
BioMed CentralBMC Proceedings

ss
Open AcceProceedings
Comparison of multipoint linkage analyses for quantitative traits in 
the CEPH data: parametric LOD scores, variance components LOD 
scores, and Bayes factors
Yun Ju Sung1, Yanming Di2, Audrey Q Fu2, Joseph H Rothstein1, Weiva Sieh1, 
Liping Tong2, Elizabeth A Thompson2 and Ellen M Wijsman*1,3

Address: 1Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, Washington 98195-7720, USA, 
2Department of Statistics, University of Washington, Box 354322, Seattle, Washington 98195-4322, USA and 3Department of Biostatistics, 
University of Washington, Box 357232, Seattle, Washington 98195-7232, USA

Email: Yun Ju Sung - yunju@wubios.wustl.edu; Yanming Di - diy@stat.washington.edu; Audrey Q Fu - audrey@stat.washington.edu; 
Joseph H Rothstein - joe419@u.washington.edu; Weiva Sieh - wsieh@u.washington.edu; Liping Tong - tong@stat.washington.edu; 
Elizabeth A Thompson - eathomp@u.washington.edu; Ellen M Wijsman* - wijsman@u.washington.edu

* Corresponding author    

Abstract
We performed multipoint linkage analyses with multiple programs and models for several gene
expression traits in the Centre d'Etude du Polymorphisme Humain families. All analyses provided
consistent results for both peak location and shape. Variance-components (VC) analysis gave wider
peaks and Bayes factors gave fewer peaks. Among programs from the MORGAN package,
lm_multiple performed better than lm_markers, resulting in less Markov-chain Monte Carlo
(MCMC) variability between runs, and the program lm_twoqtl provided higher LOD scores by also
including either a polygenic component or an additional quantitative trait locus.

Background
Our aims were 1) to compare results from several
multipoint linkage analysis programs that are available
for quantitative traits and 2) to investigate the perform-
ance of MCMC-based programs on the GAW15 expres-
sion data in 14 three-generation CEPH families genotyped
for clustered SNP markers [1]. We used three recently
developed programs in the MORGAN package [2]:
lm_markers, lm_multiple, and lm_twoqtl. These pro-
grams provide MCMC-based parametric LOD score anal-
ysis, the first two with a one-QTL (1Q) model and the last

with more complex models, including a second linked
(2Q) or unlinked (UQ) QTL and/or a polygenic compo-
nent (P). In addition, we used Loki [3] for Bayesian oligo-
genic analysis and Merlin [4] for VC analysis. These
analyses cover most approaches that fully use quantitative
trait data from three-generation pedigrees.

Methods
Phenotypes used
For 62 traits previously reported to show evidence of link-
age [5,6], we performed genome-wide VC analysis and
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obtained the maximum likelihood estimate (MLE) of her-
itability (h2). We chose six traits that showed high VC
LOD scores and h2 ≥ 0.31: CHI3L2, GSTM1, PSPH,
VAMP8, PPAT, and TM7SF3. The first two of these had
only a single peak with VC LOD > 3, representing poten-
tially simple traits, and the latter four had multiple peaks,
representing potentially complex traits. For these six traits,
we performed Bayesian oligogenic joint segregation and
linkage analyses using Loki and parametric LOD score
analysis with a 1Q model using lm_markers and
lm_multiple. For the first four traits only, we also per-
formed parametric LOD score analysis with more com-
plex models using lm_twoqtl.

Genetic map and marker data
We used the Rutgers map [7] for linkage analysis. We con-
verted Kosambi map positions to Haldane map positions
for analysis, although for ease of comparison with other
GAW contributions we present all results on a Kosambi
scale. We also constructed a jittered map by adding 0.01
cM between markers with identical positions on this map.
We excluded sex chromosomes and used the sex-averaged
jittered map for all our linkage analyses because neither
MORGAN nor Loki allows multiple markers at the same
position. For the VC analysis, we also used the nonjittered
map as a comparison. We used Merlin to identify all Men-
delian-inconsistent genotypes (69 marker-family combi-
nations) and any obligate recombinations within each
cluster (166 cluster-family, or 508 marker-family combi-
nations), where a cluster is defined as a set of markers that
have the same Rutgers map position. We coded these
markers as missing genotypes in all members of the fami-
lies with an apparent error.

Segregation and linkage analyses
For the 62 traits, we performed genome-wide VC linkage
analysis with Merlin for both the jittered and original
nonjittered maps. VC LOD scores were computed only at
the marker positions. We also obtained MLEs of h2 for
these 62 traits with a VC polygenic model [8]. Using Mer-
lin, we obtained MLEs of marker allele frequencies, which
we used in all linkage analyses.

For the six traits, we performed Bayesian oligogenic segre-
gation analysis and oligogenic joint segregation and link-
age analysis using Loki. For segregation analysis, we used
every fourth iteration in a 50 k iteration run to estimate
QTL models. For linkage analysis, we used every fourth
iteration in a 999 k iteration run to compute Bayes factors
for presence versus absence of a QTL in each 2-cM bin. We
used QTL models estimated from Bayesian segregation
analysis in all our LOD score analyses.

We recently developed three programs in MORGAN:
lm_markers, lm_multiple, and lm_twoqtl. The first two

programs compute LOD scores for the 1Q model, and
lm_twoqtl computes LOD scores for more complex mod-
els [9]. In addition to its MCMC-based approach,
lm_markers now can also provide exact computation of
LOD scores for small pedigrees with many markers. No
other programs provide parametric LOD scores for quan-
titative traits with many markers. The program
lm_multiple differs from lm_markers only in that, instead
of updating only one meiosis at a time, it uses an
improved sampler that simultaneously updates either a
randomly chosen subset of up to eight meioses or a possi-
bly larger subset of meioses in closely related individuals,
such as siblings [10]. This multiple-meiosis updating can
improve estimates of LOD scores, particularly for data
with large sibships. Finally, lm_twoqtl provides LOD
scores with models that include additional linked or
unlinked QTLs and a polygenic component. Incorporat-
ing better modeling of complex traits into linkage analysis
can provide higher LOD scores and better localization for
complex traits [9].

We performed parametric linkage analysis using these
three MORGAN programs. For the six traits, we obtained
ten estimates of LOD scores using MCMC and both
lm_markers (3 k and 30 k scans) and lm_multiple (3 k
scans), to compare their performance. For comparison, we
also computed exact LOD scores for the 1Q model, also
using lm_markers. Parameter values for the trait model
were almost identical to those for the mixed model in
Table 1, except for using σ2(a) + σ2(e) as the environmen-
tal variance. For the first four traits, we also used
lm_twoqtl with one linked plus one unlinked QTL (1Q +
UQ) and one QTL plus a polygenic component (1Q + P)
models. In addition, for VAMP8, we used lm_twoqtl with
a two-linked-QTL (2Q) model. For the first three traits,
the secondary QTL model was from oligogenic segrega-
tion analysis, whereas for VAMP6, the secondary QTL
model was the same as the first QTL model. LOD scores at
the marker positions as well as midway between two
markers were evaluated for all MORGAN programs. We
obtained initial starting configurations by using sequen-
tial imputation for all MORGAN programs and the locus
sampler for Loki. Burn-in iterations were 150 for all MOR-
GAN programs and 1000 for Loki. We used a 50:50 ratio
of locus to meiosis sampler for all MCMC-based analyses.
For lm_multiple, the probabilities for updating meioses
from random subsets, individuals, full sibships, and full
three-generation families were 0.2, 0.3, 0.3, and 0.2. For
lm_twoqtl, we used every tenth scan in a 30 k scan run for
computing LOD scores. For lm_markers and lm_multiple,
we used every scan.
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Results
VC LOD scores and heritabilities for the 62 traits
Of the 62 traits, 24 had a VC LOD score ≥ 3, with h2 rang-
ing from 0.13 to 0.86. Five traits had a maximum VC LOD
score < 1, with h2 ranging from 0 to 0.11. Most traits had
only a single peak in the genome with VC LOD ≥ 3, sug-
gesting a simple mode of inheritance. Two traits (PSPH
and DDX17) had three peaks with VC LOD ≥ 3, and three
traits (PPAT, HSD17B12, TUBG1) had two peaks with VC
LOD ≥ 3. The jittered and nonjittered maps yielded virtu-
ally identical VC LOD scores, except for VAMP8 on chr 2,
where the largest peak was slightly narrower with the non-
jittered map.

We chose the six traits CHI3L2, GSTM1, PPAT, PSPH,
TM7SF3, and VAMP8 for further analysis. The actual loca-
tions of these genes were at the maximum VC LOD scores
(CHI3L2, GSTM1, PSPH), 10 cM away (VAMP8), or 25 cM
away (PPAT). Bayesian oligogenic segregation analysis for
these traits provided posterior mean numbers of QTLs
ranging from 2 to 3.5. Estimation of the primary QTL
model was relatively straightforward (Table 1), whereas
the secondary or weaker QTL models were less obvious.
Heritabilities estimated from Bayesian oligogenic segrega-
tion analysis were sometimes higher than MLEs of h2

obtained from a VC polygenic model. This is not surpris-
ing because VC analysis with Merlin uses only additive
genetic variance, thus providing only narrow-sense herita-
bilities, whereas Loki allows for dominance effects, thus
providing larger broad-sense heritabilities.

Bayes factors using an oligogenic model for the 6 traits
Bayes factors generally matched the VC LOD scores in
both peak location and general shape (Figure 1, Table 2),
with two minor differences. First, Bayes factors provided
much narrower peaks than did VC LOD scores. Second,
Bayes factors did not provide several modest peaks that
were obtained with VC analysis. For PSPH, Bayes factors
did not provide evidence of linkage on chr 2, whereas VC
LOD scores provided bimodal peaks with VC LODs of 2.6
and 2.8. Also, Bayes factors did not confirm a secondary
peak obtained by VC analysis on chr 8 for PSPH and chr 2
for VAMP8. The primary QTL model estimated from seg-

regation analysis almost always appeared on the chromo-
somes with the strongest linkage signals. The traits with
support for linkage to more than one chr are: PSPH with
a strong signal on chr 7 (Fig. 1C) and a modest signal on
chr 8, TM7SF3 with moderate signals on both chr 2 and
chr 12, and VAMP8 with a strong signal on chr 2 (Fig. 1D)
and a weaker signal on chr 4.

LOD scores using a one-QTL model for the six traits
Model-based LOD scores matched VC LOD scores in both
peak location and general shape (Fig. 1, Table 2). The only
minor difference was that the model-based LOD score did
not provide a third peak between the two peaks that the
VC LOD score provided for TM7SF3 on chr 12. For most
traits several of the 14 pedigrees were almost uninforma-
tive for linkage, the model giving negligible probability
that the QTL was segregating in the pedigree (Table 3). For
PSPH, the low trait allele frequency led to 9 of the 14 ped-
igrees being uninformative.

For all six traits, lm_multiple runs with 3 k scans provided
better results than lm_markers runs with 30 k scans. Com-
putation time for 3 k scans with lm_multiple was about
one-third that of 30 k scans with lm_markers (Table 2). In
particular, for VAMP8, all 10 lm_multiple runs were an
almost perfect match to the exact LOD scores, whereas
lm_markers runs with 30 k scans showed moderate run-
to-run variation (Fig. 2). For all six traits, lm_multiple
showed the smallest run-to-run variation of the LOD
scores at the peak (Table 2) as well as elsewhere on the
chromosome. Runs of lm_markers with 3 k scans were not
much different and showed only slightly more variability
from runs with 30 k scans.

LOD scores using more complex models for the four traits
More complex trait models lead to higher LOD scores
than the 1Q model (Table 2). For GSTM1, the 1Q + P
model provided the highest LOD scores (Fig. 1B), while
for CHI3L2 and VAMP8, LOD scores for 1Q + UQ and 1Q
+ P models were almost identical (Fig. 1A, D). For
CHI3L2, the model labeled as 1Q + UQ in Table 2 actually
included a polygenic component, i.e., 1Q + UQ + P, which
increased the run time significantly. In contrast, for PSPH,

Table 1: Oligogenic segregation analysis results

Trait Transcript P(A) μ(AA) μ(Aa) μ(aa) σ2(q) σ2(a) σ2(e) h2 Loki h2 MLE

1 CHI3L2 213060_s_at 0.56 7.98 9.84 10.51 0.96 0.24 0.22 0.80 0.69
2 GSTM1 204550_x_at 0.77 8.01 9.17 9.50 0.35 0.03 0.15 0.70 0.68
3 PSPH 205048_s_at 0.89 6.43 8.88 9.51 1.02 0.55 0.12 0.85 0.64
4 VAMP8 202546_at 0.28 10.20 10.36 10.69 0.03 0.02 0.07 0.38 0.38
5 PPAT 209433_s_at 0.21 8.73 9.59 9.70 0.04 0.07 0.08 0.55 0.33
6 TM7SF3 217974_at 0.19 5.20 6.82 6.96 0.11 0.17 0.20 0.56 0.31

P(A), frequency of allele A; μ(AA), phenotypic mean of genotype AA; σ2(q), variance due to the major QTL; σ2(a), polygenic variance; σ2(e), 
environmental variance; h2, heritability
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the 1Q + UQ model provided strange results, with LOD
scores ranging from less than -3000 to 40 (Fig. 1C). This
may be due to inaccurate estimation of the secondary QTL
model: the combined genetic variance from the two QTLs
exceeded the total genetic variance obtained from segrega-
tion analysis. For VAMP8, the 2Q model provided two
peaks, of equal magnitude (Fig. 1D), resulting from the
identical model for both QTLs.

Discussion
We performed several multipoint linkage analyses for
quantitative traits: VC, Bayesian oligogenic, and paramet-
ric LOD score linkage analysis with 1Q, 1Q + P, 1Q + UQ,

and 2Q models. We found that all of these analyses pro-
vided similar inferences about peak location and shape,
with some advantage to using the 1Q + P and 1Q + UQ
models over the 1Q model. Use of parametric LOD scores
also provided insights into genetic heterogeneity of the
traits, which was considerable. However, models for QTLs
other than the primary QTL were difficult to estimate with
the Bayesian approach for these gene expression traits,
suggesting the need for better segregation analysis tools
for estimating parameters of complex trait models.

We were able to obtain reliable results for analysis with
clustered SNPs with several newly-developed MCMC pro-

Linkage analyses of 4 traitsFigure 1
Linkage analyses of 4 traits. A, CHI3L2 on chr 1. B, GSTM1 on chr 1. C, PSPH on chr 7. D, VAMP8 on chr 2. One linked QTL 
plus polygenic (magenta, long-dashed), one linked QTL plus one unlinked QTL (blue, dotted), one QTL (black, solid), VC 
(green, short-dashed), log 10 of Bayes factors (cyan, dot-dashed), and two linked QTLs (red, dot-dot-dashed).
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grams in MORGAN. We found that lm_multiple provided
better estimates of LOD scores than lm_markers with
fewer scans in less time although, in general, both pro-
grams performed well with only minor differences in the
variability between runs. The MCMC performance
obtained here is improved relative to our results for
GAW14 [11]. Factors in this improvement likely include
the use of sequential imputation to obtain starting config-
urations [12], less missing data, and different SNP marker
maps, in addition to improved algorithms and software.
Finally, although our goal here was to compare our devel-
oping MCMC-based methods, we advocate use of exact
computation when this is practical. On small pedigrees,
such as those used here, exact analysis with a 1Q model
and lm_markers or with VC methods may be best initially
since this is faster than MCMC analysis. Further analyses
may use lm_twoqtl, if the evidence warrants it. However,
on larger pedigrees, exact multipoint computation may
not be possible, in which case these MCMC options are a
viable and practical alternative.

Conclusion
We showed that MCMC-based programs from the MOR-
GAN package provide accurate LOD scores for quantita-
tive traits with SNP markers. The program lm_multiple
gives more accurate results than lm_markers, and the pro-

gram lm_twoqtl expands the trait models to include two
loci plus a possible polygenic component.

List of Abbreviations
1Q: One QTL

1Q + P: One QTL plus a polygenic component

1Q + UQ: One linked QTL plus one unlinked QTL

2Q: Two linked QTL

CEPH: Centre d'Etude du Polymorphisme Humain

chr: chromosome

GAW: Genetic Analysis Workshop

h2: heritability

MCMC: Markov chain Monte Carlo

MLE: Maximum likelihood estimate

QTL: Quantitative trait locus

Table 3: Exact LOD scores by family at chromosomal locations with the highest overall LOD score

Pedigree

Trait Chr cM 1 2 3 4 5 6 7 8 9 10 11 12 13 14 All

CHI3L2 1 147 0.6 0.76 2.34 2.34 -0.03 1.84 -0.72 1.09 1.68 2.02 -0.62 -0.05 0.79 -0.56 11.48
GSTM1 1 142 0 1.67 -0.01 1.4 0.42 0 0 0 0 -1.09 1.16 1.48 0.34 0.89 6.26
PSPH 7 80 2.34 0 0 2.03 0 0 0 2.01 0 0 2.03 0 0 1.64 10.05
VAMP8 2 113 0 0.08 0.31 -0.06 0.62 0.33 0.47 -0.17 1.01 0.38 0.21 0.49 -0.03 -0.08 3.56
PPAT 4 78 0.1 0.01 0.31 0.01 1.23 0 0.01 0 0.14 0.01 -0.11 0 0.02 1.49 3.22
TM7SF3 12 55 0.01 0.33 0 0.09 0 0.02 0 0 0.04 1.02 0.03 0 0 0 1.54

Table 2: Highest LOD score or log (Bayes factor) and run time (in minutes)

CHI3L2 147 cM (chr 1)a GSTM1 142 cM (chr 1) PSPH 80 cM (chr 7) VAMP8 113 cM (chr 2)

Model Program Scans Statb Time Stat Time Stat Time Stat Time

1Q Exact NA 11.5 1229 6.3 1234 10.1 470 3.6 1044
lm_multiple 3 k 11.3–11.5 44 6.2–6.3 45 9.9–10.1 33 3.6–3.6 43
lm_markers 3 k 10.7–11.6 21 5.7–6.3 21 8.1–10.3 13 3.5–3.6 20
lm_markers 30 k 10.6–11.6 177 5.7–6.3 168 8.1–10.1 110 3.2–3.6 153

1Q + P lm_twoqtl 30 k 13.7 563 7.2 604 10.8 401 3.8 535
1Q + UQ lm_twoqtl 3 k 13.4 3568 5.6 816 40.4 542 4.1 808
VC Merlin NA 13 2 5.7 2 14.3 1 5 2
Bayesian Loki 999 k 2.9 707 2.6 700 2.6 504 1.9 513

apeak position (± 1 cM) from all analyses and gene location except VAMP8 (120–123 cM).
bMORGAN and VC programs, the statistic (stat) is the LOD score with range (min and max) over 10 runs and time is the median of 10 runs for 
MCMC programs; Loki, stat is the log10 (Bayes factor) for one run.
Page 5 of 6
(page number not for citation purposes)



BMC Proceedings 2007, 1(Suppl 1):S93 http://www.biomedcentral.com/1753-6561/1/S1/S93
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

SNP: Single-nucleotide polymorphism

VC: Variance components

Competing interests
The author(s) declare that they have no competing inter-
ests.

Acknowledgements
Supported by NIH grants AG14382, AG05136, AG21544, AG11762, 
HL30086, GM46255, and HD35465.

This article has been published as part of BMC Proceedings Volume 1 Sup-
plement 1, 2007: Genetic Analysis Workshop 15: Gene Expression Analysis 
and Approaches to Detecting Multiple Functional Loci. The full contents of 
the supplement are available online at http://www.biomedcentral.com/
1753-6561/1?issue=S1.

References
1. Cheung VG, Spielman RS: Data for Genetic Analysis Workshop

15 (GAW15), Problem 1: genetics of gene expression in
humans.  BMC Proc 2007, 1(Suppl 1):S2.

2. MORGAN   [http://www.stat.washington.edu/thompson/Genepi/
genepi.shtml]

3. Heath SC: Markov chain Monte Carlo segregation and linkage
analysis for oligogenic models.  Am J Hum Genet 1997,
61:748-760.

4. Abecasis GR, Cherny SS, Cookson WO, Cardon LR: Merlin-rapid
analysis of dense genetic maps using sparse gene flow trees.
Nat Genet 2002, 30:97-101.

5. Morley M, Molony CM, Weber TM, Devlin JL, Ewens KG, Spielman
RS, Cheung VG: Genetic analysis of genome-wide variation in
human gene expression.  Nature 2004, 430:743-747.

6. Cheung VG, Spielman RS, Ewens KG, Weber TM, Morley M, Burdick
JT: Mapping determinants of human gene expression by

regional and genome-wide association.  Nature 2005,
437:1365-1369.

7. Rutgers map (build 35)   [http://compgen.rutgers.edu/maps/
b35.shtml]

8. Sung YJ, Dawson G, Munson J, Estes A, Schellenberg GD, Wijsman
EA: Genetic investigation of quantitative traits related to
autism: use of multivariate polygenic models with ascertain-
ment adjustment.  Am J Hum Genet 2005, 76:68-81.

9. Sung YJ, Thompson EA, Wijsman EM: MCMC-based linkage anal-
ysis for complex traits on general pedigrees: multipoint anal-
ysis with a two-locus model and a polygenic component.
Genet Epidemiol 2007, 31:103-114.

10. Tong L, Thompson EA: Multilocus LOD scores in large pedi-
grees: combination of exact and approximate calculations.
Hum Hered 2007 in press.

11. Sieh W, Basu S, Fu AQ, Rothstein JH, Scheet PA, Stewart WC, Sung
YJ, Thompson EA, Wijsman EM: Comparison of marker types
and map assumptions using Markov chain Monte Carlo-
based linkage analysis of COGA data.  BMC Genet 2005,
6(Suppl 1):S11.

12. Wijsman EM, Rothstein JH, Thompson EA: Multipoint linkage
analysis with many multiallelic or dense diallelic markers:
Markov chain-Monte Carlo provides practical approaches
for genome scans on general pedigrees.  Am J Hum Genet 2006,
79:846-858.

Linkage analyses of VAMP8 on chromosome 2 using 1Q modelFigure 2
Linkage analyses of VAMP8 on chromosome 2 using 
1Q model. 10 lm_markers runs with 30 k scans (cyan, 
solid), 10 lm_multiple runs with 3 k scans (magenta, solid), 
and exact run (black, medium-dashed).
Page 6 of 6
(page number not for citation purposes)

http://www.biomedcentral.com/1753-6561/1?issue=S1
http://www.biomedcentral.com/1753-6561/1?issue=S1
http://www.stat.washington.edu/thompson/Genepi/genepi.shtml
http://www.stat.washington.edu/thompson/Genepi/genepi.shtml
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9326339
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9326339
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11731797
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11731797
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15269782
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15269782
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16251966
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16251966
http://compgen.rutgers.edu/maps/b35.shtml
http://compgen.rutgers.edu/maps/b35.shtml
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15547804
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15547804
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15547804
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17123301
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17123301
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17934317
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17934317
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16451566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16451566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16451566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17033961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17033961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17033961
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

