
GigaScience, 7, 2018, 1–11

doi: 10.1093/gigascience/giy131
Advance Access Publication Date: 12 December 2018
Tech Note

TE CH NO TE

Efficient and accurate detection of splice junctions
from RNA-seq with Portcullis
Daniel Mapleson *, Luca Venturini , Gemy Kaithakottil and
David Swarbreck *

Earlham Institute, Norwich Research Park, NR47UZ, Norwich, United Kingdom
∗Correspondence address. Daniel Mapleson, Earlham Institute, Norwich Research Park, NR47UZ, Norwich, United Kingdom, E-mail:
d.mapleson@gmail.com http://orcid.org/0000-0001-6523-2134 or David Swarbreck,Earlham Institute, Norwich Research Park, NR47UZ, Norwich, United
Kingdom, E-mail: david.swarbreck@earlham.ac.uk http://orcid.org/0000-0002-5453-1013

Abstract

Next-generation sequencing technologies enable rapid and cheap genome-wide transcriptome analysis, providing vital
information about gene structure, transcript expression, and alternative splicing. Key to this is the accurate identification of
exon-exon junctions from RNA sequenced (RNA-seq) reads. A number of RNA-seq aligners capable of splitting reads across
these splice junctions (SJs) have been developed; however, it has been shown that while they correctly identify most
genuine SJs available in a given sample, they also often produce large numbers of incorrect SJs. Here, we describe the extent
of this problem using popular RNA-seq mapping tools and present a new method, called Portcullis, to rapidly filter false SJs
derived from spliced alignments. We show that Portcullis distinguishes between genuine and false-positive junctions to a
high degree of accuracy across different species, samples, expression levels, error profiles, and read lengths. Portcullis is
portable, efficient, and, to our knowledge, currently the only SJ prediction tool that reliably scales for use with large
RNA-seq datasets and large, highly fragmented genomes, while delivering accurate SJs.
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Introduction

Alternative splicing (AS) is a regulated process in Eukaryotic
species that occurs during gene expression, enabling a single
gene to code for multiple proteins through inclusion or exclu-
sion of exons in the transcribed mRNA. Key to defining the com-
plexity of alternative splicing within a gene is the identification
of splice junctions (SJs), which occur at exon-exon boundaries
and are typically characterized in pairs representing both the
donor site (5’ intron boundary to 3’ upstream exon boundary)
and acceptor site (3’ intron boundary to 5’ downstream exon
boundary). A recent study has given us a comprehensive view
into alternative splicing in humans [1], although annotations of
other model species are known to be incomplete [2]. This lack
of completeness reduces the accuracy and usefulness of many
downstream gene and transcript level tasks, such as differential
expression analysis [3] and alternative splicing analysis [4].

RNA sequencing (RNA-seq) has become the standard method
to detect, quantify, compare, and contrast splice isoforms
across different biological contexts [5]. Furthermore, as next-
generation sequencing (NGS) technologies have matured, RNA-
seq is becoming increasingly quick, reliable, and cost-effective
[6]. SJs derived from RNA-seq studies are primarily detected
via splice-aware mapping tools, which can split RNA-seq reads
across introns in the genome. However, a survey of many RNA-
seq mapping tools highlighted that accurate detection of SJs is
an outstanding challenge [7]. Here, we show that this issue per-
sists with recent versions of many popular RNA-seq mappers.
The lack of accuracy is due to various factors, such as short read
lengths that increase mapping ambiguity and sequencing errors
that trigger misaligned split reads. The problem is exacerbated
in deeply covered datasets where the likelihood of generating
distinct invalid splice sites increases.
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There are a number of strategies for reducing the number
of distinct spurious SJs found in mapped reads. One method in-
volves counting the split reads supporting each distinct junction
and filtering those under a certain threshold [1]. Other methods
utilize the length of split read overhangs across each junction
from the set of supporting split reads [8] or calculate the amount
of evidence supporting their start sites [9]. Studying the genome
around the SJ has also proven effective [10–12]. To reduce the
propagation of invalid junctions into downstream tasks, many
RNA-seq mappers offer the ability to use a set of high-confidence
junctions to guide realignment of the reads.

In practice, the computational demands of collecting a set
of accurate junctions rapidly can be problematic, often leading
to compromised accuracy. Accurate methods require long run
imes, high-memory usage, or are inflexible and difficult to use.
We address these issues with our tool, Portcullis, which is the
only method we are aware of for rapidly and accurately filtering
invalid SJs from binary alignment map (BAM) alignments pro-
duced by any RNA-seq mapper. Over a wide range of scenarios,
we show that Portcullis competes with, or outperforms, the best
methods currently available in terms of accuracy, speed, and
memory efficiency. Portcullis also offers rich junction analysis
and quantification capabilities, as well as a supplementary tool
kit, called Junctools, for performing tasks such as junction file
format conversions and junction set comparisons and for pro-
viding various junction and transcript filtering options.

Results
Junction detection performance

It has been observed that short-read RNA-seq mapping tools
often produce large numbers of false-positive junctions [7]. To
gauge the extent of this problem with a more recent set of pop-
ular mapping tools, we generated several sets of simulated reads
with varying read lengths and depths from three different model
species’ transcriptomes. We then extracted a distinct set of SJs
from split reads produced by the mappers and compared them
to the set of true junctions for each corresponding simulated
dataset. As it is impractical to derive a comprehensive set of false
junctions,1 we use the recall, precision, and F1 (F-measure) [13]
to assess the performance of each mapper (see Supplementary
Section 2 for more information).

Figure 1A shows the performance of STAR v2.6.0a for four
201 bp paired-end read datasets of the Human transcriptome,
each with varying depth. Figure 1B shows the effect of varying
read length, with each dataset having a depth of ∼30 billion base
pairs. The plots show that a longer read length improves both re-
call and precision; however, increased depth, while marginally
improving recall, decreases precision significantly, pulling F1

down with it. This precision decrease is in part attributable to
reads containing sequencing errors triggering misalignments of
split reads, leading to new, invalid junctions being predicted [9].
Supplementary Section 5 shows that the same trends hold true
for several other popular RNA-seq mappers such as TopHat2
v2.1.0 [14], GSNAP v20180530 [15], and HISAT v2.1.0 [16]. In ad-
dition, Fig. 2 highlights that the effect is not limited to Human,
a species with complex splicing behavior, but is also visible in
species displaying significantly less splicing events, such as Ara-
bidopsis and Drosophila .

1 A full set of false junctions would include every combination of start and
stop sites in the genome that are not genuine junctions.

We also observed that while all of these mappers recall a
good fraction of genuine junctions, the mappers are not produc-
ing the same sets of false positives. The Venn diagram in Fig. 3
shows the agreement between junctions found across Tophat2,
GSNAP, STAR, and HISAT2 mappers on our 76 bp simulated Hu-
man dataset. Each mapper retrieves at least 95.2% of true junc-
tions, although there is little agreement for the remaining junc-
tions, indicating that these mappers often make different types
of mistakes. Supplementary Fig. S4 shows the effect of differ-
ent depth and read length, but essentially the same trends hold.
These observations indicate that a high-confidence set of SJs can
be built by requiring a degree of concordance between multiple
mappers, which we demonstrate in Supplementary Fig. S5. As
the expected number of mappers required to agree increases,
there is a corresponding increase in precision at the expense of
recall. We note that in the cases when 2, 3, or 4 mappers are re-
quired to agree, the F1 exceeds that of any of the individual map-
ping tools. However, this approach has several disadvantages.
First, it assumes that the aligners find different false positives.2

Second, a single poorly performing mapper will reduce the per-
formance of the system as a whole. Third, it is not possible to
know a priori how much agreement is required to get optimal re-
sults. Finally, this approach is not computationally efficient as it
requires running multiple tools for a single dataset.

An alternative approach is to analyze the set of mapped split
reads supporting each SJ to produce a set of metrics around how
those reads stack up around the SJ and then apply some cri-
teria to determine if that SJ is likely to be genuine or invalid.
This can involve using rules based on some pre-defined cutoff
values (e.g., discard SJs supported by less than five reads); how-
ever, only modest gains can be achieved this way, as we show
in Supplementary Section 3. Better results are gained through a
more comprehensive analysis, combining multiple metrics, in-
cluding metrics derived from analysis of the genome at splice
site locations, which typically come at the expense of time and
computational resources. Some tools that do this include Fine-
Splice v0.2.2 [12], TrueSight v0.06 [11], MapSplice v2.2.1 [9], and
SOAPsplice v1.10 [10]. These methods vary in their implementa-
tion and intended usage. MapSplice, TrueSight, and SOAPsplice
are stand-alone tools designed to be used as replacements for
RNA-seq mapping tools. They process reads directly and pro-
duce alignments and lists of detected junctions. Finesplice is a
post-alignment junction filtering tool, requiring a TopHat2 BAM
file as input, which produces a list of filtered SJs as its final out-
put.

However, as we will show, all of these tools have specific dis-
advantages, which prompted us to develop our own method,
Portcullis. Portcullis has an architecture that is similar to that
of Finesplice, consuming BAM files as input and producing a set
of filtered SJs as output. However, Portcullis is distinct from Fine-
splice in that it also produces an analysis of all SJs present in the
input BAM and can consume BAMs generated from any RNA-seq
mapper, not just TopHat2.

We undertook an experiment to observe how these meth-
ods perform when varying sequencing depth, read length, and
species. The full results are presented in Supplementary Figs. 6-
8, although we provide a recall/precision scatter plot in Fig. 4
that summarizes many of the same points in a single plot. This
plot shows how the methods compare when run on our 101
bp simulated Human dataset. The difference between the more

2 While this assumption is true for our selection of mappers, it may not
always be true as different mappers (or mapper versions) may have dif-
ferent characteristics.
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Figure 1 Splice junction accuracy of STAR v2.6.0a across variations of our simulated Human dataset. (A) Scatter plot showing the effect of varying dataset size, with all
datasets containing 201 bp reads. The 1.0X depth multiplier represents a dataset of ∼78 million read pairs. (B) Scatter plot showing the effect of varying read length
with all datasets containing ∼30 billion base pairs.
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Figure 2 Splice junction detection performance across mappers for 76 bp simulated paired reads. The Human dataset (A) contains 421,020,756 reads across 19,853 tran-
scripts. The Arabidopsis dataset (B) contains 148,207,902 reads across 19,723 transcripts. The Drosophila dataset (C) contains 202,246,654 reads across 9,376 transcripts.
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Figure 3 A five-way Venn diagram showing levels of agreement between mapping tools and the Human junction truth set with 76 bp simulated reads..

accurate methods and the original RNA-seq mappers is stark,
with precision scores not dropping below 97% compared to pre-
cision lower than 85% in all cases for the mappers. Because Fine-
splice and Portcullis are dependent on the alignments produced
by RNA-seq mapping tools, it is impossible for them to outper-
form their input in terms of recall, so their goal is to discard in-
valid junctions but not genuine ones. Despite a small drop in
recall, Portcullis significantly improves the precision of SJ calls
over all input methods, producing higher F1 scores overall and
outperforming FineSplice on TopHat2 input. In addition, when
coupled with GSNAP or HISAT2, Portcullis produces the highest
overall F1 scores of any method on this dataset. For most meth-
ods, increasing read length improves results, although while
SOAPsplice has a comparable F1 score in this plot, Supplemen-
tary Fig. S6 shows that increasing read length over 101 bp de-
creases SOAPsplice’s accuracy drastically. Furthermore, we can
make additional minor improvements to F1 by running the RNA-
seq mappers in a two-pass configuration, feeding in Portcullis-
predicted junctions in the second pass to be used as a guide dur-
ing the alignment process. The effect of applying this strategy
with HISAT2 is shown in Fig. 4 (upper right corner), and it could
be similarly applied with other mappers. This has the additional
benefit of generating a Sequence Alignment Map (SAM)/BAM file
with more accurate alignments around SJs, which is useful for
downstream analysis, coming at the expense of additional run-
time requirements.

The runtimes and max memory usage associated with meth-
ods that deliver high accuracy in Fig. 4 are shown in Fig. 5, with
results across all datasets shown in Supplementary Figs. S10 and

S11. The results include time taken to align, sort, and index the
input reads where required, in addition to filtering the junctions.
All methods were run with eight threads where possible, and we
would also like to point out that Portcullis’ memory usage can be
lowered further by reducing the number of threads, as shown in
Supplementary Fig. 12.

This runtime analysis immediately highlights issues with
several methods. First, TopHat2 suffers from long runtimes,
which should be considered when running downstream filter-
ing tools. This is especially problematic to FineSplice, which can
only run on TopHat2 alignments. FineSplice also suffers from
high memory usage, which grows quickly with the number of
reads present in the dataset. High memory usage is also an is-
sue with GSNAP, STAR, and TrueSight. Indeed, we terminated
the TrueSight job on our 101 bp Human dataset after a week of
processing. Both SOAPsplice and MapSplice have relatively long
runtimes compared to Portcullis coupled with GSNAP, STAR, or
HISAT2. Portcullis performs well, both in terms of accuracy and
practicality, across varying sequencing depth, read lengths, and
species, particularly when coupled to HISAT2.

Analysis of real data

RNA-seq simulations, while useful for benchmarking methods,
do not give a full description of the complexity and noise inher-
ent in real data. For example, our artificial datasets only sim-
ulated transcripts present in the reference annotations, which
are heavily biased towards coding transcripts [17]. Real data will
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Figure 4 A scatter plot showing recall and precision results of all methods on our 101 bp ∼76 million simulated Human read dataset. Diagonal lines represent actual
F1 score gradients. Arrows show the effect of processing BAM files by downstream junction filtering tools such as Portcullis or FineSplice. The purple TopHat2 entry
shows the effect of TopHat2’s own rule-based filtering on the BAM file.

contain many more non-coding elements and may contain other
biological entities that have not been properly annotated yet.

We predict that Portcullis is more useful on real data than on
simulated data, given that it appears to have a greater effect on
noisier and deeper datasets. However, comparing the accuracy
of methods on real data is more challenging for several reasons.
Firstly, even for model organisms, the reference annotations are
incomplete and RNA-seq experiments will likely contain some
genuine novel junctions, which appear as false positives, mean-
ing precision scores are unreliable. Furthermore, when compar-
ing precision scores between methods, it does not necessarily
follow that higher precision is a better result, as this could be
interpreted as the tool is worse at finding lower confidence junc-
tions. Secondly, a single RNA-seq experiment is unlikely to cover
all junctions found in the reference, meaning that it is impossi-
ble to achieve perfect recall, although typically we can compare
recall scores between methods, as a higher number of correctly
detected reference junctions suggests that the method is gen-
uinely more sensitive.

To get a better feel for the validity of SJs on real data, it is
helpful to take a finer-grained approach. For simulated data, SJs
were considered as pairs, representing both ends of the intron,
and that SJ pair is considered genuine only if both SJs are found
in the reference. Instead of considering just two classes (genuine
and invalid) for this pairing, it is possible to break down each

intron into four distinct classes, each with decreasing likelihood
of representing a genuine SJ [11]:

(1) introns matching annotated known introns (i.e., both splice
sites match the same intron in the reference)

(2) introns with donor and acceptor sites present in annotation
but matching different introns

(3) introns with only one annotated splice site (i.e., only one
splice site found in the reference)

(4) introns with two novel splice sites (i.e., both not found in the
reference)

By classifying junctions this way, the precision of methods
can be compared based on higher counts as the class number in-
creases. To demonstrate this point, we extracted junctions from
our simulated 76 bp Human dataset and compared them against
the real Human reference. The results shown in Supplementary
Fig. S13 indicate the majority of junctions occurring in class 1,
with similar counts across methods. This is expected for simu-
lated data as all correct junctions should only be found in class
1, with false positives seen by high counts in classes 2, 3, and 4.

To assess the performance of Portcullis on real data, we used
the same real datasets that provided error models for our simu-
lated dataset and checked junctions predicted by various meth-
ods against the reference annotation for each species: Human,
Arabidopsis, and Drosophila. The results shown in Fig. 6 indi-
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Figure 5 Runtimes and max memory usage of all methods on our 101 bp ∼76 million simulated Human read dataset using eight threads where appropriate. For

FineSplice and Portcullis, times for alignment, sorting, and indexing are factored into the results. For memory usage, we consider alignment and filtering stages only.

Figure 6 In this plot, we check junctions found via each method against the reference annotation for Human (251 bp reads), Arabidopsis (151 bp reads), and Drosophila
(101 bp reads), respectively. The results are categorized into the following classes: intron match; both splice sites found; one splice site found; and no splice sites found.

SOAPsplice did not finish for the Human dataset, and TrueSight failed to finish successfully on all datasets due to memory demands.

cate that counts in class 1 have little variation between meth-
ods. This implies that the methods that perform well on sim-
ulated data do not discard many genuine junctions incorrectly.
As expected, counts in class 4 have a relatively high variation be-
tween methods across species. The methods identified as being

most imprecise for our simulated data also have higher counts
in this class relative to the more precise methods. This suggests
that much of the difference is likely explained by false posi-
tives. For Portcullis, the large drop between input mappers and
Portcullis results is reassuring and suggests that Portcullis’ pre-
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Figure 7 Junction counts that are supported by one through six samples for wheat RNA-seq data. Solid tint indicates that junctions were found in the reference
annotation; paler tint indicates junctions were not found in the reference. Junctions that occur in all six samples are more likely to be found in the reference. Average

expression per junction per sample is shown by the lines and indicates that junctions found in all samples have high expression.

dictions in this class are likely to contain a higher proportion of
genuine novel junctions than the input. These plots again high-
light SOAPsplice’s difficulty processing longer reads. As for the
Human dataset (251 bp), SOAPsplice failed completely; with Ara-
bidopsis (151 bp), we can see a very high number of class 4 junc-
tions. This is in contrast to the Drosophila dataset, which con-
tains 101 bp reads where SOAPsplice appears to perform well
and is in line with counts from Portcullis and MapSplice. We
could not get TrueSight to run on any of these real datasets due
to excessive memory runtime requirements.

Use case for non-model organisms

To demonstrate the use of Portcullis in a challenging real-life
scenario, we created HISAT2 alignments for six Chinese spring
wheat RNA-seq samples [18], producing 1,515,705,216 align-
ments of 251 bp reads across all datasets. We aligned HISAT2
with and without HISAT2’s Downstream Transcript Assembly
(DTA) mode, which is intended to reduce the number of false-
positive SJs in the aligned data. We then ran Portcullis on each
set of aligned reads. Using Junctools (see Supplementary Sec-
tion 6), we took the union of junctions across each set of sam-
ples, marking up the number of samples each junction occurs
in, along with whether the junction can be found in the wheat
reference annotation. Figure 7 shows that junctions found in all
samples are also likely to be found in the reference annotation
and have a high expression. Conversely, junctions detected in a
single sample have a lower expression on average, meaning they
are less likely to be incorporated into the reference annotation
and are more likely to be false positives.

The overall number of junctions for Portcullis in both modes
is similar: 1,091,198 for HISAT2 and 1,047,335 for HISAT2(DTA),
whereas the difference in the number of junctions found in
the pre-filtered alignments was much larger: 1,848,057 and

1,529,999, respectively. Furthermore, the number of annotated
junctions found in a single sample are consistent across all
datasets, suggesting that Portcullis is not falsely discarding
many junctions that are likely to be genuine.

To demonstrate Portcullis’ ability to handle large datasets, we
merged the BAMs from all six samples, producing a single BAM
containing alignments of ∼755 million 251 bp reads. Portcullis
processed these in 400 minutes, using four threads and requiring
a peak of 59 GB of RAM on a machine with 4 AMD Opteron(tm)
6134 processors. The full set of HISAT2 alignments consisted of
1,845,781 junctions, with 1,092,390 junctions remaining after fil-
tering. This figure is very close to the result gained by filtering
each sample individually and then taking the union.

Discussion

Here, we confirmed that recent versions of several popular RNA-
seq alignment tools still suffer from high numbers of false-
positive SJs in their output. Achieving the best results requires a
more thorough and computationally intensive analysis of align-
ments around splice sites and interrogation of the genome at
these loci. However, most other tools that achieve high accu-
racy are either impractical or unreliable across different datasets
and species. Portcullis is the only junction prediction tool that
achieves these results while scaling to the requirements of mod-
ern NGS workflows. We demonstrated that Portcullis is capable
of analyzing a wheat dataset comprising ∼755 million 251 bp
reads merged from six separate samples on a fragmented ver-
sion of the genome containing 735,943 contigs. Portcullis ran to
completion in 400 minutes using four threads with less than 60
GB of RAM, making it feasible to process extremely large, com-
plex datasets with readily available hardware.

Apart from high accuracy and efficient runtime performance,
we see that Portcullis also has significant advantages over other
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Table 1. Properties of core simulated datasets for each species

Properties of simulated dataset Arabidopsis Drosophila Human

Reference annotation TAIR10 DMEL78 HG38
Original accession PRJEB7093 SRA009364 PRJEB4208
Millions of reads (in original) 93 47 97
Mean quality (in original) 37 37 39
Depth fractions 10%, 50%,100% 10%, 50%,100% 10%, 50%,100%, 200%
Millions of paired reads 9,47,93 5,24,47 7,38,76,152
Read lengths @ 100% depth (bp) 76,101 76 76,101,151,201
Number of splice junctions @ max readlen
and 100% depth

90,190 29,275 139,403

% of SJ’s in ref 71 51 42
Number of transcripts @ max readlen and
100% depth

19723 9376 19853

% of transcripts in ref 47 32 12

Figure 8 A high-level view of the Portcullis pipeline. Input to Portcullis is a genome in FastA format and one or more BAM files created by an upstream RNA-seq mapping
tool. The first stage ensures the alignments are correctly merged, sorted, and indexed, then all junctions found in the input are analyzed and output to disk. Next, the
full set of junctions is filtered to remove likely false positives and also output to disk. The user can choose to either run the full pipeline in one go or at each stage

separately.

Figure 9 Calculating the hamming distinct of both the right-most region of the left anchor to the right-most region of the intron and the left-most region of the intron
to the left-most region of the right anchor can give an indication of whether the splice site may have been incorrectly triggered by a repeat region in the genome.

Figure 10 An exploded view of the Portcullis filtering stage. Input is a set of junctions to filter in tab format. This pipeline first creates a model from a high confidence
set of likely genuine and likely false junctions. The model is then applied to the full set of junctions and output in tab and bed format.

methods in its flexibility and ease of use. Especially notable
is the fact that it completely decouples junction filtering from
RNA-seq mapping, enabling the user to select the mapper of
their choice, should more attractive mapping options be avail-
able in the future.

In addition, Portcullis’ supplementary toolkit, Junctools, en-
sures that Portcullis’ output is easy to incorporate into work-
flows that use other tools, reducing the amount of custom
scripting required by a bioinformatician. Junctools also makes
it straightforward to integrate Portcullis into a two-pass align-
ment approach, whereby Portcullis junctions are converted to a
format suitable for a particular aligner via Junctools, then used
as a guide to produce more accurate alignments. In particular,
we see that coupling HISAT2 with Portcullis in two-pass mode
delivers high accuracy within a reasonable time frame and ac-
ceptable memory usage.

Accurate SJ prediction allows us to get richer and more
useful information from downstream tasks such as alternative
splicing analysis. Each missed SJ reduces the richness of the
transcript model, and each false positive can lead to incorrect
donors, acceptors, and cassettes. This is particularly important
in non-model organisms with incomplete annotations. In ad-
dition, transcript assemblies could be improved either by filter-
ing transcripts containing unsupported SJs (as implemented in
Mikado [19]) or by producing more accurate input reads via the
two-pass approach mentioned previously. Portcullis junctions
can be used to provide additional hints to gene prediction tools
to help select between sets of alternative isoforms. This way we
envisage Portcullis assisting the production of both richer and
more precise genome annotations for Eukaryotic organisms.



GigaScience, 2018, Vol. 00, No. 0 9

Materials and Methods
Simulation of RNA-seq data

To compare performance between junction filtering tools, we
created several simulated RNA-seq datasets based on three
known model organisms (Human, Drosophila, and Arabidopsis),
with error and expression profiles derived from real datasets us-
ing SPANKIsim [20]. This produces reads derived from a known
region in the reference transcriptome, along with the perfect
alignments of those reads. From the alignments it is possible
to unambiguously derive the true set of junctions for the given
dataset, providing a platform from which RNA-seq mappers and
SJ filtering tools can be benchmarked. The complete pipeline
used to generate the simulated reads is described in Supplemen-
tary Section 1.1. Basic statistics for the datasets are described in
Table 1, reference annotations were obtained from Ensembl [28]
and The Arabidopsis Information Resource (TAIR) [29].

Portcullis

The pipeline for Portcullis, shown in Fig. 8, describes the flow of
data from sequenced RNA reads in FastQ format through to a set
of filtered junctions provided by Portcullis. RNA-seq files must
first be mapped with a suitable RNA-seq mapper and converted
into BAM format. Portcullis takes in one or more BAM files and
a genome in FastA format as input. The first stage in Portcullis
ensures all input data are prepared in a way suitable for down-
stream processing. This includes if multiple BAM files are pro-
vided merging them into a single file, then ensuring that the
BAM is coordinate sorted, and that both the BAM and genome file
are properly indexed. All distinct junctions are extracted from
the BAM file and analyzed, which are then filtered, keeping only
the high-quality junctions. The output is both the full set and
the filtered set of junctions in both a descriptive tabular format
and an exon-based bed format.

Junction analysis
Portcullis identifies all split reads in SAM/BAM format through
reference skipping cigar operations (”N”). All split reads are then
collapsed based on the locations of reference skipping regions
into a distinct set of potential junctions. Portcullis then makes
observations about each potential junction based on the RNA-
seq data and genomic features at those loci. A definitive list
of features is described with the software’s documentation, al-
though we describe a few of the more important ones here.

First, we provide a number of ways to quantify each SJ. This
includes the raw count of the number of split reads supporting
the junction, the count of split reads containing only a single
intron (uniquely split reads), as well as how many are uniquely
mapped (uniquely mapped split reads). In addition, we record
the number of split reads deemed to be ”reliable,” which we de-
fine a uniquely mapping and properly paired. Furthermore, we
find that that junctions possessing high ratios of reliable split
reads to the total number of raw split reads is a useful indicator
of junction quality.

Assuming random sampling of sequenced reads, it is ex-
pected that the start sites of split reads will be uniformly dis-
tributed across the upstream anchor of the junction. This no-
tion is captured in the Shannon entropy score [9]. Junctions with
a high number of split reads can therefore have a low entropy
score if those reads start at a small number of sites and are there-
fore less likely to be genuine. Similarly, junctions with a mod-
erate number of supporting reads can have high entropy (and
therefore are more likely to be genuine) if many of them have

distinct start sites. This concept is extended further to show the
deviation from expected to observed read counts at each anchor
position [12], providing a more detailed picture across the split
read overhangs up- and downstream of the intron. Typically, we
expect a gradual reduction of coverage across the length of the
junction (up to half the read length). Where we see sharp devia-
tions from this, the chance of an invalid junction increases.

Another frequently used approach is to calculate the max-
imal split read overhang, a method used in both TopHat2 and
STAR for filtering junctions. The best score possible for a given
junction is the maximum split read length divided by 2. A more
sophisticated version of this concept includes modifying this
score by penalizing alignments containing mismatches. This ap-
proach is called the maximum of the minimal match on either
side of the SJ (MaxMMES) [8].

In terms of genomic information, we consider the composi-
tion of the two-base donor and acceptor sites, which in most, but
not all, cases conform to the same canonical, or semi-canonical,
pattern [21]. We also look at hamming distances between the left
anchor and right side of the intron, as well as the left intron and
right anchor. This provides an indication of whether the splice
sites are embedded in a repeat region [20] and therefore unlikely
to be genuine. This idea is illustrated in Fig. 9.

In Supplementary Section 3 we show that it is possible to
collect precise subsets of genuine and invalid SJs across differ-
ent species and datasets through aggressive rule-based filtering.
These subsets can be leveraged to extract information that al-
lows additional features to be calculated for all junctions. One
such feature is an intron size score, which must adapt to sig-
nificant variation in average length between species [22]. This
metric is based on the assumption that SJs with excessively long
introns (adjusted for the given species) are likely to be incorrect.
Junctions with an intron size less than the intron size at the 95th
percentile in the positive set have a score of 0 and those above
are assigned a positive score [11]. Another feature is a score used
to represent the strength of the splicing signal based on prob-
abilities of nucleotide frequencies at positions in the genome
around the donor and acceptor sites [11]; this is an idea that has
previously been exploited in ab initio gene prediction tools [23].

While supplying additional features can improve predictive
performance, sometimes if not enough examples are provided,
it increases the chance a classifier can overfit to the training set
[24]. Additional redundant features will also slow down training
times. We attempted to engineer our features to balance accu-
racy (both training set accuracy as well as validation set accu-
racy) and runtime by discarding features determined to not be
useful for classification purposes. We achieved this by running
our classifier through permutations of features and removing
those that had no, or a negative, change in accuracy across all
our simulated datasets and repeated this process until no fur-
ther gains we apparent. The features that we utilize in our model
are:

� Reliable reads
� Reliable to raw read ratio
� MaxMMES
� Mean mismatches per read
� Intron score
� Min hamming score
� Position weight matrix
� Splicing signal
� Deviation of expected to observed read counts at anchor po-

sitions (up to 20)



10 Efficient and accurate detection of splice junctions from RNA-seq with Portcullis

Filtering junctions
The Portcullis filtering pipeline, shown in Fig. 10, as previously
discussed, first creates an initial positive and negative training
based on rule-based filtering. These sets allow us to train a new
customized model for each dataset passed through Portcullis, al-
lowing Portcullis to adapt to read length, read quality, sequenc-
ing depth, species, and mapping tool. Prior to training, the initial
sets are then balanced using SMOTE [25], a synthetic oversam-
pling technique, in order to partially compensate for biases that
can be introduced to the model that favor the larger set. The bal-
anced sets are used to train a random forest [26] using 100 trees,
which we identified as providing a good balance between accu-
racy and runtime; see Supplementary Section 4 for justification.
Finally, we apply the trained model to the full set of junctions in
order to assign a probability score. Portcullis’ default behavior is
for values >= 0.5 to be defined as genuine junctions and < 0.5
as invalid, although this threshold can be adjusted by the user
to prioritize recall or precision.

Availability of source code and requirements
� Project name: Portcullis
� Project home page: https://github.com/TGAC/portcullis
� Online documentation: http://portcullis.readthedocs.io/en/l

atest/
� Version at time of publication: V1.1.0
� Operating system(s): Unix based
� Programming language: C++11, Python V3.5+
� License: GNU GPL V3
� Supported package managers: Brew, Bioconda
� Research Resource Identification Initiative ID (RRID):

SCR 016442

Availability of supporting data

The datasets supporting the results of this article are avail-
able from the European Nucleotide Archive. For Arabidopsis we
combined all samples from PRJEB7093 (http://www.ebi.ac.uk/en
a/data/view/PRJEB7093). For Drosophila we combined all sam-
ples from SRA009364 (http://www.ebi.ac.uk/ena/data/view/SR
A009364). For Homo Sapiens we combined all samples from PR-
JEB4208 (http://www.ebi.ac.uk/ena/data/view/PRJEB4208). Snap-
shots of the code and other supporting data are available in
the GigaScience repository, GigaDB [27]. Additional results are
available in the Supplementary Materials. We supply packages
containing junctions present in the simulated datasets (derived
from the previously mentioned datasets), along with the junc-
tions extracted directly from BAM files and after filtering. These
are available from figshare (https://figshare.com/projects/Portc
ullis/30779).
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Downstream Transcript Assembly; MaxMMES: maximum of the
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