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Macrophages are an important component of the human immune system and play a key role in the immune response, which can
protect the body against infection and regulate the development of tissue inflammation. Some studies found that macrophages can
produce extracellular traps (ETs) under various conditions of stimulation. ETs are web-like structures that consist of proteins and
DNA. ETs are thought to immobilize and kill microorganisms, as well as play an important role in tissue damage, inflammatory
progression, and autoimmune diseases. In this review, the structure, identification, mechanism, and research progress of

macrophage extracellular traps (METs) in related diseases are reviewed.

1. Introduction

Extracellular traps (ETs) are web-like structures composed
of histones, double-stranded DNA, and elastases, which are
ejected by immune cells and play a role in immune defense
by capturing and killing bacteria, parasites, fungi, and other
microorganisms. ETs were firstly described in detail in neu-
trophils as early as 2004 and named NETSs (neutrophil extra-
cellular traps), which can degrade virulence factors and kill
bacteria [1]. Subsequent studies have shown that the process
of immune cells forming ETs, known as “ETosis,” is mor-
phologically and functionally distinct from other forms of
programmed cell death and necrosis [2], since the initial
reports of NETs and ETs have been found in a variety of
other immune cells such as mast cells, eosinophils, baso-
phils, monocytes, and macrophages. Meanwhile, ETs have
been reported not only in humans or mammals (including
cattle, horses, goats, and cats) but also in protozoans such
as discoid amoeba and nonvertebrate such as arthropods,
crustaceans, fish, birds, and plants [3, 4].

Macrophages are a group of immune cells that have vir-
ous roles in biology, from development, homeostasis, repair,
immune response to pathogens, and source of inflammatory

cytokines [5]. In 2010, it was reported for the first time that
mature and differentiated macrophages can also produce
ETs, called macrophage extracellular traps (METs). In this
study, researchers found that mouse Raw 264.7 cell lines
and mouse peritoneal macrophages could be stimulated to
produce ETs by Staphylococcus aureus and phorbol-12-
myristate-13-acetate (PMA) [6]. Another study has con-
firmed that METSs can be produced by macrophages from
different sources in response to a wide range of microorgan-
isms and exogenous stimuli such as hypochlorous acid,
PMA, IL-8, and TNF-« [7].

However, there are still not enough studies on METs, as
the formation mechanism of METs and the relationship
with diseases are not very clear. In this review, we briefly
summarized the structure, identification, and mechanism
of METs. Then, we focused on the current research progress
of METs in a variety of diseases (Figure 1).

2. The Structure and Identification of METSs

The structure of METs is similar to that of NETs in that
they contain histones, double-stranded DNA, elastase,
and myeloperoxidase. Some studies have confirmed that
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FiIGUre 1: Macrophage extracellular traps (METs): induction, structure, and function. MPO: myeloperoxidase; MMP-9: matrix
metalloproteinase-9; eDNA: extracellular DNA; COPD: chronic obstructive pulmonary disease; NE: neutrophil elastase; MMP-12: matrix
metalloproteinase-12; NETSs: neutrophil extracellular traps; PAD: peptidylarginine deiminase; ACPA: anti-citrullinated protein antibody;

CLS: crown-like structure.

METSs contain various components such as citrine histone
[8-10], elastase [11, 12], myeloperoxidase [13, 14],
matrix metalloproteinase-9  (MMP-9) [15], matrix
metalloproteinase-12 (MMP-12) [16], CD68 [13], and
lysozyme [17].

To identify METs, some studies use scanning electron
microscopy to identify structures that originate from the
macrophage cells [18, 19]. Furthermore, immunohistochem-
istry and immunofluorescence staining were used to stain
and label the known components of the extracellular traps,
observed by fluorescent microscopy and laser confocal
microscopy [20]. To quantify METs, the proportion of
METs formed in macrophage cells under multiple visual
fields was monitored, and software such as Image] [21], Net-
quant [22], and DANA [23] was used for calculation. Some
researchers also detected precise extracellular released
DNA concentrations with SYTOX or PicoGreen reagent
and kits read with a fluorescence plate reader [24, 25].

3. The Mechanism of MET Formation

Currently, there are few studies on the formation mecha-
nism of METs. Considering the similar structures of MET's
and NETs, researchers focused on the formation mecha-
nism of NETSs, such as nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase/reactive oxygen species
(ROS) system and peptidylarginine deiminase (PADS).
Therefore, studies on kidney injury [8], COPD [15], afla-
toxin Bl [12], Staphylococcus aureus [19], Streptococcus
agalactiae [18], and Haemophilus influenzae [16] have
shown that the formation of METs is related to the
NADPH/ROS system. In these studies, attempts to inhibit
ROS production by adding the NADPH oxidase inhibitor
diphenyliodine (DPI) resulted in a reduction in MET
formation.

However, other studies have also found MET production
independent of the NADPH/ROS system, such as Candida
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albicans [26], Escherichia coli [17], and Mycobacterium
tuberculosis [10, 11], since the addition of DPI did not hin-
der the formation of METs. Particularly, MET formation
was found in Mycobacterium tuberculosis to be dependent
on the virulence factor ESAT-6 or ESX-1 system. Other pos-
sible pathways of MET formation are statin-induced sterol
pathway [6], tachyzoites of Neospora caninum-stimulated
ERK1/2- and p38/MAPK-dependent cell death processes
[14], and biochanin A-induced AMPK/ULK1/mTOR path-
way [27].

Activation of PAD, through PAD4-mediated histone
citrullination and nuclear chromatin depolymerization, has
been shown to play an important role in the formation of
NETs [28]. Obesity-induced adipose tissue inflammation
might promote the formation of METs in CLS through
PAD-mediated histone citrullination [29]. Additionally,
macrophages might secrete functional PAD4 and release cit-
rate histones through the formation of METS, inducing the
production of ACPA and promoting the development of
arthritis [9]. The formation of METs was also found to be
related to PAD4-mediated histone citrullination in renal
injury [8]. Interestingly, peripheral blood macrophages form
METs when they are exposed to hypochlorous acid, PMA,
IL-8, and TNF-a through a PAD-independent pathway,
which was related to calcium influx [7].

More studies are needed to confirm whether the mecha-
nism of extracellular trap formation is various according to
different inducers, diseases, and environments.

4. The Study of METs in Disease

Studies on extracellular traps primarily focused on infectious
diseases where in the early stage of infection, locally released
chemotactic molecules attract and recruit innate immune
cells such as neutrophils, monocyte, macrophages, and
NK cells to phagocyte and kill the invading microorgan-
isms. The formation of extracellular traps seems to serve
as another defense mechanism by releasing granule pro-
teins and chromatin, which together form extracellular
fibers that bind Gram-positive and Gram-negative bacteria.
These extracellular traps degrade virulence factors and kill
bacteria [1]. Some studies have also found that extracellu-
lar traps can also capture and immobilize pathogens, pre-
venting the spread of pathogens. On the other hand,
METSs might promote the survival of bacteria in host tis-
sues through providing a scaffold for the aggregation of
pathogens [17].

In addition, it has also been found that extracellular traps
may promote the development of autoimmunity by generat-
ing persistent autoantigen-DNA complexes. Moreover,
obstacles to the removal of extracellular trap components
may lead to long-term exposure of autoantigens and pro-
mote the production of autoantibodies [30, 31].

Although most of the previously mentioned studies have
focused on NETs, given that the structure of MET's is similar
to that of NETS, there have been many studies on the role of
METs in infectious diseases and noninfectious diseases,
which are summarized in Tables 1 and 2.

4.1. Infectious Diseases

4.1.1. Gram-Positive Bacteria. Staphylococcus aureus is a
Gram-positive bacterium that can cause many refractory
nosocomial infections [32]. Shen et al. found that fosfomycin
can promote the production of METSs in murine peritoneal
macrophages infected with S. aureus, which depends on
the NADPH oxidase/ROS system, and meanwhile enhance
the killing effect of macrophages against S. aureus [19].
Chow et al. found that statins could improve the ability of
macrophages to kill Staphylococcus aureus by inducing the
production of METSs through inhibiting the sterol pathway
in vitro and in vivo [6]. Streptococcus agalactiae, another
Gram-positive bacteria, is associated with adverse pregnancy
outcomes in pregnant women [33]. Doster et al. demon-
strated that placental macrophages exposed to Streptococcus
agalactiae in vitro could release MET's and kill the organism,
which depended on the production of ROS, and they found
METs in human fetal membrane tissues infected in vitro. In
addition, METs contained several matrix metalloproteinases
that cause premature rupture of membranes. Thus, METs
can respond to infection but also cause damage to the fetal
membrane extracellular matrix [18]. Kalsum et al. confirmed
that Mycobacterium tuberculosis could induce METs
production in human macrophages, and this process was
independent of ROS production but dependent on the viru-
lence factor ESAT-6 [10]. Similarly, Wong and Jacobs
reported that Mycobacterium tuberculosis can induce the
production of METs in human macrophages, and the addi-
tion of IFN-y can enhance the production of MET's by pro-
moting the ESX-1/RD1 protein secretion system [11].

4.2. Gram-Negative Bacteria. Liu et al. suggested that E. coli
induced the formation of METs in mouse macrophages in a
process independent of ROS produced by NADPH oxidase,
and METs captured and killed E. coli at the infected site
[17]. King et al. found that Haemophilus influenzae could
induce the continuous production of ROS by human alveo-
lar macrophages, which was related to the formation of
METs and the expression of MMP-12 [16]. Zhao et al. found
that biochanin A (BCA) could promote the release of METSs
through the AMPK/ULK1/mTOR pathway to clear extracel-
lular Salmonella enterica. Furthermore, in vivo treatment
with BCA increased intracellular and extracellular bacteri-
cidal activity by enhancing autophagy and MET production
in peritoneal macrophages [27]. Similarly, a study conducted
by Monaco et al. also indicated that Salmonella typhimur-
ium induced METs released in murine macrophages. MET's
effectively immobilized and reduced Salmonella survival in a
few minutes, suggesting MET's as a novel immune-mediated
defense mechanism against Salmonella infection [34].

4.3. Fungus. Previous studies have suggested that Candida
albicans can activate neutrophils to induce the production
of NETs, which in turn can capture and kill bacteria, but
the antimicrobial efficacy of NETs is reduced in patients
with neutrophil deficiency [35]. Loureiro et al. found that
METs could be formed by macrophages in contact with
Candida albicans, and this formation was proportional to
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the increase in multiplicity of infection. With the ability to
capture and kill, Candida albicans can fight back by secreting
DNases to degrade the main component of METs [26]. In
the same context, Liu et al. found that Candida albicans
could induce the formation of METs in mouse macrophages
in a process independent of the NADPH oxidase/ROS sys-
tem, but MET's mainly inhibited the invasion of microorgan-
isms by capturing them at the infected site, rather than
directly killing them [17]. For mycotoxins, An et al. demon-
strated that aflatoxin B1 induced the production of METs in
a dose-dependent manner, and the formation of MET's could
reduce the content of aflatoxin B1, which was dependent on
autophagy and the production of ROS [12].

4.4. Parasite. Bonne-Annee et al. found that human macro-
phages could be induced to produce MET's by Strongyloides
faecalis larvae in vitro, which captured and promoted the
larval killing process. However, no METs were found in
mouse macrophages in vitro, while the production of MET's
could be seen in the peritoneal exudate cells of mice [36].
Wei et al. showed that the tachyzoites of Neospora caninum
could strongly induce the production of METs in bovine
macrophages and trigger the formation of METs through
ERK1/2- and p38MAPK-dependent cell death processes [14].

4.5. Leptospira. Nagel et al. found that both virulent L. inter-
rogans sv Pomona strain AKRFB (P1) and its attenuated
counterpart (P19) could lead to the production of METSs in
bovine macrophages [37].

5. Noninfectious Disease

5.1. Acute Kidney Injury. Rhabdomyolysis is a life-
threatening disease caused by traumatic or nontraumatic
muscle injury in which skeletal muscles break down and
necrosis, resulting in myoglobin and other cellular proteins
leaking into the circulation, leading to acute kidney injury.
However, the mechanism is not yet understood [38]. In a
mouse model of rhabdomyolysis induced by intramuscular
injection of glycerin, Okubo et al. confirmed that heme-
activated platelets released from necrotic muscle cells during
rhabdomyolysis bind to macrophage antigen 1 (MACI) to
enhance the production of MET's through increasing intra-
cellular ROS generation and histone citrullination. In turn,
this production contributes to the acute injury. METs were
subsequently found in patients with rhabdomyolysis due to
traumatic injury, with elevated free DNA levels in serum.
To assess the therapeutic potential of targeting this pathway,
the impact of lactoferrin (a glycoprotein that inhibits NET's)
was investigated. They found that lactoferrin significantly
inhibited MET formation and alleviated renal injury in
glycerine-induced rhabdomyolysis mice. This study was the
first to demonstrate that MET's play a role in the pathogen-
esis of a disease, suggesting that the use of exogenous lacto-
ferrin to inhibit the formation of MAC1 and METs is a
potential therapeutic strategy for the prevention of
rhabdomyolysis-induced acute kidney injury [8].

5.2. Atherosclerosis. Previous studies have shown that NETs
are involved in human atherosclerotic plaques and thrombo-
sis by promoting endothelial dysfunction, stimulating
thrombosis, and stabilizing plaque formation [39, 40]. Per-
tiwi et al. found that METSs were also present in atheroscle-
rosis. By studying coronary atherosclerotic plaque in
patients who died of acute myocardial infarction (AMI) in
both fresh (representing recent-onset thrombus) and cell-
rich organized masses (representing a thrombotic event sev-
eral weeks ago), the study found that NETs dominated in
early thrombosis and METs in late (organizing) thrombosis.
Together, they spanned all stages of thrombus progression
and maturation [13].

5.3. Chronic Obstructive Pulmonary Disease. Imbalance of
proteases caused by smoking is a key process in the patho-
genesis of emphysema [41]. The mechanism of this effect
is not clear, but the formation of extracellular traps is related
to protease expression and inflammation. King et al. have
shown in vitro and in vivo that cigarette smoke significantly
induces the formation of NETs and METs and simulta-
neously the expression of pathogenic proteases, neutrophilic
elastase, MMP-9, and MMP-12, resulting in an imbalance of
proteases leading to the occurrence and development of
emphysema/COPD, which is associated with increased
ROS production. The addition of DNase significantly
reduced this response to cigarette smoke, as well as the num-
ber of macrophages and the degradation of lung proteins,
suggesting a potential new therapeutic approach for
COPD [15].

5.4. Cystic Fibrosis Lung Disease. Children with cystic fibro-
sis lung disease often have recurrent lower airway infections
and prominent neutrophilic inflammation starting in the
first year of life, resulting in persistent infection and inflam-
mation leading to bronchiectasis [42]. In addition, neutro-
phil elastase activity in bronchoalveolar fluid is a major
risk factor for bronchiectasis [43]. King et al. found promi-
nent formation of NETs and METs in the bronchoalveolar
fluid of children with cystic fibrosis lung disease that poten-
tially led to lung injury. Furthermore, DNase 1 and a-1 anti-
trypsin may play a role in reducing lung inflammation in
children. The possible combination of the two may be a
new therapeutic strategy in cystic fibrosis lung disease [44].

5.5. Nonfunctional Pancreatic Neuroendocrine Tumors. At
present, the clinical outcome prediction of nonfunctional
pancreatic neuroendocrine tumors mainly depends on the
WHO grade and TNM stage [45]. However, extracellular
traps and macrophage infiltration can lead to disease pro-
gression, which are involved in the growth, proliferation,
invasion, and metastasis of tumor cells [46]. Xu et al. indi-
cated that the recurrence-free survival rate of patients with
macrophage infiltration or METSs positive in postoperative
samples was lower, both of which were independent prog-
nostic factors for recurrence-free survival and could be used
as biological indicators for the prognosis of patients. There-
fore, a new prognostic predictor composed of the WHO
grade, TNM stage, and innate immune parameters was



proposed, which can be utilized in the clinical application of
chemotherapy and immunotherapy in nonfunctional pan-
creatic neuroendocrine tumors [47].

5.6. Obesity. Numerous studies in obese humans and ani-
mals have shown that macrophages infiltrate visceral adi-
pose tissue and surrounding dead adipose cells to form the
characteristic “crown-like structure” (CLS) morphology.
Proinflammatory mediators produced by these immune cells
are present in the peripheral blood of obese women and have
been linked to the progression of breast cancer [48]. In the
animal model of obesity, the occurrence of CLS is related
to the activation of NF-«B, and the increase in inflammatory
mediators (such as TNF-a and IL-1f) is closely related to
NETs and METs. Whether METs are formed in CLS
remains to be confirmed [49]. To this question, Mohanan
et al. found that macrophages produced METs after TNF-«
stimulation in vitro and in obese mice, suggesting that
obesity-induced adipose tissue inflammation promotes the
formation of METSs in CLS through PAD-mediated histone
citrullination [29].

5.7. Autoimmune Disease. After the extracellular traps play
their role in bacterial killing or tissue damage, they can be
removed and degraded by macrophage phagocytosis and
DNA enzymes. However, those that escape the clearance
may generate a stable autoantigen-DNA complexes and lead
to prolonged exposure of self-antigens, the generation of
autoantibodies, thus promoting the occurrence and develop-
ment of autoimmunity [50, 51]. There have been many stud-
ies on systemic lupus erythematosus (SLE), rheumatoid
arthritis (RA), psoriasis, and autoimmune vasculitis related
to NETs [30, 52-54]. NET formation is increased in patients
with SLE. Neutrophils from these patients manifested phe-
notypic abnormalities such as enhanced aggregation and
apoptosis. In RA, extracellular traps are considered a major
source of citrullinated autoantigens. For example, NET's
can be detected in synovial fluid and rheumatoid nodules
in patients with RA, and serum levels of components of
NETS in patients are higher than those in healthy controls
[55]. However, there are few studies related to METs in
autoimmune diseases. El Shikh et al. verified that macro-
phages could express functional PAD4 in murine collagen-
induced arthritis (CIA) and synovial biopsies from RA
patients. PAD4 that colocalized with lymphoid tissue pepti-
dyl citrate could functionally deiminate extracellular pro-
teins/peptides in vitro, release citrulline histone through
the formation of METs, induce the production of ACPA,
and promote the development of arthritis [9]. Since the
components and structures of METSs are similar to those of
NETs, MET's may also play a significant role in autoimmune
diseases, which needs further researches.

6. Conclusion

ETosis is a process that is different from other programmed
cell death and necrosis. Under various stimulation condi-
tions, macrophages can produce fibrous network structures
containing citrate histone, elastase, MPO, MMP-9, lyso-
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zyme, and other components. The existence and quantitative
comparison of METs were identified by scanning electron
microscopy, immunofluorescence, and other methods. The
formation mechanism of MET's has been found to be related
to the NADPH oxidase/ROS system, as well as independent
of the NADPH oxidase/ROS system. Under the stimulation
of pathogens, macrophages induce the production of MET's
to remove pathogenic microorganisms such as bacteria,
fungi, and parasites. Currently, most studies focus on the
relationship between METs and infection. In recent years,
studies have also found that METs play an important role
in promoting tissue damage, inflammatory progression,
and autoimmune diseases. More researches are needed in
the future to deepen our knowledge and understanding of
METs.
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