
Genome analysis

SVD-phy: improved prediction of protein

functional associations through singular value

decomposition of phylogenetic profiles

Andrea Franceschini1,2, Jianyi Lin3, Christian von Mering1,2 and

Lars Juhl Jensen4,*

1Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland,
2Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Génopode, Lausanne, 1015, Switzerland, 3Department

of Computer Science, University of Milan, via Comelico 39, Milan, 20135, Italy and 4Novo Nordisk Foundation

Center for Protein Research, University of Copenhagen, Copenhagen N, 2200, Denmark

*To whom correspondence should be addressed.

Associate Editor: David Posada

Received on 5 June 2015; revised on 20 November 2015; accepted on 24 November 2015

Abstract

Summary: A successful approach for predicting functional associations between non-homologous

genes is to compare their phylogenetic distributions. We have devised a phylogenetic profiling al-

gorithm, SVD-Phy, which uses truncated singular value decomposition to address the problem of

uninformative profiles giving rise to false positive predictions. Benchmarking the algorithm against

the KEGG pathway database, we found that it has substantially improved performance over exist-

ing phylogenetic profiling methods.

Availability and implementation: The software is available under the open-source BSD license at

https://bitbucket.org/andrea/svd-phy

Contact: lars.juhl.jensen@cpr.ku.dk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Phylogenetic profiling methods are able to predict functional inter-

actions between genes that encode proteins from the same complex or

pathway, by comparing their phylogenetic distributions (Cheng and

Perocchi, 2015; Date and Marcotte, 2003; Enault et al., 2003; Li et al.,

2014; Pellegrini et al., 1999; Tabach et al., 2013a). The underlying

idea is that when two genes are functionally related, they should

tend to be co-inherited; since the loss of either one of these genes would

be detrimental to that particular function. Here we present a new

phylogenetic profiling method, SVD-Phy, which performs considerably

better than existing methods for both bacteria and eukaryotes.

2 Phylogenetic profiling algorithm

Our algorithm infers associations among the proteins in a query or-

ganism based on their sequence similarity to sequences from a large

number of other organisms. Specifically we construct a matrix with

the alignment bit scores of the best scoring match for each query pro-

tein (rows) in each organism (columns), including the organism itself.

We obtain the bit scores from SIMAP (Arnold et al., 2014) via the

homology table of STRING v10 (Szklarczyk et al., 2015), but bit

scores from BLAST can also be used. If a query protein gives no hits

in a certain organism with a bit score of at least 60, the bit score is set

to 0; using higher cutoffs reduced the performance (Supplementary

Fig. S1). We convert this matrix to a normalized best hit matrix M by

dividing each bit score by the largest score in the same row (typically

the self-hit).

Similar to earlier work on phylogenetic stratification

(Psomopoulos et al., 2013), we then perform truncated singular

value decomposition (SVD) of M by calculating the factorization

M¼USV’ and retaining only the first C columns from the resulting

unitary matrix U. Different values of C were tested for each organ-

ism (Supplementary Figs S2–S5). We finally normalize each row in
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the matrix to unit vectors and calculate all pairwise Euclidean dis-

tances between them. Other similarity metrics gave similar or worse

performance (Supplementary Figs S6–S10). See supplementary

material for further details.

3 Benchmarking and comparison

We tested the algorithm on both prokaryotic and eukaryotic pro-

teins and compared its performance against a simplified algorithm

lacking the truncated SVD step and against two established algo-

rithms (Date and Marcotte, 2003; Tabach et al., 2013a,b). For all

four algorithms, we generated ranked lists of predicted associations

based on phylogenetic profiles across all 1793 prokaryotes and 238

eukaryotes in STRING v10 for prokaryotic and eukaryotic query

proteins, respectively. We benchmarked the predicted associations

against the KEGG pathway database (Kanehisa et al., 2014).

Given a ranked list of predicted function associations, we evalu-

ate the performance as follows. We first discard all pairs with bit

score �60, as homologous proteins will trivially have similar phylo-

genetic profiles and are often involved in the same KEGG pathway.

We next map all proteins to KEGG genes and discard pairs where

one or both proteins cannot be placed on a KEGG map. The remain-

ing pairs are considered true positives (TP) if the two proteins fall

within the same KEGG map and otherwise false positives (FP). To

ensure that the results were not biased by certain atypical KEGG

maps (Supplementary Table S1), we repeated all analysis excluding

these maps. We also benchmarked the predicted associations for

E.coli and H.sapiens using EcoCyc (Keseler et al., 2013) and

Reactome (Croft et al., 2014), respectively.

In all benchmarks, SVD-Phy showed dramatically improved per-

formance over the other three algorithms, including the simplified

algorithm that differs only by leaving out the truncated SVD step

(Fig. 1 and Supplementary Figs S6–S10). When benchmarked on

Saccharomyces cerevisiae, SVD-Phy also outperformed the CLIME

method (Li et al., 2014) (Supplementary Fig S11). For example, SVD-

Phy predicts over 14-fold more associations at 75% precision than

other methods on Escherichia coli, an organism on which all algo-

rithms generally perform well. When not restricting associations to

proteins that can be mapped to KEGG, we predict 14 078 interactions

in E.coli and 4090 in H.sapiens at 75% precision. This corresponds

to an average interaction degree of 7.2 and 0.4, respectively.

The benchmarks also revealed that all algorithms performed

considerably worse on eukaryotes than on prokaryotes. To test

whether this was purely due to the smaller number of eukaryotic or-

ganisms used to build the phylogenetic profiles, we repeated the ana-

lyses using profiles based on only 238 prokaryotes (Supplementary

Figs S5B and S7B). Although this did lead to an expected decrease in

performance, all algorithms continued to perform notably better on

prokaryotes than on eukaryotes.

4 Discussion

We have shown that SVD-Phy has better predictive power than

existing phylogenetic profiling algorithms. This improvement was

achieved by performing truncated SVD on the profiles before calcu-

lating their similarities. An intuitive explanation of this transform-

ation is that it collapses phylogenetic profiles that are shared by

many proteins into fewer dimensions (principal components). This

reduces noise (Psomopoulos et al., 2013) and increases the diversity

of the resulting profiles, which was recently shown to be beneficial

(Škunca and Dessimoz, 2015). The benefit is that it prevents high

similarity scores between uninformative profiles that can be trivially

explained by simple vertical inheritance of genes along the taxo-

nomic tree, or by broad similarities in the lifestyles of the organisms.

This includes highly similar profiles caused by the inclusion of mul-

tiple strains of a species, clade-specific proteins and enzymes that

have been lost in most parasites (because they instead import metab-

olites from their hosts).

We fully integrated our protein–protein interaction predictions

with the STRING database (Szklarczyk et al., 2015) (Supplementary

Figs S12–S13). The data can be browsed online and is freely avail-

able for download in tab-delimited format. SVD-Phy executes very

fast: its run time is on average about 10–20 min per organism on a

normal workstation. This allows us to execute the algorithm for all

2031 species in the STRING database, and makes it possible for

others to utilize the algorithm within their web resources.

In a recent study, Tabach et al. (2013b) successfully used their

method to shed light on several disease pathways. Phylogenetic

profiling algorithms have also been applied to analyze non-coding

elements (NCEs), such as small RNAs (Ott et al., 2012; Tabach

et al., 2013a), showing that phylogenetic profiling is indeed an im-

portant technique that can be used to shed light even on NCE func-

tions and interactions (Dimitrieva and Bucher, 2012).
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