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Abstract: Accurate information on cropland extent is critical for scientific research and resource
management. Several cropland products from remotely sensed datasets are available. Nevertheless,
significant inconsistency exists among these products and the cropland areas estimated from these
products differ considerably from statistics. In this study, we propose a hierarchical optimization
synergy approach (HOSA) to develop a hybrid cropland map of China, circa 2010, by fusing five
existing cropland products, i.e., GlobeLand30, Climate Change Initiative Land Cover (CCI-LC),
GlobCover 2009, MODIS Collection 5 (MODIS C5), and MODIS Cropland, and sub-national statistics
of cropland area. HOSA simplifies the widely used method of score assignment into two steps,
including determination of optimal agreement level and identification of the best product combination.
The accuracy assessment indicates that the synergy map has higher accuracy of spatial locations
and better consistency with statistics than the five existing datasets individually. This suggests that
the synergy approach can improve the accuracy of cropland mapping and enhance consistency
with statistics.
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1. Introduction

Knowledge of the extent and dynamics of cropland is important for food security and
environmental sustainability. Estimates of the global population in 2050 exceed 9 billion, with the
resulting growing demand for food [1,2]. Changes in dietary patterns with rising income will increase
demands for animal protein, vegetable oils, fruits, and vegetables, which implies that the cropland
needed to support average human diets will increase [3]. These changes will undoubtedly put
greater pressure on already overstretched cropland. Moreover, farming activities have enormous
environmental consequences because they alter a large proportion of structure and function of
ecosystems, which influences the ecosystem interaction with the surrounding atmosphere, aquatic
systems and soils [4,5]. Thus, one of the greatest human challenges is to ensure that agricultural
land systems can supply our society with sufficient, safe, and nutritious foods while reducing their
negative impacts on the environment. Meeting these goals requires accurate information on cropland
distribution and its spatiotemporal changes to support agricultural monitoring, food production
estimation, food security assessment, and geophysical models [6,7].

Satellite images provide an efficient data source from which to derive cropland extent over
large areas. In recent decades, several global and continental cropland datasets have been derived
from remotely sensed data and made freely available to the public. Early cropland products
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generally employed coarse resolution images (pixels of 1 km or similar), such as International
Geosphere-Biosphere Programme Data and Information Systems Cover (IGBP-DISCover) product [8],
University of Maryland (UMD) product [9], and Global Land Cover 2000 (GLC2000) dataset [10];
however low accuracy and image quality limited their application at national or regional levels.
Later, the spatial resolution of cropland datasets was improved to 500 m and then 300 m, such as
MODIS Collection 5 (MODIS C5) Land Cover Products, and GlobCover 2009 [11,12]. Today, land cover
mapping with high-resolution images has gained increasing attention in the scientific community
because of the free availability of the Landsat archive, which has allowed production of 30 m resolution
land cover datasets such as GlobeLand30 and Finer Resolution Observation and Monitoring-Global
Land Cover (FROM-GLC) [13,14]. However, there is considerable inconsistency among these cropland
mapping products, especially in heterogeneous landscape areas such as transition zones, as they
have been produced using data from different sensors, using different classification features and
classifiers [15,16]. Some studies have suggested that discrepancies also occur as a result of different
classification schemes and cropland definitions [17–19]. Furthermore, the cropland areas estimated by
these products differ from the official statistics, because mixed pixels are inevitable in remote sensing
images, especially in coarse images [20,21]. Although some maps, such as GlobCover 2009 and Climate
Change Initiative Land Cover (CCI-LC), contain mosaic cropland classes representing a combination of
multiple classes, it is quite difficult to estimate cropland areas from maps with high accuracy because
they do not provide precise percentages of the cropland [18].

The synergy approach, by fusing available datasets and statistics, provides an alternative to
solve the above issues [22]. Different cropland products can be used to generate a hybrid percentage
map of cropland, often with improved accuracy. Existing algorithms for map synergy can be broadly
categorized into regression methods and agreement scoring methods. In the former, geographically
weighted regression (GWR) is a spatial analytical method with regression parameters to vary over
space [23]. It has been widely used to build hybrid land cover and forest maps, at global scale, by using
crowdsourced data from Geo-wiki [24,25]. However, this process generally requires large training
sample sets and tends to be unstable when sampling density is low [26,27]. The agreement scoring
method, with score assignment based on levels of agreement in the input data, is more widely used
because of its simplicity and superior operability. Using this method, Jung et al., developed a global
land cover map of 1 km resolution for carbon cycle modeling [28], and Ramankutty et al., developed
global cropland and pasture extent maps [29]. However, these studies ignored the quality differences
between the input datasets. To address this problem, Fritz et al., used expert knowledge to rank
the input datasets and assign different weights accordingly [30,31]. It is well recognized that score
assignment is the key component of these methods. For a given number n of input data, there are 2n

combinations in the scoring table. Setting up the scoring table can be strenuous and time-consuming
when input datasets are numerous.

This study improves and simplifies the above method by developing a new hierarchical
optimization synergy approach (HOSA) based on agreement of input cropland products. The approach
includes determination of the optimal agreement level and identification of the best combination of
datasets. HOSA was tested by fusing five cropland datasets (GlobeLand30, CCI-LC, GlobCover 2009,
MODIS C5, and MODIS Cropland) and statistics of cropland area to create a synergic cropland map of
China, circa 2010.

2. Data and Method

2.1. Data Sources

The main inputs to this study were remote sensing-derived global cropland datasets, cropland
sampling points, and cropland area statistics. Five cropland datasets, i.e., GlobeLand30, CCI-LC,
GlobCover 2009, MODIS C5 and MODIS Cropland, developed through different national or
international initiatives, were selected to create a synergic cropland map of China for the year of circa
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2010. There are some significant differences between them in terms of spatial resolution, data sources,
time coverage, methods and accuracies (Tables 1 and 2). GlobeLand30 was produced using the 30 m
spatial resolution images from Landsat and China HJ-1, and generated by a pixel-object-knowledge
(POK)-based classification approach [13]. CCI-LC was generated by the Land Cover project of the
Climate Change Initiative led by the European Space Agency (ESA). The MERIS (Medium Resolution
Imaging Spectrometer Instrument) time series data from 2008 to 2012 were used to develop the CCI-LC
maps at 300 m spatial resolution. Built on the unsupervised classification chain, CCI-LC added
machine learning classification to improve the accuracy [32]. GlobCover 2009 was implemented by
the ESA and the Université Catholique de Louvain (UCL), and was primarily based on unsupervised
and supervised clustering of MERIS Fine Resolution (FR) time series data at a spatial resolution of
300 m [12]. MODIS C5 was produced by Boston University with 500 m spatial resolution. A decision
tree was implemented using the spectral and temporal features of MODIS bands 1–7 and the enhanced
vegetation index, with Bayesian rules used to adjust the class-conditional probabilities [11]. The MODIS
Cropland extent map was based on 250 m MODIS data from 2000 to 2008. Using the multiyear MODIS
metrics, a decision tree was applied to calculate the probability of cropland. Then, thresholds were
set to determine the cropland extent according to the cropland area statistics [33]. Although there are
slight differences in temporal coverage among these cropland maps (Table 1), they has a minor impact
on the final fusing map in 2010 as the inconsistency among the input datasets is farther larger than the
time difference.

Table 1. Characteristics of the five cropland datasets.

Dataset Spatial Resolution Sensor Epoch Classification Method

GlobeLand30 30 m Landsat TM/HJ-1 2010 POK

CCI-LC 300 m MERIS 2008–2012 Unsupervised/
supervised clustering

GlobCover 2009 300 m MERIS 2009 Unsupervised/
supervised clustering

MODIS C5 500 m MODIS 2010 Decision tree classification

MODIS Cropland 250 m MODIS 2000–2008 Decision tree classification

Table 2. Cropland definition and percentage determination.

Dataset Definition of Cropland Cropland Accuracy
Released by Producer

Cropland
Percentage

GlobeLand30 Cultivated land 80.33% 100%

CCI-LC

Cropland, rainfed 85% 100%
Herbaceous cover __ 80%

Tree or shrub cover __ 80%
Cropland, irrigated or post-flooding 88% 100%

Mosaic cropland (>50%)/natural vegetation (tree,
shrub, herbaceous cover) (<50%) 68% 60%

Mosaic natural vegetation (tree, shrub, herbaceous
cover) (>50%)/cropland (<50%) 63% 40%

GlobCover 2009

Post-flooding or irrigated croplands (or aquatic) 88% 100%
Rainfed croplands 81% 100%

Mosaic cropland (50–70%)/vegetation (20–50%) 64% 60%
Mosaic vegetation (50–70%)/cropland (20–50%) 46% 40%

MODIS C5
Cropland 83.3% 100%

Cropland/natural vegetation mosaics 60.5% 60%

MODIS Cropland Cropland __ 100%
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Cropland sampling points were used to assess the accuracy of existing cropland datasets and for
validation of the synergic cropland map, which were provided by Tsinghua University [14]. In the
sampling frame of Tsinghua University, entire globe was divided by hexagonal scheme using DGGRID
software, and then 10 samples were assigned randomly in each hexagon. The land cover types of
sampling points were identified by visual interpretation via high resolution images. Although this
sampling method can ensure the uniformity and objectivity of the distribution of the samples, the
total number of cropland samples in China was only 443, which is insufficient for evaluation. Thus,
a stratified random sampling method based on agreement of the five cropland mapping products was
used to collect more samples, with land cover types determined by visual interpretation of Google
Earth images. The images in 2010 or around 2010 were generally used for sample selection. When
the images around 2010 were not available, time slider of Google Earth was moved to search for the
images before 2010 and after 2010. These images were compared to determine the land cover types of
the samples. If the sample remains unchange before and after 2010, it was considered to be a sampling
point, otherwise it was removed. The final numbers of cropland and noncropland samples were 2800
and 2851, respectively. Approximately half of the total sampling points were used for training to rank
the five cropland maps, and the rest were used for validation to assess the accuracy of the new hybrid
cropland map (Figure 1). Statistics of cropland area at provincial level in the base year of 2009 were
acquired from the Second National Land Survey. The cropland definition of statistics is similar to that
used by the Food and Agriculture Organization (FAO) of the United Nations. These statistics were
estimated using cropland polygons derived by visual interpretation of aerial photographs with ground
survey assistance, and the areas exclude the cropland ridge.Sensors 2017, 17, 1613 4 of 16 
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Figure 1. Training and validation samples.

2.2. Data Processing

Data preparation included transformation of coordinates, harmonization of cropland definitions,
and standardization of the spatial resolution. First, all five cropland datasets were reprojected
to geographic latitude/longitude coordinate system, with WGS84 datum, using nearest-neighbor
resampling. Because these datasets vary in their classification schemes (Table 2), it was necessary to
harmonize the cropland definition prior for data fusion.
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The FAO definition, which includes arable land and permanent crops, was used as the standard.
Pure cropland classes, generally with higher accuracies, were assigned higher percentage weights,
while mosaic cropland classes with lower accuracies, were assigned lower weights followed the
definition of the corresponding classification scheme. For instance, GlobCover 2009 contains four
cropland classes: two pure and two mixed. The two pure cropland classes of “post-flooding or irrigated
croplands” and “rained croplands” were deemed 100% cropland. For the mixed classes “mosaic
cropland (50–70%)/vegetation (20–50%)” and “mosaic vegetation (50–70%)/cropland (20–50%)”, the
percentages of cropland were assigned in accordance with the stated proportions. With these rules,
the land cover products were converted to cropland maps at their native spatial resolution. After
harmonization of cropland definitions, all these datasets were standardized to the spatial resolution of
0.41667◦ with average cropland percentage, which is nearly equal 500 m.

2.3. Methodology

The overall principle of HOSA is that a pixel with greater agreement among existing cropland
datasets is more likely to truly be a cropland pixel. There are two steps in HOSA to generate the
synergy cropland map. The first step is to determine the optimal agreement level. The second step is
to identify the best combination of datasets. To evaluate the performance of this method, the synergy
cropland map is compared with the input cropland datasets using the accuracies of spatial location
and cropland area.

(1) Determination of the optimal agreement level. Agreement is an important criterion for
combining different land cover maps to create an improved dataset [31]. Because greater agreement
between cropland maps indicates greater likelihood of true cropland, the optimal agreement level is
determined by ranking cropland areas from high to low agreement and then allocating the highest
ranked pixels as cropland until the statistical total area is reached. Figure 2 shows the flowchart for
determining the optimal agreement level using the five existing products. First, overlay analysis of the
five input datasets produces an agreement map and an average percentage map. The agreement map,
with each pixel value ranging from 0 to 5, indicates the number of cropland products that label the
pixel as cropland (Figure 2a). Then, in each pixel, the percentage of cropland is averaged to obtain
the average percentage map (Figure 2b). For geographic latitude/longitude coordinate system, the
area of each pixel becomes smaller from equator to the poles on the sphere. Therefore, the equal-area
projection is used to calculate projected area for each pixel (Figure 2c). Second, the cropland area is
summarized for the pixels ranking from high to low agreement level and compared with the statistics.
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As shown in Figure 2d, the overall cropland area is aggregated by adding together the highest
agreement pixel areas multiplied by the cropland percentage. If the area so aggregated is less than the
statistical, cropland area of lower agreement is added (Figure 2e) until the area is equal to, or slightly
greater than, the statistical area. In this way, the optimal agreement level is determined.

(2) Identification of the best product combination. The optimal agreement level indicates the
number of cropland products involved in mapping, but does not indicate which products were used
in the synergy. The product combination is identified by establishment of a score table in which
products are ranked by accuracy. Using the training samples of Figure 1, the accuracies of the five
products were assessed using an error matrix. The input products were ranked according to their
overall accuracies. The product with the highest accuracy assessment was designated as product #1,
followed by products #2, #3, #4, and #5. When the optimal agreement level is 3, there are 10 possible
combinations (Table 3). A combination using higher-ranked products has a higher score. The cropland
statistics are then used to identify the appropriate product combinations. First, the pixels with the
highest score are selected, and their cropland area is calculated by the average cropland percentage
multiplied by the corresponding pixel area. Pixels with the next highest score are then selected and
added to the previous pixels. The new total area is then calculated. This step is repeated until the
mapped cropland area matches the statistical area as closely as possible. The synergy cropland map is
then created using the determined product combinations.

(3) Assessment of the synergy cropland map. The accuracies of the five input datasets and
synergy map were evaluated and compared based on the validation samples (Figure 1) using error
matrix [34,35]. One of the purposes of the synergy approach is to solve the inconsistency between
cropland map and statistics. Therefore, the cropland areas of synergy map and the five cropland
datasets were calculated in each province of China, and compared with statistics using the following
quality indicators: correlation coefficient (R, Equation (1)), root mean square error (RMSE, Equation (2)),
absolute difference (AD, Equation (3)), and average absolute relative difference (AARD, Equation (4)):

Table 3. Score table of product combinations when optimal agreement level is 3.

Score #1 #2 #3 #4 #5

10 1 1 1 0 0
9 1 1 0 1 0
8 1 0 1 1 0
7 0 1 1 1 0
6 1 1 0 0 1
5 1 0 1 0 1
4 0 1 1 0 1
3 1 0 0 1 1
2 0 1 0 1 1
1 0 0 1 1 1

R =

n
∑

i=1
(ai − a)(si − s)√

n
∑

i=1
(ai − a)2 ·

n
∑

i=1
(si − s)2

(1)

RMSE =

√√√√√ n
∑

i=1
(ai − si)

n
(2)

AD =
1
n

n

∑
i=1

(ai − si) (3)
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AARD =
1
n

n

∑
i=1
|(ai − si)/si| (4)

where ai is the cropland area of province i estimated by cropland dataset or synergy map; si is the
statistical cropland area as the reference; a and s are the means of the estimated cropland areas and
statistical cropland areas, respectively; and n is the number of provinces.

3. Results and Analysis

3.1. Agreement Analysis and Accuracy Assessment of the Five Cropland Datasets

Figure 3 shows the areas of agreement and disagreement of the five cropland datasets. The values
1–5 stand for the agreements for pixels. A higher value indicates higher agreement, i.e., a value of
5 reflects complete agreement between the five datasets; a value of 4 indicates that four datasets
classify the pixel as cropland. In order to simplify analyses, the study area was divided into six regions
according to the neighborhood provinces, i.e., the northeast, north, central, south, northwest, and
southwest parts of China (Figure 3). High agreement is shown in the large homogeneous regions, such
as the plains in northeast and north China, which are the major grain-producing areas. The spatial
agreement becomes lower in moving from these major grain-producing regions to the farming-pastoral
areas, and is lowest in the pastoral areas. The agreement index, the mean of the agreement values
in each region, was used to determine the spatial agreement quantitatively (Figure 4). North China
have the highest agreement index (3.87), followed by central and northeast China. As the major
grain-producing regions, the cropland areas are intensively used and continuously distributed because
of the homogeneous landscape. By comparison, the northwest has the lowest agreement index. Because
this region is typified by farming-pastoral areas (such as Shaanxi and Ningxia provinces) and pastoral
areas (such as Tibet and Xinjiang provinces), there is a wide mosaic of cropland and pasture, making
classification difficult. Because the classification systems of CCI-LC and GlobCover 2009 include
mosaic classes of cropland, low spatial agreements in the northwest of China are obvious.
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The accuracies of the input datasets are crucial for building the score table. Figure 5 presents
their overall accuracies assessed using an error matrix based on training samples in each region.
In northeast, central, and southwest China, GlobeLand30 achieves the highest overall accuracies
(80.50%, 88.47%, and 69.23%, respectively). In south and northwest China, MODIS C5 produces
the highest accuracies (68.00% and 75.09%), and GlobCover 2009 achieves the best performance in
north China with overall accuracy of 79.52%. Among the five datasets, MODIS Cropland has lower
accuracies in most regions. Using the overall accuracies, the five input products were ranked in each
province to build the corresponding score table.
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3.2. Cropland Map Developed by HOSA

The synergy processing was executed with each province as the operating unit. The average
cropland percentage of the five input datasets was calculated. In Figure 6, blue areas indicate higher
percentage and green lower percentage. In the homogeneous areas, such as plains and basins, the
percentage is high, while heterogeneous areas have low average percentages, especially in the hills of
south China and plateaus of the southeast and northeast regions. For each province, cropland area was
summarized from high to low agreement level, and compared with the statistical area to determine the
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optimal agreement level. Figure 7 shows the optimal agreement level of each province. Overall, from
eastern China to the west, the optimal agreement level gradually decreases. Specifically, the major
grain-producing area of Shandong province has the highest agreement level of 5, which indicates than
the sum cropland area of agreement 5 (Figure 3) can stratify the statistics. The optimal agreement level
of 4 is seen in the provinces along the eastern coast and in the plains of central and northern China,
such as Henan, Hubei, and Jiangsu. In some western provinces, the optimal agreement levels decrease
to 3. Tibet, Yunnan, Ningxia, and Fujian provinces have optimal agreement levels of 2. Because of
complicated topography and fragmented landscapes, mixed pixels are quite common in these regions,
resulting in lower agreement between datasets. By comparison, the agreement level of Taiwan is 1, the
lowest. The statistics report the cropland area of Taiwan as 1.2 million ha, and the total area of pixels
labeled as cropland of the five input datasets can satisfy the statistics.

The overall accuracy of each cropland dataset was calculated for each province, and the cropland
datasets were ranked using their overall accuracies. Next, a score table of product combination was
established in each province, and the optimal combination of input datasets was determined using
the statistical data for calibration. From the synergy results shown in Figure 8a, it is evident that high
percentages of cropland are mainly located in the plains and basins (e.g., Weihe Plain, Huang-Huai-Hai
Plain, Northeast Plain, Yangtze River Basin, and Sichuan Basin), while low percentages are found in
plateaus and hills (e.g., Loess Plateau, Yunnan-Guizhou Plateau, Tibet Plateau, and Southeast Hills),
which accords with the real situation. For each pixel of the cropland percentage map, a confidence level
was defined according to the agreement value of the five input datasets. Because a high agreement
value generally means high interpretation quality, the values from 1 to 5 were defined as lowest, lower,
medium, higher and highest confidence, respectively, and the cropland confidence map can represent
the quality of synergy result in detail (Figure 8b).
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3.3. Accuracy Assessment

The accuracy of the synergy map was assessed by using an error matrix with the validation
samples (Figure 1). The numbers of cropland and noncropland samples were 1422 and 1402,
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respectively. The validation results are shown in Table 4 with overall accuracy of 78.65% and Kappa
coefficient of 0.57. The commission errors of cropland and noncropland are 21.87% and 20.83%,
respectively; the omission errors of cropland and noncropland are 20.81% and 21.89%, respectively.

Table 4. Validation results of the synergy map.

Validation Samples

Cropland Noncropland Sum Commission Error

Synergy map

Cropland 1111 311 1422 21.87%
Noncropland 292 1110 1402 20.83%

Sum 1403 1421 2824
Omission error 20.81% 21.89%

Overall accuracy = 78.65%, Kappa coefficient = 0.57

The accuracy of synergy map was further compared with the original five cropland datasets. Error
matrix was also used to assess the accuracies of the five cropland maps using the same test samples of
synergy map. The overall accuracies of the input datasets and synergy result in the different regions
are shown in Figure 9. The overall accuracy of the synergy map is higher than the input datasets.
GlobeLand30 among the five cropland datasets has the highest overall accuracy (76.27%), followed by
MODIS C5 (76.22%) and CCI-LC (74.22%). The accuracies of GlobCover 2009 and MODIS Cropland
are relatively lower which are 70.50% and 70.96%, respectively. This conclusion agrees well with that
by Yang et al., [36]. At the regional level, except for central China and north China, the synergy map
has the highest overall accuracy in most regions. This implies that the synergy approach can take
advantage of multiple datasets to establish a more accurate hybrid map.
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3.4. Comparison with Statistics

The cropland areas of the input datasets and the synergic map were calculated and compared
using quality indicators including R, RMSE, AD, and AARD. Figure 10 shows the relationships between
cropland areas from statistics and estimated using the cropland datasets by province. In comparison
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with the five cropland datasets, we can see that the synergy map has the highest consistency with
statistics, with a correlation coefficient of 0.98 and the lowest RMSE of 388.82. Among the input
datasets, GlobeLand30 achieved a higher correlation coefficient (0.96) and lower RMSE (2040.32) than
the other four datasets, which may be the result of its higher spatial resolution. The data points of
CCI-LC (Figure 10b) deviate markedly from the 1:1 line and have the lowest correlation coefficient
(0.02) and highest RMSE (12164.72), although its overall accuracy is higher (Figure 9). This may be
caused by the definition of cropland including some mosaic types (Table 2).
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The AD values describe the absolute differences of cropland area between cropland maps and
statistics, and AARD values reflect the relative differences compared with statistics. As shown in
Table 5, synergy map achieved the lowest AD and AARD values. The positive values of AD indicate
that most of the datasets overestimated the cropland area, except MODIS Cropland, because of the
mixed pixels in classification images and mosaic cropland definition [19]. Based on the analyses, it is
clear that the synergy result has a better consistency with statistics. Therefore, the synergy approach
can effectively solve the issue of inconsistency between cropland map and statistics.

Table 5. Comparison of AD and AARD values between cropland areas from statistics and estimated by
the five datasets and synergy map.

GlobeLand30 CCI-LC GlobCover 2009 MODIS C5 MODIS Cropland Synergy Map

AD (ha) 1585.11 8342.77 2357.00 499.88 –1895.28 12.02
AARD 0.45 3.50 2.00 0.32 0.65 0.09

4. Discussion

The mapping of cropland over large areas with high accuracy, especially in a cost-effective way,
is always challenging. Here, we propose a new synergy method HOSA that aims to strike a balance
between product accuracy and affordability. This approach is notable for its efficiency and accuracy of
mapping using agreement between existing cropland datasets. We tested the method to produce a
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hybrid cropland map of China, circa 2010, with a spatial resolution of 500 m, using the five cropland
datasets (GlobeLand30, CCI-LC, GlobCover 2009, MODIS C5 and MODIS Cropland), and sub-national
statistics. Accuracy assessment showed that the synergy map had higher accuracy than these five
input datasets, as well as better consistency with the cropland statistics. This confirms that the synergy
approach can improve spatial accuracy and enhance consistency with statistics.

Compared with other synergy approaches, HOSA simplifies the method of score
assignment [28–31]. Existing approaches built a long and static table to determine the cropland and
noncropland areas, with 32 scores for the five input datasets, which was strenuous and time-consuming.
Instead, HOSA first determined the optimal agreement level, and then built a dynamic score table in
each province. The optimal agreement levels for most provinces ranged from 2 to 4 (Figure 7), and the
score table was built according to the agreement level, which greatly reduced the size of the score table
with an improved efficiency.

Because the statistical areas were obtained by visual interpretation from aerial photographs and
ground survey, HOSA assumes that the statistics are the ‘true’ areas of cropland, and the statistics are
therefore used in combination with the five cropland datasets to allocate equivalent areas within each
province. The strength of HOSA is that it can combine such verified statistics from ground observation
with the spatial detail of images [22]. However, the low spatial resolutions of the five input cropland
datasets mean that mixed pixels are common, and there is a gap of spatial scale between the statistics
and the cropland datasets. Remote sensing datasets often overestimate cropland area compared with
statistics, because of mixed pixels and mosaic cropland classes [19,20]. As shown in Table 5, cropland
areas estimated by GlobeLand 30, CCI-LC, GlobCover 2009 and MODIS C5 are higher that the statistics.
To solve this problem, the percentage weights were applied for cropland datasets according to the
definition of classification scheme (Table 2), and average percentages of cropland were calculated
within the 500 m grids for resolution standardization. Finally, a cropland percentage map, unlike
traditional cropland/noncropland maps, was generated and found to be consistent with the statistics.
The way to determine the percentage weights of cropland classes is beyond the scope of this study, but
it is worthy of being investigated in the future as it may influence the final map.

Building the score table is critical for identification of dataset combinations. Because cropland
products generally have diverse accuracies in different regions, the score tables should be dynamic
and region specific. Consequently, more samples are needed to assess accuracies in the corresponding
regions. Although there are some platforms to collect samples by crowdsourcing methods, such as
Geo-Wiki, Laco-Wiki, and Collect Earth [37–39], it is still a huge effort to collect numerous samples and
assess their reliabilities. It is thus necessary to explore alternative methods of accuracy assessment that
have less dependence on samples. In future work, we plan additional experiments in the accuraciy
assessment of the input datasets using statistics as a reference.

The agreement between input cropland datasets is the basis of HOSA. Because higher agreement
indicates more confidence in synergic results, the cropland confidence map (Figure 8b) can be treated
as a spatially explicit indicator of map quality. It is clear that higher confidences appear in regions with
homogeneous landscapes, while lower confidences appear in regions with heterogeneous landscapes.
The limited accuracy and associated uncertainty of cropland datasets in heterogeneous areas restrict
their application [4]. For these areas, the accuracy in a more informative way is needed to improve the
quality of synergy result. GWR will be used to analyze spatial variation of accuracy and compared
with confidence map [40,41]. Meanwhile, higher resolution and more accurate maps are needed for
heterogeneous areas.

5. Conclusions

Accurate information on cropland spatial extent is important for a wide variety of applications.
Although there are several cropland products, inconsistencies between them are large enough to
restrict their application. HOSA is designed to produce a synergy cropland map cost-effectively, based
on cropland datasets and statistics. This approach includes two optimization levels, i.e., determination
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of the optimal agreement level and determination of the best dataset combination, and can simplify the
process of dataset synergy compared with traditional score assignment. HOSA was applied to generate
a synergy cropland map of China, circa 2010, based on five cropland datasets and statistics. The
results indicate that the synergy map has higher accuracy and better consistency with statistics than
the original datasets. Therefore, the method can be extended further to regional or even global-scale
cropland mapping. HOSA can also be used for other land cover classes, such as forest, grass, and water.
In the future, more input products will be collected to improve the accuracy of synergy mapping,
especially in regions with heterogeneous landscapes, and new method of accuracy assessment to
reduce dependence on samples will be explored.
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