteria, which have shown nutrient depletion in culture 

often leads to stress cross-protection; for example, the starvation response in E. coli also 

provides protection against osmotic stress [28]. Proteins associated with defense 

mechanisms and stress resistance that were increased in O. formigenes stationary cells 

included superoxide dismutase (OFBG_01322), an organic solvent tolerance protein 

(OFBG_01546), a toluene tolerance transporter (OFBG_01898), a ”resistance protein” 

(OFBG_01759) with good homology to osmotically induced protein C in E. coli, a HigA-

like antidote protein (OFBG_00577), which is linked to persistence and dormancy upon 

exposure to stress, three universal stress proteins encoded by genes at loci OFBG_00781, 

OFBG_00128 and OFBG_01674, which have been shown to provide general “stress 

endurance” activity, an Abi family protein (OFBG_00600), which is involved in resisting 

bacteriophage infection, an esterase (OFBG_01018) with predicted beta-lactamase activity, 

and a transcriptional regulator of the TetR family (OFBG_00136), which are involved in the 

control of expression of multidrug resistance proteins. In Gram-negative organisms, 

enzymes belonging to the low molecular weight protein tyrosine phosphatase family are 

involved in regulation of important physiological functions including stress resistance [29]. 

The bacterial functions of low molecular weight protein tyrosine phosphatases remain 

largely unknown, although some hints are given by the organization of genes surrounding 

the protein tyrosine phosphatases on the chromosome [30]. The low molecular weight 

protein tyrosine phosphatase encoded by the gene at locus OFBG_00779 of O. formigenes 

was increased 3.5-fold in stationary relative to log phase. This gene is downstream of the 

antibiotic resistance gene encoding a 5-nitroimidazole antibiotic resistance protein 
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(OFBG_00777) and may be involved in the increased expression of the 5-nitroimidazole 

antibiotic resistance protein in stationary phase. Proteomic analysis showed the 5-

nitroimidazole antibiotic resistance protein to be increased 1.4-fold in stationary phase 

relative to log phase, although this was not significant (P=0.19). A number of proteins 

predicted to be involved with extrusion of heavy metals, including copper (OFBG_01218) 

and cobalt (OFBG_00614 and OFBG_00438), were also increased in expression in 

stationary phase relative to log phase. Three of the four predicted alcohol dehydrogenase 

proteins in O. formigenes were increased in stationary phase versus log phase, suggesting O. 

formigenes may be quite tolerant to alcohol exposure in stationary phase.

Transition to stationary phase from log growth resulted in increased expression of proteins 

associated with amino acid, carbohydrate, lipid, and nucleotide transport and metabolism, 

highlighting the ability of O. formigenes to utilize various carbon sources to survive when 

oxalate has been depleted. Proteins associated with carbohydrate transport and metabolism 

and increased in stationary versus log phase included a histidine-containing phosphocarrier 

transport protein (OFBG_01695), which transfers metabolic carbohydrates across the cell 

membrane, and various enzymes associated with glycolysis. A glycogen operon is present in 

the genome of O. formigenes (OFBG_01419 to 01424), and cells from stationary phase 

relative to log phase cells had higher levels of phosphoglucomutase (OFBG_01422), 

suggesting glycogen breakdown is important for prolonging survival of O. formigenes in the 

absence of oxalate. Proteins associated with metabolism of lipids included a thioesterase-

like protein (OFBG_01426), a carboxylesterase-like protein (OFBG_01963), and malonate 

decarboxylase (OFBG_00828, gamma subunit, and OFBG_00827, delta subunit). The 

malonate decarboxylase gamma and delta subunits were increased 3.6 and 1.9-fold, 

respectively, in stationary versus log phase. Malonate decarboxylase catalyzes the 

degradation of malonate to acetate and CO2. Several strains of bacteria are able to utilize 

malonate as sole source of carbon and energy [31]. These data suggest acetate synthesis 

from malonate is an important mechanism by which O. formigenes survives in stationary 

phase.

Many of the proteins synthesized in E. coli cells in the early stages of starvation, as occurs in 

stationary phase, are proteases and peptidases [32]. The increased protein turnover facilitates 

de novo protein synthesis when exogenous carbon sources are low [33]. An ATP-dependent 

Lon protease (OFBG_00099) was increased in stationary phase cells relative to log, 

suggesting protein turnover may have increased in stationary phase cells.

A hallmark of stationary phase is the transformation to an enhanced barrier that includes 

extensive changes in the outer membrane, periplasm, and the inner membrane [34]. O. 

formigenes cells from stationary phase had increased levels of proteins involved with cell 

membrane biogenesis. These include a LolA-like protein (OFBG_01135), which is involved 

in outer membrane localization of lipoproteins [35], a predicted glycosyltransferase protein 

involved in lipopolysaccaride biosynthesis (OFBG_01135), and a membrane protein 

predicted to be involved in lipopolysaccharide assembly (OFBG_01972). Lysine 

biosynthesis was also increased in stationary relative to log (two genes in an operon 

involved in lysine biosynthesis, OFBG_01202 and OFBG_01207). Lysine is an important 
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component of peptidoglycan and an increase in lysine synthesis may reflect the requirement 

for structural changes of the periplasm in stationary phase.

Biosynthesis of various cofactors and other important secondary metabolites was increased 

in stationary relative to log phase. These included proteins predicted to be involved in 

ubiquinone biosynthesis (OFBG_01584), molybdopterin synthesis (OFBG_01125 and 

OFBG_00896), inosine monophosphate biosynthesis (OFBG_01043), vitamin B12 

biosynthesis (OFBG_01299 and OFBG_01907), and coenzyme A biosynthesis 

(OFBG_01787 and OFBG_02064). Vitamin B12 is an essential cofactor for several 

enzymes that catalyze a variety of transmethylation and rearrangement reactions [36]. 

Interestingly, an S-adenosyl-methionine-dependent methyltransferase (OFBG_01658) was 

also increased in stationary relative to log phase, suggesting the transfer of methyl groups to 

various biomolecules may play an important role in adaptive changes needed for the 

transition from log to stationary phase.

Proteins predicted to be associated with DNA repair were increased in stationary versus log 

phase, including a DNA exodeoxyribonuclease (OFBG_00812 beta subunit, and 

OFBG_00813, gamma subunit), a DNA end-binding protein Ku (OFBG_00801), a Holiday 

junction DNA helicase subunit RuvA (OFBG_01461), deoxyuridine 5’-triphosphate 

nucleotidohydrolase (OFBG_00045), a protein with sequence homology to MutT-like 

nucleoside triphosphate pyrophosphohydrolase (OFBG_01470), and two single strand DNA 

binding proteins (OFBG_01393 and OFBG_00293). Interestingly, a DNA mismatch repair 

protein MutL (OFBG_01061) was 1.8-fold lower in abundance in stationary phase 

compared to log phase. Studies with E. coli have shown that there is repression of genes in 

stationary phase associated with the methyl-mismatch repair (MMR) system, comprising 

genes mutS, mutL and mutH [37]. Repression of the MMR system induces the error-prone 

DNA pol IV and increases mutation rate. It has been hypothesized that because 

microorganisms in nature spend more of their life under stress conditions, stress-induced 

mutations could be an important way to generate genetic diversity, upon which natural 

selection will act to select the fittest mutant for a specific environmental condition.

In Gram-negative bacteria, entrance into stationary phase has been shown to be a very well- 

regulated process with sigma factors and many regulators involved [38]. Most of the 

regulatory mechanisms are complex and involve many regulatory links. The best example of 

this is the regulation of the alternate sigma factor RpoS, which governs entrance into 

stationary phase and stress resistance. Common transcriptional regulators whose expression 

levels are inversely related to growth rate in Gram-negative bacteria include leucine-

responsive regulatory protein (Lrp) and integration host factor, commonly known as IHF. 

The genome of O. formigenes OxCC13 encodes proteins with significant amino acid 

sequence homology to E. coli RpoS (OFBG_01317), Lrp (OFBG_00685) and IHF 

(OFBG_00154). However, the proteins encoded by these genes were not increased 

significantly in stationary versus log phase. This may be because the genes in O. formigenes 

have different functions, or respond to later stages of stationary growth.

Other proteins predicted to be involved in “Nucleotide transport and metabolism” were 

increased in stationary versus log phase. Many of these proteins appear to be involved in the 
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control of levels of nucleotide metabolic intermediates and signaling compounds 

(OFBG_00841, OFBG_00942, OFBG_00486, OFBG_00487, OFBG_00599, 

OFBG_01289). Proteins associated with degradation of stable RNA were also increased in 

stationary phase relative to log phase (OFBG_00227, OFBG_01664). The processing of 

nucleotides and degradation of stable RNA has been shown to occur in stationary phase and 

other forms of starvation in many bacterial species, and would appear to be of major 

importance to bacterial survival in such conditions, possibly by providing alternate sources 

of nitrogen and carbon [39,40].

Proteomic analysis detected 26 Sel1 repeat-containing proteins in O. formigenes, 8 of which 

were increased greater than 1.5-fold in stationary versus log phase, although only 5 

significantly (P<0.05). In contrast, three Sel1 repeat-containing proteins were increased 

greater than 1.5-fold in log versus stationary phase (P<0.05). Proteins containing Sel1-like 

repeats mediate protein-protein interactions and are involved in a variety of biological 

processes including cell cycle regulation, transcriptional control and protein folding [41].

A number of proteins that play a role in signal transduction and transcriptional control 

changed in abundance in stationary phase. Two proteins with homology to histidine kinases 

(OFBG_01453 and OFBG_01663), which are known to be important to bacteria for sensing 

and responding to the outside and host environment [42], were increased in stationary 

relative to log phase. A transcriptional regulator (OFBG_01550) with a predicted LysR 

substrate binding domain was also increased 2-fold in stationary relative to log phase. The 

LysR family of transcriptional regulators represents the most abundant type of 

transcriptional regulator in the prokaryotic kingdom and regulates a diverse set of genes in 

stationary phase, including those involved in metabolism and quorum sensing [43].

Concluding Remarks

The release of the genome sequence of O. formigenes has provided an opportunity for 

investigating important biological properties of O. formigenes. To date, no advanced omic 

studies in O. formigenes have been reported. As an initial approach to both enrich the 

annotation of the O. formigenes genome and identify proteins important for growth and 

survival, mass spectrometry based global shotgun proteomics was performed on O. 

formigenes OxCC13 cultures harvested from log phase and stationary phase. From the 

protein datasets presented here it is clear that O. formigenes contains numerous metabolic 

pathways that permits it to adapt to changing environments. Interestingly, the shift from 

abundant oxalate (log growth) to no oxalate (stationary phase) resulted in no change in the 

relative expression (log versus stationary) of the major proteins involved in oxalate 

catabolism. O. formigenes may retain high expression of these major oxalate catabolizing 

proteins in the absence of oxalate to ensure maximal growth when oxalate is reintroduced. 

This proteomic approach suggested superoxide dismutase increased in stationary relative to 

log phase suggesting O. formigenes has the ability to persist outside the anaerobic 

environment of the intestine. Furthermore, the increased abundance of three PPIases and the 

increase in utilization of malonate in stationary relative to log growth suggests these proteins 

are important for O. formigenes survival in stationary phase culture and possibly in vivo. 

Further experiments, including use of mutant strains, development of specific antibodies, 
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and quantification of intracellular and extracellular metabolites, will be required to confirm 

these findings, and should lead to an improved understanding of how O. formigenes cells 

adapt and persist in various environments. Of interest was the recent filing of a patent by 

OxThera Pharmaceuticals that covers the invention of the isolation and administration of 

secretagogues derived from O. formigenes that may enhance oxalate secretion into the 

intestinal lumen (http://www.google.com/patents/WO2015002588A1?cl=en). The invention 

lists 19 possible secretagogues isolated from the cell free supernatant of a 400 liter culture. 

None of these potential secretagogues were increased or decreased in log phase relative to 

stationary phase. Future studies may identify proteins associated with host/O. formigenes 

interactions, including the mechanism by which O. formigenes enhances host oxalate 

secretion.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Representative gel of O. formigenes cell extract and areas excised for downstream MS 

analysis. O. formigenes cells (Oxf Bac); Bovine Serum Albumin (BSA).
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Figure 2. 
Fold change in protein levels of O. formigenes cells from log to stationary phase, as 

categorized by functional category. Functional categories: 1, Amino acid transport and 

metabolism; 2, Carbohydrate transport and metabolism; 3, Cell cycle control, cell division, 

chromosome partitioning; 4, Cell wall/membrane/envelope biogenesis; 5, Coenzyme 

transport and metabolism; 6, Defense mechanisms; 7, Energy production and conversion; 8, 

General function prediction only; 9, Inorganic ion transport and metabolism; 10, 

Intracellular trafficking, secretion, and vesicular transport; 11, Lipid transport and 

metabolism; 12, Nucleotide transport and metabolism; 13, Posttranslational modification, 

protein turnover, chaperones; 14, Replication, recombination and repair; 15, RNA 

processing and modification; 16, Secondary metabolites biosynthesis, transport and 

catabolism; 17, Signal transduction mechanisms; 18, Transcription; 19, Translation, 

ribosomal structure and biogenesis; 20, Unknown.
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