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Abstract: The middle ear is one of the smallest biomechanical systems in the human body and is
responsible for the hearing process. Hearing is modelled in different ways and by various methods.
In this paper, three-degree-of-freedom models of the human middle ear with different viscoelastic
properties are proposed. Model 1 uses the Maxwell type viscoelasticity, Model 2 is based on the
Kelvin–Voigt viscoelasticity, and Model 3 uses the Kelvin–Voigt viscoelasticity with relaxation effect.
The primary aim of the study is to compare the models and their dynamic responses to a
voice excitation. The novelty of this study lies in using different models of viscoelasticity and
relaxation effect that has been previously unstudied. First, mathematical models of the middle ear
were built, then they were solved numerically by the Runge–Kutta procedure and finally, numerical
results were compared with those obtained from experiments carried out on the temporal bone
with the Laser Doppler Vibrometer. The models exhibit differences in the natural frequency and
amplitudes near the second resonance. All analysed models can be used for modelling the rapidly
changing processes that occur in the ear and to control active middle ear implants.

Keywords: middle ear; stapes vibration; relaxation; ligaments modelling

1. Introduction

Hearing is one of the human senses that is very important for communication. During the hearing
process, a sound is transferred through the external and middle ear to the cochlea. This process can
be described as follows: when sound waves reach the tympanic membrane, they cause the tympanic
membrane and the attached chain of auditory ossicles to vibrate. The motion of the stapes against the
oval window sets up waves in the fluids of the cochlea, causing displacement of the basilar membrane.
Consequently, the sensory cells of the Corti organ are stimulated and send nerve impulses to the brain.
From a biomechanical point of view, the middle ear part is the most interesting; therefore, scientists
have been looking for methods that allow us to analyse the hearing process correctly. Different models
of the human middle ear have been built for decades. The first study in this field was published in
1961 by Mőller [1], where the new scheme of the middle ear mechanism was proposed. Afterwards,
a similar model was investigated by Zwislocki [2]. They both based their studies on the popular
theory by Bárány, according to which the ossicles rotate about the axis passing through the head of the
malleus and the short process of the incus; Zwislocki assumed a rigid coupling between the malleus
and the incus. In recent decades, mechanical models of lumped masses have been developed, in which
the ossicles (i.e., the malleus, the incus, and the stapes) are represented by rigid bodies, connected
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by springs and dashpots. The stapes motion for low excitation frequencies, responsible for speech
recognition, is piston-like [3]; therefore, usually planar motion is taken into consideration in models
reported in the literature. One can find three [4], four [5], and even six [6] degrees of freedom (dof)
models of the middle ear (ME). In most cases, these models only focus on the kinematic relations in
the intact middle ear. Feng and Gan [6] analysed a dynamic aspect of the middle ear. Their numerical
analyses have been in quite good agreement with experimental findings. All the above-mentioned
models are linear where joints and ligaments are modelled as the Kelvin–Voigt (K-V) elements. This is
a simplification of the real ear because ligaments, joints, and tendons are characterized in the literature
as elements with nonlinear behaviour. Generally, the viscoelastic properties of ligaments and tendons
in the human body have been widely studied by static creep and stress relaxation experiments [7].
In static creep experiments, the stress is maintained as a constant and the strain is observed to
increase over time until it becomes almost constant [8]. It has been demonstrated by static creep
experiments that the time needed for the strain to achieve a steady value for different stress levels
and different types of ligaments and tendons differs [9]. In static stress relaxation tests on the other
hand, the strain is maintained constant and the stress is observed to decrease over time until it
finally reaches a steady value. Relaxation experiments at different strain levels of different types
of ligaments and tendons have different relaxation times [10,11]; however, the creep and relaxation
observed in experimental research are often omitted in modelling of the middle ear. The creep and
relaxation phenomena can be modelled in a simplified form as a combination of linear springs and
dashpots put together. To develop mathematical models of their viscoelastic behaviour, the K-V and
the Maxwell models are used. In the Maxwell model, the spring and the dashpot are in series, while in
the Kelvin–Voigt model, they are parallel. The K-V model is usually employed to model the creep
phenomenon, whereas the Maxwell model is used for modelling relaxation.

Nonlinear properties of tendons and ligaments in the middle ear are two separate problems that
should be discussed here, as nonlinearities can significantly influence system dynamics. The problem
has been mentioned in several papers, e.g., [12–16]. For example, Cheng and Gan investigated
the nonlinear mechanical properties of the anterior malleolar ligament (AML) via experimental
measurement and the material modelling point of view [17]. The hyperelastic Ogden model was
used to describe the constitutive behaviour of the annular ligament (AL) in [18]. The authors
have proved that the human AL is a typical viscoelastic material with nonlinear stress–strain
relationship and stress relaxation function. They found that the transmission of sound energy
from the middle ear to the cochlear fluid is largely dependent on the AL mechanical behaviour.
As reported in [17,19,20], the mechanical properties of the tensor tympani tendon, the stapedial tendon,
and the anterior malleolar ligament (AML) should be described by viscoelastic materials with stress
relaxation behaviour.

Thus, the above-mentioned studies demonstrate that joints, tendons, and ligaments are crucial for
sound transfer through the middle ear and also for modelling its biomechanical behaviour; therefore,
in this study, three models of ligaments and joints in the human middle ear were employed to compare
their influence on sound transmission. The three models are nonlinear with the Kelvin–Voigt and the
Maxwell elements of various configurations. An exponential model of stress relaxation is proposed.
The aim of this study is to show the differences in the different approaches of the human middle ear
modelling. The Maxwell viscoelastic element and the modified K-V system have not yet been applied
for middle ear analysis. Thus, this is a new contribution of the paper.

The paper is organized as follows: Section 2 presents the experimental setup, procedure of
measurements, numerical research, and the description of mathematical models of the middle ear based
on the Maxwell and the Kelvin–Voigt approach. Section 3 describes results of the numerical analysis
and experimental verification of stapes vibrations as a frequency response function—The effects of
external excitation, ligaments stiffness ratio, and relaxation time were investigated. Finally, a discussion
of results and overall conclusions are given in Sections 4 and 5.
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2. Materials and Methods

Experimental and numerical approaches were employed to study the ME dynamics.
First, an experiment on the human temporal bone was performed to obtain the real middle ear transfer
function (frequency response function—FRF) and to evaluate parameters (stiffness and damping) for
theoretical models. Next, three mathematical models of the ME were built and then the numerical
procedure was developed. Finally, on the basis of the experimental outcomes, some parameters for
numerical simulations were obtained. Thus, the experimental FRF is required to fit the output of
numerical results with the real intact middle ear and validate the structure of the model. More detailed
steps of the analysis are described in the subsequent subsections.

2.1. Experimental Procedure

To obtain the transfer function of the ME and to verify the middle ear model validity, experiments
were performed on six specimens of the human temporal bone. A standard otolaryngology procedure
was employed to prepare the specimens. The soft tissue was removed and the antromastoidectomy
with posterior tympanotomy was performed. The mastoid facial nerve was removed to visualize the
stapes arch and the stapes footplate. An artificial external ear canal of 25 mm in length and 9 mm
in diameter was then attached to the bone with epoxy resin. The artificial canal was equipped with
two ports, one for an ear microphone (ER-7C Etymotic Research) and one for a sound source (ER2
Etymotic Research) as presented in Figure 1. The artificial canal was closed with a glass plate to
create a sound sealed chamber. Pieces of reflective tape (weighing less than 0.05 mg) were placed on
the footplate of the stapes. The temporal bone specimen was then embedded in dental cement and
put in the temporal bone holder (Storz). Measurements were performed on an anti-vibration table
inside a sound booth. The same procedure was applied in other experiments, which are described
in [16,21,22]. The middle ear was stimulated by a discrete chirp signal with a frequency ranging from
0.4 to 8 kHz to get the ear characteristics in the range of hearing. The stapes footplate velocity was
measured with a Laser Doppler Vibrometer (LDV) system from Polytec GmbH, Waldbronn, Germany.
The system consists of a Polytec controller (OFV-5000) and a laser head (OFV-534). A helium–neon
laser beam was directed onto retro-reflective targets on the stapes footplate through the artificial
ear canal. The measured velocity of the stapes was transferred from the controller to the National
Instruments DAQ card (NI6210) and then through the PC to the DasyLab software in order to capture
data. A scheme of the experimental setup is presented in Figure 1.

Figure 1. Experimental setup with a Laser Doppler Vibrometer (LDV) system for measuring
stapes vibration.

2.2. Middle Ear Models

In the human middle ear, the malleus is attached to the tympanic membrane via the handle of the
malleus and to the temporal bone by means of the lateral malleal ligament, the tensor tympani tendon,
and the anterior mallear ligament (Figure 2). The head of the malleus lies in the epitympanic recess,
where it articulates with the next auditory ossicle, the incus, via the incudomallear joint (IMJ). The incus
consists of a body and two processes. The body articulates with the malleus, the short process is
attached to the posterior wall of the middle ear, and the long process joins the stapes with the
incudostapedial joint (ISJ). The incus is connected to the bone with the superior malleal and the
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posterior incudal ligaments. The stapes, the smallest bone in the human body, joins the incus to the
oval window of the inner ear. The footplate of the stapes is connected to the oval window by means
of the annular ligament (AL) and with the temporal bone via the stapedius tendon. There are two
muscles that serve a protective function in the middle ear: the tensor tympani and the stapedius muscle.
The stapedius muscle contracts in response to a loud noise, thus inhibiting the vibrations of the ossicles,
and reducing the transmission of sound to the inner ear. This effect, known as the acoustic reflex is
neglected in this study when modelling the sound transmission process. Moreover, only the parts
directly responsible for sound transmission in the hearing range are taken into consideration. Thus,
the proposed middle ear (ME) models consist of masses connected by springs (k) and dashpots (c)
that are combined in the Maxwell viscoelasticity type depending on assumed models, shown in
Figures 2 and 3. The ossicle are represented by three masses: the malleus (mM), the incus (mI), and
the stapes (mS). The lumped masses (mM, mI , mS) can move horizontally on a base. This assumption
eliminates a possibility of rotation but does not influence primary vibration modes. The ossicles are
connected to each other by the joints IMJ and ISJ, and to the temporal bone with the ligaments AML,
PIL, and AL represented by the viscoelastic model of material consisting of dashpots and springs
connected in series or in parallel. In this way, the so called modified Maxwell model, also known as
the Zener model, is obtained (Figure 2). This configuration provides a more realistic behaviour of
the tissues than the K-V model (Figure 3), which is applied the most often in the literature. Damping
and stiffness properties of the cochlea (cc and kc), and of the tympanic membrane (cTM, kTM) are
described by the K-V model both in Figures 2 and 3. Moreover, the AL has nonlinear (cubic) stiffness
characteristics denoted by kAL3, as reported in [12]. The ear is stimulated by an outer signal, Qcos(ωt),
acting on the malleus through the tympanic membrane. The joints and ligaments that are the most
important for sound transfer are marked in bold in the model shown in Figure 2. These elements are
modelled in the study.

INCUS
(I)

MALLEUS
(M)

STAPES
(S)

Annular ligament
(AL)

Incudostapedial joint
(ISJ)

Incudomalleolar joint
(IMJ)

Anterior malleal ligament
(behind) - AML

Tympanic membrane
TM

Lateral malleal ligament

Tensor tympani tendon

Superior malleal ligament

Posterior incudal ligament
(PIL)

Stapedius
tendon

Figure 2. Schematic representation of the human middle ear and a three degrees of freedom model of
the human middle ear with viscoelasticity of the Maxwell type (Model 1).
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For the model presented in Figure 2, the total stiffness (k) of the joints and ligaments is divided
into two parts kα and kβ, where kβ is connected in series with a dashpot. The total stiffness (k) is given
by equation

k = kα + kβ (1)

In order to regulate both parts of the stiffness coefficient α and β the following dependence
is introduced

kα = αk, kβ = βk, α + β = 1 (2)

This also makes it possible to go to the pure K-V model by eliminating kβ. The middle ear with
K-V viscoelasticity is presented in Figure 3.

mI mSxI
mM

kTM kISJkIMJ

kAML, cAML kPIL, cPIL

kC, cC

cTM cIMJ cISJ

kAL, kAL3, cAL
xM xS

Qcoswt

xI

Figure 3. Three degrees of freedom model of the human middle ear with the Kelvin–Voigt type of
viscoelasticity used for analysing systems with and without relaxation effect (Models 2 and 3).

These two models (Figures 2 and 3) are analysed in terms of their behaviour and its effect on sound
transfer in the ear. Additionally, in the model with the K-V viscoelasticity (Figure 3), the relaxation
phenomenon is considered using a modified Young’s modulus (E) of the joints and ligaments having
the form

E = E0 + E1e−t/t̃1 (3)

where E0 and E1 denote the final and the changeable component of the elastic (Young’s) modulus of
the tissue. Then, the preliminary modulus is E0 + E1. t̃1 denotes the relaxation time; therefore, a new
stiffness, kr is defined as

kr = k0

(
1 +

E1

E0
e−t/t̃1

)
(4)

where, k0 = AE0
L , A and L denote the cross section and the length of the joint or ligament, respectively.

Consequently, three models of the ME were investigated and compared. Their description is put
together in Table 1.

Table 1. Characteristics of three degrees of freedom (dof) models of the middle ear.

Model 1 Model 2 Model 3

Maxwell viscoelasticity Kelvin–Voigt viscoelasticity Kelvin–Voigt viscoelasticity with relaxation effect
Figure 2 Figure 3 Figure 3

Equations (7) and (A5) Equations (8) and (A10) Equations (9) and (10)

Governing differential equations of motion for the three models are derived, based on the
Lagrange equation of the second type in the form

d
dt

(
∂T
∂ẋi

)
− ∂T

∂xi
+

∂V
∂xi

+
∂Φ
∂ẋi

= Qi. (5)
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Afterwards, a potential energy(V) and the Rayleigh function of dissipation (Φ) are defined for
each model, and the kinetic energy (T) is the same for all presented models, given as follows

T =
1
2
(mM ẋ2

M + mI ẋ2
I + mS ẋ2

S) (6)

The potential energy, the Rayleigh function and derivation of equations of motion are presented
in appendixes. Here, only the final, dimensionless form of the differential equations of motion, that are
used to build numerical models, are shown below

• Model 1—Maxwell viscoelasticity

ẍ1 + k̃11x1 + k̃12x2 + k̃17y12 + c̃11 ẋ1 + c̃14ẏ1 = q0cos(Ωτ)

ẍ2m2 + k̃21x1 + k̃22x2 + k̃23x3 + k̃28y23 + c̃22 ẋ2 + c̃25ẏ2 + c̃27ẏ12 = 0

ẍ3m3 + k̃32x2 + k̃33x3 + c̃33 ẋ3 + c̃36ẏ3 + c̃38ẏ23 + γ3x3
3 = 0

k̃44y1 + c̃41 ẋ1 + c̃44ẏ1 = 0

k̃55y2 + c̃52 ẋ2 + c̃55ẏ2 = 0

k̃66y3 + c̃63 ẋ3 + c̃66ẏ3 = 0

k̃71x1 + k̃77y12 + c̃72 ẋ2 + c̃77ẏ12 = 0

k̃82x2 + k̃88y23 + c̃83 ẋ3 + c̃88ẏ23 = 0

(7)

where, new dimensionless coefficients of stiffness (kij), damping (cij), and coordinates (x1 − x3) are
defined in Appendix A—Equations (A4) and (A5). New stiffness and damping coefficients are a
combination of the dimensional coefficients as shown in Equation (A4).

• Model 2—Kelvin–Voigt viscoelasticity

ẍ1m1 + k11xM + k12xI + c11 ẋM + c12 ẋI = q0cos(Ωτ)

ẍ2m2 + k21xM + k22xI + k23xS + c21 ẋM + c22 ẋI = 0

ẍ3m3 + k32xI + k33xS + c32 ẋI + c33 ẋS + γ3xS
3 = 0

(8)

where new dimensionless coefficients kij, cij and coordinates (x1 − x3) are defined in
Appendix B—Equations (A9) and (A10). New stiffness and damping coefficients are a combination of
the dimensional coefficients as shown in Equation (A9).

• Model 3—Kelvin–Voigt viscoelasticity with relaxation

The differential equation of motion for Model 3 is the same as that of Model 2 (Equation (8)) but
now the system stiffness is expressed using Equation (4). Thus, kij in Equation (8) is replaced by kijr;
therefore, the governing equations of motion take the form

ẍ1m1 + k11rxM + k12rxI + c11 ẋM + c12 ẋI = q0cos(Ωτ)

ẍ2m2 + k21rxM + k22rxI + k23rxS + c21 ẋM + c22 ẋI = 0

ẍ3m3 + k32rxI + k33rxS + c32 ẋI + c33 ẋS + γ3xS
3 = 0

(9)

Taking into account the transformation presented in Equation (A10), the dimensionless stiffness
is defined

kijr = kij

(
1 +

E1

E0
e−τ/t1

)
(10)

2.3. Numerical Procedure

On the basis of the mathematical models, presented in Section 2.2, numerical models are built
in MATLAB Simulink. Next, numerical calculations are preformed using the Runge–Kutta 4th order
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method (ode45) with a variable step size and a relative tolerance of 10−10. In the numerical experiments,
the parameters of the model presented in Table 2 are used. The parameters of stiffness (k), damping (c),
and mass (m) are taken from [14]. The rest of them, which are new in the presented models,
are estimated based on experimental findings in such a way that the numerical outcomes (FRF)
correspond to the experimental ones, mainly the frequencies and amplitudes of resonances have
been compared.

Table 2. Parameters of the middle ear used in numerical simulations, taken from experimental validation.

Stiffness Damping Damping Other
(Model 1,2,3) Maxwell (Model 1) Kelvin–Voigt (Model 2,3)

kTM = 0.3 mN/µm cTM = 378 mNs/mm cTM = 60 mNs/mm mM = 25 mg
kAML = 0.8 mN/µm cAML = 0.4 mNs/mm cAML = 275 mNs/mm mI = 28 mg
kIMJ = 1000 mN/µm cIMJ = 359 mNs/mm cIMJ = 359 mNs/mm mS = 1.78 mg
kPIL = 0.4 mN/µm cPIL = 55 mNs/mm cPIL = 55 mNs/mm Q0 = 1.2e−4 N
kISJ = 1.35 mN/µm cISJ = 7.9 mNs/mm cISJ = 7.9 mNs/mm α = 0.96
kAL = 0.623 mN/µm cAL = 4000 mNs/mm cAL = 2 mNs/mm E1/E0 = 0.5

kC = 0.2 mN/µm cC = 11 mNs/mm cC = 1.7 mNs/mm t1 = 0.0884
km = 0.85 mN/µm

kAL3 = 13 mN/µm3

At the beginning, in Model 1 the stiffness ratio α is assumed to be 0.96, because some researchers
claim that the ligaments and tendons should be treated as collagen fibres and the surrounding
proteoglycan-rich matrix [10,23–25]. Thus, the mechanics of these tissues is also modelled using
the Maxwell-type viscoelastic material, where the elastic modulus of the matrix and the fibre is
Em = 130.4 MPa and E f = 3500 MPa, respectively. The total modulus E = Em + E f . The coefficient α

(according to Equations (1) and (2)) represents the relationship between the total and the matrix Young
modulus in the form α = Em/E.

3. Results

A frequency response function (FRF) of the middle ear, which is sometimes also called a transfer
function, is most commonly used by ear researchers for both engineering and medical purposes.
The FRF is a mathematical representation of the relationship between the input and the output of
a system. Usually, the pressure applied to the ear is the input, whereas the stapes vibration velocity
caused by the pressure is the output. Here, the FRF obtained from the experiment is compared with the
numerical results yielded for the three models. The analysis focuses on the stapes vibration because of
its importance for sound transmission to the inner ear.

3.1. Frequency Response Function

Stapes vibrations measured in the experiment and presented in Figure 4 are normalized to the
pressure of 0.55 Pa in order to compare the results with the numerical outcomes. Then, the FRF is
unified and does not depend on the excitation level. The mean value of the stapes velocity from the
experiment is marked with a blue line in Figure 4. Additionally, the results of numerical simulations
(black, green, and red lines) are shown together to compare and verify three models with experimentally
obtained outcomes.

Experimental results show that the first resonance of the intact middle ear is about 1 kHz and
the second one is about 5.5 kHz. Similar resonances are expected for the analysed models; therefore,
the parameters of Model 1 (Maxwell) as well as Models 2 and 3 (K-V) given in Table 2 differ with
respect to the damping coefficient. Damping coefficients in the models are adopted so that the velocity
amplitude would be the same as in the experiment. The experimental and numerical resonances
obtained from the Models 1 and 2 are convergent, that is expected in case of small β, used in calculations,
whereas for Model 3 a shift of the second resonance is observed. The resonance offset occurs in spite
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of the fact that stiffness coefficients are the same and it is caused by the relaxation effect. It should
be remembered that a pure harmonic stimulation leads to harmonic vibration of the ossicles in the
intact human ear. This may, however, be changed by altering the model parameters or excitation
amplitude; therefore, the problem of stapes vibration is analysed with special care in subsequent
sections, where several key parameters are analysed.

Figure 4. Transfer function of the middle ear from experiment (blue line) and numerical simulations
(black, green, and red lines) expressed as the ratio of stapes velocity to sound pressure (vs/p) versus
excitation frequency.

3.2. Influence of Excitation Amplitude

The excitation amplitude is a key parameter influencing the stapes dynamics. There is no doubt
that a higher excitation amplitude causes stronger vibrations of the stapes, as presented in Figure 5;
however, a very strong excitation may cause irregular motion, especially in nonlinear systems. In the
case under analysis, the nonlinearity of the annular ligament (kAL3) causes an unexpected behaviour
of the stapes shown in Figure 6. The vertical dashed line marks the border where pure harmonic
vibrations go to periodic oscillations. The periodic vibrations consist of two harmonic answers with
different amplitudes but of the same frequency. This effect can be called a disturbed harmonic
response (DHR). The blue line shows the start point of the first disturbance in harmonic response and
the green one shows the higher order disturbances. That means the output signal (x3) reveals more
than one additional harmonic. The DHR starts earlier for Model 1 than for Models 2 and 3. The change
of motion is observed only for the stapes, while the malleus and the incus vibrate harmonically all
time. This behaviour is presented in Figure 7 as phase diagrams (black) with Poincaré points (red) near
the first resonance.

0 200 400 600 800 1000

Q/Q
o

0

0.005

0.01

0.015

a
3

model 1

model 2

model 3

Figure 5. Influence of the external excitation amplitude (Q) on the stapes dimensionless amplitude (a3)
near the first resonance.
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Figure 6. Influence of the external excitation amplitude (Q) on the stapes motion (x3) near the
first resonance.
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Figure 7. Ossicles motion presented as phase diagrams (black) with Poincaré points (red) for Model 1
and different external excitation amplitudes (Q/Qo).

The phase diagram, only for Model 1, are shown in Figure 7, because Models 2 and 3 demonstrate
the same behaviour. The stapes motion depends on the excitation amplitude but the period of
vibrations is still the same and equal to 1T. 1T means that the response vibrations have period
1 in relation to the excitation frequency (the period of the response is exactly the same as the
excitation period).
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3.3. Effect of Stiffness Ratio

In the FRF shown in Figure 4, α = 0.96. Now the influence of α (also β, see Equation (2))
on dimensionless amplitude of the stapes vibration (a3) is analysed in Figure 8. An increase in α

(the spring parallel to the pure Maxwell viscoelastic element) causes a nonlinear increase in the
vibrations amplitude. This is especially visible at higher values of the external excitation (5Q
and 10Q). Thus, the stiffness ratio does not change the type of motion, but has an effect on the
stapes vibration amplitude.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

a
3

10
-4

1Q

5Q

10Q

Figure 8. Influence of the stiffness ratio (α) in Model 1 on the stapes dimensionless amplitude (a3).

3.4. Effect of Relaxation Time

Based on Model 3, the dimensionless relaxation time (t1) is analysed in terms of its influence
on the stapes vibrations. The relaxation effect causes a shift in the second resonance, which can be
observed in Figure 4. The second resonance (Ω2) shift increases with t1, as shown in Figure 9 while the
vibrations dimensionless amplitude (a3) decreases.

0 1 2 3 4 5 6 7 8

0

1

2

3

4

a
3

10
-5

t
1
=100

t
1
=500

t
1
=2000

t
1
=10000

Figure 9. Resonance curves of the stapes (a3) in Model 3 for different relaxation times (t1).

The change in the frequency (Ω2) and the amplitude (a3) is nonlinear, as shown in Figure 10.
When t1 > 3000, the effect of relaxation does not affect the stapes motion; however, when the relaxation
time is short, this effect cannot be neglected. Thus, to model the middle ear properly, the relaxation
phenomenon should be taken into consideration. Interestingly, the relaxation time does not influence
the first resonance. This is probably because the stapes is fixed to the cochlea by means of the AL,
which is modelled as nonlinear. In nonlinear systems, their behaviour is not deterministic, which means
the system answer is not proportional to input parameters (nonlinear phenomena are observed).
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Figure 10. Second resonance dimensionless frequency Ω2 (black curve) and dimensionless amplitude
a3 (blue curve) as a function of relaxation time t1. Dimensionless frequency Ω2 is related to ω0.

4. Discussion

The presented lumped masses model has some simplifications during modelling, e.g., a one
directional horizontal motion of the ossicles that do not influence the primary vibration modes.
The first and the second vibration modes of the stapes are longitudinal vibrations, usually analysed
in the hearing frequency range [3,4]. The middle ear dynamics are rarely analysed in the literature
in terms of the effect of joints and ligaments. Investigators usually assume that the human tissue
exhibits viscoelastic properties of the K-V type [4–6]. Sometimes, only FEM models are built to analyse
the response of ossicles under different conditions [26–30]; however, these models presented in the
literature do not show the effect of relaxation that is typical for the human tissue, as reported in [7,9–11]
and therefore should be taken into consideration. Thus, our study is the first attempt to compare
viscoelastic properties of ligaments and joints in the middle ear on the stapes behaviour. The three
models analysed here have the same first resonance as that obtained from the experiment performed
by the authors of [14,16] and reported in other papers [5,31]; however, the shift of the second resonance,
due to the relaxation effect in Model 3, is considered by us to be a new and interesting phenomenon.

The stapes vibration amplitudes do not differ from each other in the three models, but strong
excitation causes DHR, which is earlier observed in Model 1 than in Models 2 and 3. Interestingly,
the relaxation time in Model 3 is of key importance only for the second resonance. The relaxation time
increases the resonance frequency and decreases the stapes amplitude. The significance of the relaxation
time was also reported in [10,11], but not for the middle ear dynamics. Usually, the relaxation time of
tissues is long, about 100–500 s [32–34]; therefore, in the real conditions when the sound approaching
the ear is dynamic, the shift of the second resonance cannot be observed in the middle ear systems.
The presented model of relaxation can be used in future to model new bio-materials and implants.

The Maxwell and Kelvin–Voigt models without relaxation are suitable for analysing rapidly
changing phenomena, when the time of exposure is short and then the relaxation effect may be
neglected; however, it is recommended to use the model with relaxation when the exposure time
is long, for example, to observe movements of the ossicular chain during changes in static pressure [35].

In the future, the problem of middle ear nonlinearity in both the Maxwell and the K-V models
with relaxation should be investigated.

5. Conclusions

The middle ear dynamics is sensitive for many different conditions and parameters; therefore,
the proper modelling is of special importance. Here, the three models of different structures
are compared. The most important conclusions that can be drawn from this study are as follows:

• two main resonances of the middle ear are observed in the experiment on the human
temporal bones;
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• experimental tests, performed to track the parameters and to test the mathematical models
outputs, prove that the models give consistent results with experimental outcomes for the tested
preliminary parameters;

• the middle ear models with the Maxwell and the K-V viscoelasticity yield very similar results,
particularly when the relaxation time is short and the excitation amplitude is small;

• a longer relaxation time causes an offset of the second resonance in the human middle ear;
• the effect of disturbed harmonic response (DHR) occurs at slightly different values of

external excitation in the model with the Maxwell viscoelasticity, when compared to the
Kelvin–Voigt model;

• the analysed ME model of the Maxwell type of viscoelasticity is sensitive for the stiffness ratio (α)
which changes the value of the resonance amplitude.

The study brings some important aspects in modelling of the middle ear and can be used
in practice to develop both passive and active middle ear implants, made of new bio-materials.
On the whole, the active one should be controlled in the proper manner to avoid disturbances in
harmonic responses. The proposed ME models can be applied for prediction of the middle ear
behaviour and for control purposes.
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Appendix A. Model 1

For the middle ear model with the Maxwell viscoelasticity, the potential energy is expressed
as follows

V =
1
2
(
kTMx2

M + kα
AMLx2

M + kCx2
S + kβ

ALy2
S + kβ

AMLy2
M + kα

PILx2
I + kβ

PILy2
I + kα

IMJ(xM − xI)
2+

kα
ISJ(xI − xS)

2 + kβ
IMJ(yMI − xM)2 + kβ

ISJ(yIS − xI)
2)+ 1

4
kAL3x4

S

(A1)

whereas the Rayleigh function of dissipation (Φ) is expressed as

Φ =
1
2
(cTM ẋ2

M + cAML(ẏM − ẋM)2 + cC ẋ2
S + cAL(ẋS − ẏ2

S) + cPIL(ẋI − ẏI)
2+

cIMJ(ẏMI − ẋ2
I ) + cISJ(ẏIS − ẋS)

2)
(A2)
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Differential equations of motion are then calculated by substituting Equations (6), (A1) and (A2)
into Equation (5), which yields

ẍMmM + k̃M
11xM + k̃M

12xI + k̃M
17yMI + c̃M

11 ẋM + c̃M
14 ẏM = Q0cos(ωt)

ẍImI + k̃M
21xM + k̃M

22xI + k̃M
23xS + k̃M

28yIS + c̃M
22 ẋI + c̃M

25 ẏI + c̃M
27 ẏMI = 0

ẍSmS + k̃M
32xI + k̃M

33xS + c̃M
33 ẋS + c̃M

36 ẏS + c̃M
38 ẏIS + kAL3xS

3 = 0

k̃M
44yM + c̃M

41 ẋM + c̃M
44 ẏM = 0

k̃M
55yI + c̃M

52 ẋI + c̃M
55 ẏI = 0

k̃M
66yS + c̃M

63 ẋS + c̃M
66 ẏS = 0

k̃M
71xM + k̃M

77yMI + c̃M
72 ẋI + c̃M

77 ẏMI = 0

k̃M
82xI + k̃M

88yIS + c̃M
83 ẋS + c̃M

88 ẏIS = 0

(A3)

where

k̃M
11 = kTM + kα

AML + kα
IMJ + kβ

IMJ , k̃M
12 = −kα

IMJ , k̃M
17 = −kβ

IMJ

k̃M
21 = −kα

IMJ , k̃M
22 = kα

PIL + kα
IMJ + kα

ISJ + kβ
ISJ , k̃M

23 = −kα
ISJ , k̃M

28 = −kβ
ISJ

k̃M
32 = −kα

ISJ , k̃M
33 = kC + kα

ISJ , k̃M
44 = kβ

AML, k̃M
55 = kβ

PIL

k̃M
66 = kβ

AL, k̃M
77 = kβ

IMJ , k̃M
88 = kβ

ISJ , k̃M
71 = −kβ

IMJ , k̃M
82 = −kβ

ISJ

c̃M
11 = cTM + cAML, c̃M

14 = −cAML, c̃M
22 = cPIL + cIMJ , c̃M

25 = −cPI J

c̃M
27 = −cIMJ , cM

33 = cC + cAL + cISJ , c̃M
36 = −cAL, c̃M

38 = −cISJ

c̃M
41 = −cAML, c̃M

44 = cAML, c̃M
52 = −cPIL, c̃M

55 = cPIL, c̃M
63 = −cAL

c̃M
66 = cAL, cM

72 = −cIMJ , c̃M
77 = cIMJ , c̃M

83 = −cISJ , c̃M
88 = cISJ

(A4)

By introducing the dimensionless time τ, frequency Ω and coordinates x1 − x8, the equations of
motion take the dimensionless form as presented in Equation (7). New dimensionless coefficients and
coordinates are defined as follows

k̃ij = k̃M
ij /(mmω2

0), c̃ij = c̃M
ij /(mmω0), γ3 = kAL3x2

st/(mmω2
0), i, j = 1...8

q = Q/(mmω2
0xst), τ = ω0t, t1 = ω0 t̃1, ω0 =

√
kAML/mM, Ω = ω/ω0

x1 = xM/xst, x2 = xI/xst, x3 = xS/xst

y1 = yM/xst, y2 = xI/xst, y3 = xS/xst, y12 = yMI/xst, y23 = yIS/xst

(A5)

Appendix B. Model 2

The middle ear model with Kelvin–Voigt viscoelasticity is characterized by the potential energy
expressed as

V =
1
2
(
kTMx2

M + kAMLx2
M + kCx2

S + kALx2
S + kPILx2

I + kIMJ(xM − xI)
2 + kISJ(xI − xS)

2)+
1
4

kAL3x4
S

(A6)

whereas the Rayleigh function of dissipation (Φ) is expressed as

Φ =
1
2
(cTM ẋ2

M + cAML ẋM)2 + cC ẋ2
S + cAL ẋ2

S) + cPIL ẋ2
I + cIMJ(ẋM − ẋ2

I ) + cISJ(ẋI − ẋS)
2) (A7)
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Differential equations of motion are then calculated by substituting Equations (6), (A6) and (A7)
into Equation (5), which yields

ẍMmM + k̃11xM + k̃12xI + c̃11 ẋM + c̃12 ẋI = Q0cos(ωt)

ẍImI + k̃21xM + k̃22xI + k̃23xS + c̃21 ẋM + c̃22 ẋI = 0

ẍSmS + k̃32xI + k̃33xS + c̃32 ẋI + c̃33 ẋS + k̃AL3xS
3 = 0

(A8)

where

k̃11 = kTM + kAML + kIMJ , k̃12 = k̃M
21 = −kIMJ , k̃22 = kPIL + kIMJ + kISJ

k̃23 = k32 = −kISJ , k̃33 = kAL + kISJ + kC

c̃11 = cTM + cAML + cIMJ , c̃12 = c̃21 = −cIMJ ,

c̃22 = cPIL + cIMJ + cISJ , c̃23 = c32 = −cISJ , c̃33 = cAL + cISJ + cC

(A9)

By introducing the dimensionless time τ, frequency Ω, and coordinates x1 − x3, the equations
of motion take the form shown in Equation (8). New dimensionless coefficients and coordinates are
defined as follows

kij = k̃ij/(mmω2
0), cij = c̃ij/(mmω0), γ3 = kAL3x2

st/(mmω2
0), i, j = 1...3

q = Q/(mmω2
0xst), τ = ω0t, t1 = ω0 t̃1, ω0 =

√
kAML/mM, Ω = ω/ω0

x1 = xM/xst, x2 = xI/xst, x3 = xS/xst

(A10)
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