
RESEARCH ARTICLE

Improved biogas production and

biodegradation of oilseed rape straw by using

kitchen waste and duck droppings as co-

substrates in two-phase anaerobic digestion

Chuqiao Wang1¤, Feng Hong1, Yong Lu1, Xianning Li1*, Hengming Liu2

1 School of Energy and Environment, Southeast University, Nanjing, China, 2 Ocean Science and

Environment College, Dalian ocean University, Dalian, China

¤ Current address: School of Energy and Environment, Southeast University, Nanjing, China.

* lxnseu@163.com

Abstract

Oilseed rape straw (ORS) is a kind of biorefractory waste widely existing in the rural area of

China, which is highly suitable to mix with kitchen waste (KW) and duck droppings (DD) in

two-phase anaerobic digestion (AD). This research introduced the importance of KW and

DD addition to improve the biogas production and biodegradation of ORS. A set of compara-

tive experiments were conducted on two-phase mono- and co-digestion with organic load of

60 g VS/L. The total methane yield (TMY) and the biodegradation of ORS of co-digestions

were obviously improving, and the synergistic effect found in the two-phase co-digestions.

The optimum mixing ratio of ORS, KW and DD was 50:40:10, and the corresponding TMY

and VS degradation rate of ORS were 374.5 mL/g VS and 49.7%, respectively. Addition of

KW and DD maintained the pH within the optimal range for the hydrolyzing-acidification,

improved the phase separation and buffering capacity of AD system.

1. Introduction

The oilseed rape is one of the most important oil-crops in China, and the annual oilseed rape

straw (ORS) production reaches 20 million tons. The Yangtze River Basin is the main growing

region of rapeseed with the yield accounting for more than 90% of the total in China. These

areas produce abundant ORS every year, most of which were burned after harvest, which not

only waste resource but also cause pollution to the air and the surroundings.

Due to the current fossil energy resources crisis [1], anaerobic digestion (AD), which con-

verted organic matter in the ORS into biogas and organic fertilizer, has been proved to be an

economic and clean method. However, the ORS has high lignin content and carbon/nitrogen

(C/N) ratio, which limits the anaerobic biodegradation process. Some researchers [2, 3] found

that lignin content in organic substrates could lead to low biogas yield and low degradation

rate. Therefore, there were only a few researches using ORS as feedstock for AD [4, 5]. How-

ever, the batch feeding mode is usually used for the straw fermentation on account of the

hard-degraded lignocellulose contains in straw. The straw has adsorption and interception
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effects to the microorganism that can cause sludge loss when reloading the digester. To ensure

the subsequent digestion well, the new inoculated sludge should be fed, which caused exten-

sion of fermentation time and increase of the operating costs. The large amounts of inoculum

used in single phase AD can be greatly reduced in two-phase AD.

Recently, many studies have shown that co-digestion is an attractive approach for improving

biogas production and biodegradation efficiency [6, 7]. Kitchen waste (KW), and duck droppings

(DD) are both readily available typical organic solid wastes with a large amount of production in

rural areas in China [8]. KW contains high content of readily biodegradable compositions and is

easily converted to biogas, but it has a low buffering capacity. However, the KW containing Na+

and other cationic elements could show inhibitory effects on microorganisms when the concen-

tration increased to a high level [9], so it is improper to feed high proportion of KW in anaerobic

digester. Many studies showed that digestion of materials with high concentration of nitrogen

has low C/N, such as animal manure, easily leading to ammonium nitrogen accumulation, diges-

tion inhibition, and low biogas production rate [10, 11]. Based on earlier studies, it suggests that

compared with mono-digestion, the use of kitchen waste [7] and livestock manure [12] as co-

substrates with crop straw can improve biogas production from AD.

Most of these studies were conducted with regards to co-digestions of crop straws using sin-

gle phase anaerobic digester [7, 12]. The single-phase co-digestions need more animal manure

to maintain suitable pH for biogas production, increasing the risk of ammonium nitrogen

inhibition accumulation [13]. More recently, two-phase AD gained more and more attention

due to many advantages, such as high buffering capacity and easily reloading substrates of the

hydrolytic-acidification reactor (HAR) in batch mode. Most of these studies were focused on

co-digestions of crop straws with single types of substrates and conducted in single phase AD

to improve the biogas production [14, 15]. However, according to the literature survey, no pre-

vious study has investigated the two-phase anaerobic co-digestion of ORS, KW and DD. The

synergistic effects and optimal mixing combinations between ORS, KW and DD are not clear.

Hydrolysis step is the limiting step of ORS in AD [16]. Some studies [17] used reduction in

VS to evaluate the efficiency of anaerobic digestion, and draw conclusions that higher rate of

VS destruction was obtained in co-digestion than in mono-digestion. It is apparent that, the

readily biodegradable materials in co-substrates could improve the VS destruction rate of the

overall digestion systems [8]. Previous studies pay more attention to the biodegradation of

the overall substrate in co-digestion, but do not pay much attention to the biodegradation

enhancement of straws by adding co-substrates in two-phase AD [17, 18]. Therefore, the com-

bined effect of ORS biodegradation by using KW, DD as co-substrates in two-phase AD

should be further studied.

The viability of co-digestion ORS, KW and DD by two-phase anaerobic reactor in batch

mode were presented in this study. The objectives of this study were (1) to evaluate the biogas

production of co-digestions and mono-digestions in two-phase mesophilic anaerobic digester

and demonstrate the synergistic effects of co-substrates and ORS, (2) to optimize the best ratio

in the different ORS/co-substrates mixtures on account of the biogas production, ORS degra-

dation and changes in hydrolysis-acidogenesis liquid, and (3) to investigate whether using DD

and KW as co-substrates with ORS in two-phase anaerobic digester may improve the ORS

biodegradation.

2. Materials and methods

2.1. Raw substrates and inoculum

The field study was permitted by administration committee of the Zheng Pu port development

zone. ORS, KW, DD and inoculum used in this study were sourced from Muchang Village,

Co-digestion of rape straw with two co-substrates in two-phase AD system
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MuqiaoTownship, Maanshan, Anhui, China. ORS were collected from the oilseed rape field

after harvest which was air-dried, chopped, and screened to 18 mesh (1–1.18 mm). KW was

collected from kitchens of a modernized rural communities (equipped with a refuse classifica-

tion system), which was mixed and smashed by food machine (Foshan, China) and frozen at

-20˚C. DD was collected from a duck farm near the village which was preserved at -20˚C after

feather removal. Inoculum was collected from a household anaerobic digester treating swine

manure at local village. Sludge was acclimated, which used mixed leachate of ORS, KW and

DD (the proportion was 50:25:25) in laboratory anaerobic digester at 35˚C for 5 months before

utilization. The main characteristics and compositions of these substrates and inoculum are

summarized in Table 1.

2.2 Operation of two-phase anaerobic digestion

The two phase anaerobic digestion system (Fig 1) consisted of a 15 L hydrolytic-acidification

reactor (HAR) and a 5.6 L biogasification reactor (BR), which working volume were 8 L and 4

L, respectively. Each reactor was made of transparent acrylic. The solid-bed reactor is designed

for the hydrolysis and acidification, and connected to the bottom of upflow anaerobic filter

reactor which is designed for the methane fermentation. The polyethylene packing pellets

were suspended in the BR of 2.5 L to intercept microorganism and provide sufficient surface

area for the attachment of more microorganism. Six HARs were submerged in a 35±1˚C water

bath, and internal heat exchangers were used to keep six BRs at 35±1˚C. The 35±1˚C water in

heat exchangers was provided by water bath and circulated by magnetic pump.

The inoculum was taken from a two-phase anaerobic reactor (60 L) running steadily in lab-

oratory, and then quickly concentrated and transferred into BRs (5.6 L) of two-phase anaero-

bic digesters. The weights of sludge added into BRs were 160 g in all based on VS. The leachate

Table 1. Characteristics of raw substrates and inoculum.

Characteristic Oilseedrape straw Kitchen waste Duck droppings Inoculum

pH ND 3.85±0.02 8.54±0.11 7.97±0.13

Total solids, TS(%WWa) 87.97±0.56 29.26±0.51 37.00±0.78 4.68±0.15

Volatile solids, VS(%WWa) 78.34±0.53 26.78±0.52 25.24±0.41 2.51±0.08

VS/TS ratio (%) 89.05±0.54 91.52±0.78 68.25±1.83 53.68±0.63

Carbon, C(%TS) 40.87±0.54 51.16±0.31 29.53±0.21 ND

Nitrogen, N(%TS) 0.81±0.37 2.08±0.14 2.81±0.14 ND

Hydrogen, H(%TS) 5.77±0.44 8.52±0.21 4.84±0.19 ND

Oxygen, O(%TS) 41.18±0.49 29.27±0.51 30.71±0.31 ND

C/N ratio 50.4±7.2 24.6±2.1 10.5±1.7 ND

Cellulose(%TS) 42.62±1.83 16.60±2.36 22.44±2.82 ND

Hemicelluloses(%TS) 21.21±1.21 6.9±1.72 11.84±1.39 ND

Lignin(%TS) 23.15±1.66 3.0±1.21 0.97±0.58 ND

Ash(%WWa) 9.63±0.51 2.48±0.45 11.75±0.88 2.17±0.20

TVFAb(g L-1) ND 4.78±0.08 0.43±0.02 ND

TAc(gCaCO3 L-1) ND 0 9.22±0.21 7.44±0.12

NH4
+-Nd(g L-1) ND 0.51±0.03 3.14±0.08 ND

Data are the averages of three measurements, and numbers after plus-minus signs are the standard deviations.
a WW: wet weight.
b TVFA: total volatile fatty acids.
c TA: total alkalinity.
d NH4

+-N: ammonia nitrogen.

https://doi.org/10.1371/journal.pone.0182361.t001
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of ORS, KW and DD were preliminarily used to acclimatize anaerobic bacteria before the

digestion for 15 days. Except for mono-digestion group, the proportion of ORS in each HAR

was kept 50% (30 g VS/L, VS loading) while the KW and DD were added at variable propor-

tion. The proportions (based on VS loading) of KW or DD in two-phase co-digestion (G1 and

G2) were designed as 50% and 50%, respectively. The ORS: KW: DD ratios of groups G3, G4,

G5 with three kinds of substrates were designed as 50:40:10, 50:25:25 and 50:10:40, respec-

tively. The ORS percentage fixed in 50% is because there are abundant ORS produce in rural

area of China, but the amounts of KW and DD are relatively few. In order to promote hydroly-

sis-acidification rate, the fermentation slurry in HAR (70 L) of laboratory two-phase anaerobic

reactor was diluted (TVFA 17.1±1.2 mg/L), and then added into HAR to the designed volume.

All reactors were purged with N2 gas for 3 min to expel the oxygen before being sealed.

The acrylic perforated plate (4 mm holes), which is covered by nylon mesh (0.8 mm), and

put at the bottom of the solid-bed reactor to separate substrates from leachate. The substrates

mixtures were processed in batches, and the digestion was operated in a batch mode with solid

retention time of 35 days. The previous laboratory experiments showed the increasing trends

of TVFAs concentration in HARs became gentle after the 6th day. After mono- or co-sub-

strates were fed in HARs for the first 6 days, the HARs were disconnected to the corresponding

BRs, and the liquid inside was self-circulated using peristaltic pump at 11.1 mL/min for 30

min intermittently, 24 times per day. From the 7th day on, leachates of the HARs were

pumped into corresponding BRs at 5.6 mL/min for 20 min intermittently, 12 times per day.

Reflux liquid from BR to HAR was flowed through a U-shape water seal pipe by gravity flow.

2.3 Theoretical and weighted specific methane yield

The theoretical methane potential (TMP) of organic substrates can be estimated by the Buswell

formula based on elemental composition, as shown in Eqs 1 and 2.
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Fig 1. Schematic of a batch two-phase digester for the treatment of co-substrates.

https://doi.org/10.1371/journal.pone.0182361.g001
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The weighted average methane content (WAMC) was calculated based on Eq 3. The

weighted specific methane yield (WSMY) was calculated as the weighted average of the indi-

vidual substrates’ total methane yield (TMY).

WAMC %ð Þ ¼

Pn
i¼1
BPi �MPiPn
i¼1
BPi

ð3Þ

where: BPi = biogas production on day i,

MPi = methane content on day i,

n = number of digestions.

2.4 Biodegradation of ORS

At the end of the anaerobic digestion, the HARs were drained out, and the VS and content of

CHL (cellulose, hemicellulose and lignin) of fermented ORS were determined. The degrada-

tion rate of ORS and removal rate of the CHL of fermented ORS were calculated as Eq 4 and

Eq 5, respectively.

Degradation rate of ORSð%Þ ¼
VS of ORS before AD � VS surplus after AD

VS of ORS before AD
� 100 ð4Þ

Removal rate of CHL %ð Þ ¼
CHL in ORS before AD � CHL in ORS after AD

CHL in ORS before AD
� 100 ð5Þ

2.5 Analytical methods

Moisture content (MC), Total solids (TS) and volatile solids (VS) of ORS, KW and DD, before

and after digestion, were determined according to Standard Methods [19]. Elemental compo-

sition of the ORS, KW and DD were measured by elemental analyzer (CHN-O-Rapid, Her-

aeus, Germany). Hemicellulose, cellulose, and lignin content were determined according to

the method described by Van Soest [20]. Each solid or semisolid sample was analyzed in

triplicate.

Liquid samples were taken from each hydrolytic-acidification digester daily during the first

6 days of the batch digestion, and from 7th day, each HAR and BR was sampled every 2 or 3

days. The liquid samples were primarily centrifuged at 10,000 rpm for 10 min and filtered

through 0.45 μm membrane filter to remove particulate, soluble chemical oxygen demand

(sCOD) and total ammonia nitrogen (TAN) were determined according to Standard Method

[19]. Total alkalinity (TA) was measured by pH titration to 4.3[19]. pH was measured by pH

meter (PB-10, Sartorius, Germany).Each liquid samples were analyzed in triplicate, all the resi-

due liquid samples were returned to the corresponding reactors after analysis. The volatile

fatty acids (VFAs) in HARs and BRs were measured acetic, propionate, iso-butyric, butyric,

valeric and iso-valeric acid by GC (GC-2001, Shimadzu, Japan) equipped with hydrogen flame

ionization detector (FID) using Nitrogen as a carrier gas in a quartz capillary column (30

m×0.32 mm×D×0.25 μm; Stabilwax-DA, RESTEK, USA). The GC was operated when the

Co-digestion of rape straw with two co-substrates in two-phase AD system
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injection port and detector temperatures were 220˚C and 230˚C, respectively. The oven tem-

perature-rising program was as follows: the temperature was maintained at 90˚C for 1 min,

increased to 130˚C at rate 12˚C/min and kept 2 min, and increased to190˚C at rate 10˚C/min

and maintained 2 min.

Biogas samples were collected with gas collecting bag (E-Switch, Shenyuan, China) daily.

Silicone tube was used to connect gas collected bag to wet gas-flow meter for calculating biogas

volume. Methane content of biogas samples was measured by fast biogas analyzer equipped

with infrared detector (GT901-CH4, Shenzhen, China).

2.6 Data analysis and statistics

Biogas yield changed constantly during the whole batch digestion process. The methane

content and the biogas yields change considerably at different digestion time, which is more

accurate to represent methane content in the whole batch digestion than the average only.

Therefore, the weighted average methane content (WAMC) was used to depict the methane

changes. The WAMC was calculated according to the introduction by El-Mashad et al (Eq 3)

[21].

The measurements were conducted in triplicates and expressed as means ±standard devia-

tion (SD). The significant differences between 8 groups were determined using one-way analy-

sis of variance (ANOVA), the significant level (p value) was set at 0.05 and 0.01. The Duncan’s

multiple range test was used to analyze statistically significant differences between pairs of

means with the threshold values of 0.05 and 0.01 significance level. The OriginPro 8.5 (Origi-

nLab, USA) and SPSS19.0 (IBM, USA) were used for graphing and data processing.

3. Results and discussion

3.1 Substrate characterization

The characteristics of raw substrate, oilseed rape straw (ORS), kitchen waste (KW) and duck

droppings (DD) are shown in Table 1. The VS/TS ratio is an indicator to evaluate the organic

content in substrate. Based on the total weight basis, VS/TS ratio of ORS, KW and DD were

89.05, 91.52, and 68.25%, respectively. Generally speaking, substrates with higher VS/TS ratio

contain more organics and more suitable for biogas production [22, 23]. However, previous

study showed oilseed rape straw with high lignin content was inefficient to be converted into

biogas by AD [5].The ORS used in this study contained higher lignin content (23.15%±1.66)

than KW and DD, meaning that ORS was hard to be biodegraded in the AD, which was similar

to those reported[4]. The C/N ratio of substrate is an important factor on biogas production in

AD. The C/N ratio of ORS (50.4±7.2) was much higher than that of KW (24.6±2.1) and DD

(10.5±1.7). Previous study showed the C/N ratio in the range of 15–30 was optimal for the bio-

gas production [8]. This funding implied that the addition of KW and DD as co-substrates

with ORS reduced the C/N ratio to the proper range in two-phase AD.

3.2 Biogas and methane production from mono-digestion

The results of three mono-substrates in the two-phase anaerobic digestion are shown in

Table 2. For ORS and DD, the total biogas yields (TBYs) were 244.1 and 281.8 mL/g VS, re-

spectively; the total methane yields (TMYs) were 132.3 and 159.2 mL/g VS, respectively. These

results are similar to those from single-phase anaerobic digestion of ORS [4] and from single-

phase anaerobic digestion of poultry slurry [24]. This indicated that two-phase anaerobic

digestion cannot increase biogas production for individual ORS and DD.

Co-digestion of rape straw with two co-substrates in two-phase AD system
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The pH in all trials was not adjusted except G7 (mono-KW), in which biogasification was

inhibited by low pH. Therefore, BR of mono-KW group was using NaHCO3 to adjust pH to

7.0 at the 16th day, and after that the pH was adjusted every 2 days. Higher total biogas and

methane yield were obtained in G7, 540.6 and 335.6 mL/g VS, compared to G6 and G8, which

mainly contained higher readily- biodegradable organic content in KW. On the contrary,

ORS, which contains high proportion of organics showed lowest TBY and TMY. This could be

attributed to the high lignin content in ORS [8, 25].

For the individual two-phase AD of ORS, KW or DD, the weighted average methane content

(WAMC) were 52.7, 60.3 and 54.3%, respectively; the theoretical methane potential (TMP)

were 440.7, 660.5 and 422.1 mL/g VS, respectively; the ratio of total methane yield (TMY) to

TMP were 0.30, 0.51 and 0.38, respectively, which indicated that ORS was more refractory com-

pared with KW and DD. The TMY of ORS were lower than other crop straws of previous study,

this is mainly because the higher lignin content in ORS compare with others [13]. However, the

TMY/TMP ratio of G7 was somewhat lower than previous results for individual KW during

two-phase fermentation [26, 27]. This might be due to the late pH adjustment (compare to pH

adjustment throughout digestion) and shorter digestion time in this study.

3.3 Biogas and methane production from co-digestion

Table 2 shows the BYs (biogas yields), MYs (methane yields),WAMC (weighted average meth-

ane content)and TMP (theoretical methane potential)of corresponding HAR, BR and overall

digestion system at different mixing ratio of ORS mixed with KW and DD. For different co-

digestions, the TBYs (Total biogas yields) of G1 to G5 were calculated as 538.1, 307.0, 601.8,

448.9, 380.4 mL/g VS, respectively; the TMYs (Total methane yields) of G1 to G5 were calcu-

lated as 317.8, 173.4, 374.5, 275.7, 230.7 mL/g VS, respectively. Compared with the two-phase

fermentation of individual ORS, the TBYs and TMYs of co-digestions were enhanced from

25.8 to 146.5% and from 31.1 to 183.1%, respectively. Correspondingly, the highest TBY and

TMY during the 36 days were both obtained in the G3. Linear increase of both TBYs and

TMYs was evident between co-digestion and mono-digestion of ORS (p<0.05). This implied

that adding KW and DD as co-substrates for ORS would effectively enhance the methane and

biogas production. It is reported similarly that the addition of food waste or livestock manures

as co-substrate in anaerobic digester could improve both the biogas production rates and the

cumulative biogas production yield [28, 29].

In order to accurately depict the synergism in two-phase co-digestion, the additional meth-

ane yield over the weighted specific methane yield (WSMY) was introduced before [30]. It

can be seen from Table 2 that the TMY of co-digestions were showed to be a positive differen-

tial from WSMY, and the TMY of G1-G5 were increased by 35.8, 17.3, 73.1,45.2 and 41.6%,

respectively, compared with the corresponding WSMY. What’s more, the differential of G3

containing 40% KW and 10% DD was higher than G1 which contained 50% KW. Therefore,

the enhanced biogas production did not just attribute to the increased content of readily bio-

degradable substrates in the feedstock. It can be seen in Table 2, that the C/N ratio of mono-

ORS digestion was 50.4, which was not in optimal range of 15–30 [8]. However, the C/N ratios

of co-substrates in G1 to G5 were decreased to 37.5, 30.5, 36.1, 33.9 and 31.9, respectively. The

decrease of C/N ratio could increase nitrogen nutrition in HAR for the hydrolytic bacteria,

acidifying bacteria and methanogenic archaea [14]. Ammonia-nitrogen is not just a good

nitrogen source for microbes, and it could affect the alkalinity. As can be seen from Fig 2C,

the TAN concentration increased with the decreasing of C/N ratio, and then the buffering

capacity of the AD system was improved, which eventually lead to the promotion of BY and

MY [14, 25].

Co-digestion of rape straw with two co-substrates in two-phase AD system
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For different mixing ratio of feedings, the daily biogas yield in HAR, BR and the corre-

sponding CH4 contents during the co-digestion are shown in Fig 3. It can be seen from Fig 3A,

all the co-digestions (G1 to G5) were produced large amounts of biogas in the first day and

dropped gradually until the 6th day, and similar changes appeared in G6 from the second day

with lower biogas yields. This is mainly because the substrates were hydrolyzed and used by

the anaerobic microorganisms and gradually inhibited by the low pH (see Fig 4A), and the

ORS was hydrolyzed slower than co- substrates at start-up [31]. The HAR G2, G4 and G5,

with 50, 25 and 40% DD in the feeding co-substrates reached the daily biogas production peak

at around 10th day and earlier than G6. Thereafter, the daily biogas yield dropped gradually

until the end of the trails. On the contrary, the co-digestions of G1 and G3 containing 50 and

40% KW both had a lag phase in HAR, which were 14 and 8 days, respectively, before reaching

the peak of daily biogas yield. This could be due to more easily acidified organic matter caused

lower pH (Fig 4) and inhibited the bio-gasification subsequently. As shown in Fig 3B, the BRs

of G2, G4 and G5 showed no apparent inhibition to biogas production. On account of inocu-

lum was acclimatized before fermentation, VFAs can be quickly consumed by methanogens in

BRs, and thereafter reduced the VFAs inhibition in HARs. However, lag time (3 days) and sig-

nificant inhibition were appeared in G1 and G3, respectively, both of which were self-recov-

ered before the 15th day. This was due to low pH in HAR of G1 and G3 has significant impact

Table 2. Experimental design and results of two phase co-digestion under different mono- and co-substrates.

Group unit G1 G2 G3 G4 G5 G6 G7 G8

Operation conditions

Digestion type Co- Co- Co- Co- Co- Mono- Mono- Mono-

ORS:KW:DD proportion 50:50:0 50:0:50 50:40:10 50:25:25 50:10:40 100:0:0 0:100:0 0:0:100

ORS g VS/L 30 30 30 30 30 60 0 0

KW g VS/L 30 0 24 15 6 0 60 0

DD g VS/L 0 30 6 15 24 0 0 60

Initial C/N 37.5 30.5 36.1 33.9 31.9 50.4 24.6 10.5

Digestion performances

TBYa mL/g VS 538.1 307.0 601.8 448.9 380.4 244.1 540.6 281.8

Biogas from HAR mL/g VS 309.1 202.2 358.2 276.3 249.6 162.5 325.5 183.6

Biogas from BR mL/g VS 229.0 104.8 243.6 172.6 130.9 81.6 240.9 98.2

WAMCb% 57.3 54.5 61.6 61.5 59.3 52.7 60.3 54.3

TMPc mL/g VS 550.6 431.4 526.7 491.1 455.2 440.7 660.5 422.1

TMYdmL/g VS 317.8 171.0 374.5 275.7 231.4 132.3 335.6 159.2

TMY/TMP 0.58 0.40 0.71 0.56 0.51 0.30 0.51 0.38

Methane from HAR mL/g VS 183.6 109.8 222.8 167.8 144.8 89.9 173.5 107.3

Methane from BR mL/g VS 134.2 61.1 151.6 107.9 86.5 42.3 162.1 51.9

Methane from HAR/BR ratio 1.37 1.80 1.47 1.55 1.67 2.12 1.07 2.06

WSMYemL/g VS 233.9 145.8 216.3 189.9 163.4 - - -

Differentialf mL/g VS 83.8 25.3 158.2 85.9 68.0 - - -

Co- and Mono- represent the co-digestion and mono-digestion, respectively.
a TBY: total biogas yield.
b WAMC: weighted average methane content.
c TMP: theoretical methane potential.
d TMY: total methane yield.
e WSMY: weighted specific methane yield.
f Differential: calculated by TMY minus WSMY.

https://doi.org/10.1371/journal.pone.0182361.t002
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on corresponding BR when hydrolysis-acidogenesis liquid pumped in [32]. The results

reported by Ye et al. [17] showed the occurrence of inhibition when KW proportion was

higher than 12% in the single-phase co-digestion of KW, pig manure and rice straw, some of

which cannot recover even after pH adjustment. This indicated that two-phase AD had better

buffering capacity in co-substrates digestion which contained easily acidified materials than

the single phase digestion. The peak daily biogas yield in HAR and BR of G1 to G5 were all

improved with the increase of KW proportion, but HAR of G3 was slightly higher than G1.

This might be caused by the VFAs concentration in HAR of G1 was lower than G3, which con-

tained three kinds of feedstock.

The methane content of biogas produced from HARs and BRs is shown in Fig 3C and 3D,

respectively. The methane content in the different HARs and BRs reached steady state around

the 9th day, and the methane percentage was 50–70% in the HAR and 55–78% in the BR.

However, for the G1 and G3, the methane content in the HAR achieved steady state at the

20th and 15th day, respectively, and methane content of BR achieved steady state at the 13th

and 23th day, respectively. The highest methane content of HAR and BR both obtained in G3

was 72.8 and 78.6%, respectively. All the methane content of BRs was higher than that in corre-

sponding HARs, mainly because of the hydrolysis/acidogenesis process in HARs. The hydro-

gen content not measured in this study mainly because the hydrogen production will decrease

with the pH gradually increase in HAR.

The ratio of methane yield from HAR and BR could illustrate the phase separation degree

between hydrolytic-acidification phase and biogasification phase. Table 2 shows that the ratios

decreased with the increase of KW proportion and with reduce of DD proportion in feedstock.

Fig 2. Total volatile fatty acids concentration (A), soluble COD and VFAs/sCOD ratio at sixth day (B), TAN

concentration changes (C), total alkalinity (D).

https://doi.org/10.1371/journal.pone.0182361.g002
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This could be due to the growth and metabolism activities of the methanogens were inhibited

by low pH and poor nutritional structure (C/N) in HARs, which contained higher proportion

of KW [33]. In contrast, the increase of DD content could provide optimal nutritional supple-

ment in HARs and help remove the inhibition and therefore more biogas obtained from

HARs.

As a matter of fact, the methane obtained from HAR/BR ratio of individual ORS and DD

digestion were prominently higher than other groups. A considerable amount of microorgan-

ism in animal manures [34] could improve the hydrolysis and gas generation process. ORS in

HAR could be used as biodegradable carriers, which supported the growth of microorganisms

[35], intercepted the methanogens in BR to form bacteria colloid, and thus increased the bio-

gas yield in HAR. This may explain why more biogas was obtained from HAR compared to

BR (Table 2). In addition, methanogens cannot be completely separated from acidogenic

phase, and the inhibition of the methanogens in HARs was removed gradually along with the

digestion [32].

3.4 Effect of different co-substrates on hydrolysis-acidogenesis liquid

3.4.1 pH and VFAs concentration. Several reports suggested that the optimal pH for

hydrolytic and acidogenic bacteria activity is between 5 and 6 [26, 36], and the proper pH for

the methanogenesis is within the range of 6.8–7.2. For the pH in the HARs of G1-G5 decreased

from the 1st to 6th day, and the values first dropped to 4.30–6.99, and then raised to 7.0–7.5

Fig 3. Daily biogas production of HAR(A), Daily biogas production of BR(B), Methane content of HAR(C),

Methane content of BR(D) of different feedstock in two-phase mono- and co-digestion.

https://doi.org/10.1371/journal.pone.0182361.g003
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gradually. By contrast, the pH in BRs of G2, G4 and G5 were close to the neutral (from 6.93 to

7.78) during the entire period of digestions, and slightly decreased at the 7-9th day. However,

pH in BR of G1 and G3 dropped to 5.88 and 6.43, respectively, and start to recover gradually

from day 9–17 and day 10–20, respectively. Zhu et al. [37] investigated the biogas yield from

municipal solid wastes, the result shown that the pH of HAR (7.3–7.8) was very close to that in

BR (7.9–8.1), but the pH showed different trend between HAR and BR in this study. It is due

to less inoculation sludge was added in HAR in this study, and VFAs in HAR was consumed

slower by methanogenic bacteria compared with Zhu’s study. The varying degrees of pH

Fig 4. pH changes in HAR (A), pH changes in BR pH (B).

https://doi.org/10.1371/journal.pone.0182361.g004
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recovery were observed in the different co-digestions, which contained 25–50% DD and recov-

ered rapidly to obtain over 80% biogas before the 20th day. The alkaline matters in DD and the

NH4
+-N production during the digestion process might have neutralized the pH, and thus

enhanced the buffer capacity of two-phase anaerobic system.

On the other hand, the presence of large proportion of DD in the co-substrates could cause

the decrease of other bio-degradable materials, and led to the decrease of total biogas and

methane yields. It can be seen from Fig 4A and Table 2 that HAR of G3 had suitable pH for

hydrolytic and acidogenic bacteria, and the corresponding BR have relatively short recovery

time compared to that in G1. However, previous studies showed that the anaerobic co-diges-

tions caused the failure of digestion or chemicals were needed to adjust pH when the propor-

tions of KW were high [17, 36]. This proved that the BR of the two-phase co-digestion system

presented the high buffer capacity to avoid acidification during the anaerobic digestion even if

an accumulation of VFA occurred.

For the group G1-G6, the VFAs concentrations existing in HARs increased in the first 6

days and decreased abruptly after HARs connected to BRs, and then gradually decreased until

the end of the operation (Fig 2A). It is generally known that the growth and metabolism rate of

hydrolytic bacteria and acidifying bacteria are faster than methanogenic bacteria, thus causing

VFAs accumulate at the beginning. When HARs and BRs were connected, the methanogenic

bacteria in BRs started to consume VFAs, and some of which were transferred into the HARs.

The VFAs production and consumption kept relatively stable to the end.

The analyses of total volatile fatty acids (TVFAs) concentration of HARs (Fig 2) showed

that higher TVFAs concentration existed in the HARs of G1-G5 than in the pure ORS reactors,

and there is an increasing trend with the increase of the KW content. This suggested that the

addition of KW and DD could promote the TVFAs production in HARs. However, the G1

which contained 50% KW obtained lower (p<0.05) TVFAs concentration than G3 (KW: 40%,

DD: 10%). The TVFAs concentration was affected by the KW content mainly due to rapid

hydrolysis and acidification of the KW in the first 5–6 days. In addition, the DD added as co-

substrate caused less inhibition of hydrolysis and acidification. A similar result was obtained

during the single-phase co-digestion of rice straw, kitchen waste and pig manure [17].

As shown in Fig 4A and Fig 2A, the decrease of pH was mainly caused by the accumulation

of VFAs. The total VFAs concentrations in all HARs reached the peak values ranging from

6000 to 13000 mg/L during the initial 5–6 days, and were significantly affected by the propor-

tion of KW in the co-substrates. This could be due to the KW, containing high contents of

organic matters, which can be easily converted to VFAs and cause low pH. Similar findings

were reported by Ye et al. [17, 36]who noticed that maximal VFAs concentrations occurred in

the single-phase co-digestion with the highest proportion of KW. However, the VFAs concen-

trations and pH of G1 were both lower (p<0.05) than those in G3 (Fig 2A). This indicated that

the addition of DD could improve the buffering capability and acidification efficiency in HAR

once again.

3.4.2 VFAs/sCOD and VFAs distribution. In the acidogenic phase of two-phase anaero-

bic co-digestion, the ratio of VFAs/sCOD can indirectly characterize the acidification degree

of the materials. As can be seen from the Fig 2B, VFAs/sCOD ratio were somewhat increased

in the co-digestions compared with the ORS mono-digestion except in G1. The maximal ratio

of 71.3% was obtained in G3, which was higher than that in G2, G4, G5 and G6 at p<0.05

level, and higher than that in G1 at p<0.01 level. The VFAs/sCOD ratio obtained in G2 was

not significantly (p>0.05) improved than that obtained in G6, which suggested that the addi-

tion of both individual KW or DD could not improve the acidification efficiency. These can be

attributed to more suitable pH and nutrition (Fig 4A) for acidogenic bacterial activity in the

HAR with three kinds of substrates. Previous studies reported the lower VFAs/sCOD ratio in
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the HAR of (co-)digestion mainly because of unsuitable pH and excessive organic load [33,

38]. As can be seen from Fig 2B, sCOD existing in HARs of G1-G6 shows a rising trend with

the increase of KW proportion. The corresponding TVFAs concentrations obtained at the 6th

day ranged from 5359.2 to 17768.6 mg COD/L (Table 3), which shared the similar trends as

when sCOD was affected by KW contents. As reported before, the salinity and fat in KW can

inhibit the microbial activity of acidifying bacteria, which might be the reason for lower VFAs/

sCOD ratio and relative higher sCOD obtained in G1 than G3 [39].

On account of the increasing trend of TVFAs was became gentle after the 6th day based on

pre-experimental, and the 6th day was chose to discussed in this study. The TVFAs obtained at

the 6th day were calculated by sum of acetic, propionate, iso-butyric, butyric, valeric and iso-

valeric acid, and the distribution of VFAs in different co-digestions are shown in Table 3. Ace-

tic acid, propionic acid and butyric acid composed 87.4–97.1% of VFAs, which played an

important role in producing methane during anaerobic co-digestion. According to Zhu et al.

[37], acetic acid and butyric acid were the most important VFAs in the HARs, which were nor-

mally produced by hydrolysis/acidogenesis fermentation and could be easily converted to

methane by anaerobic microorganisms. This is mainly because acetate acid could be directly

converted to CH4 and CO2, but butyric acid and propionic acid needs intermediate conversion

to form acetate first. The standard Gibbs free energy change of these three processes are -31.0,

+48.1 and +76.1 kJ/mol, respectively. Therefore, compared to butyric acid, propionic acid can

be converted to acetic acid when the hydrogen partial pressure and acetic acid concentration

were at lower levels [17].

As shown in Table 3, the acetic acid content in VFAs of the HARs (G1-G5) reached 24.6,

68.3, 42.3, 46.1 and 46.7%, respectively, and propionic acid content arrived at 31.5, 18.4, 22.8,

20.7 and 13.9%, respectively. The content of acetic acid in VFAs of different HARs showed

increasing trend when the DD content increased and KW content decreased, and this trend was

gentle between G4 and G5. While the content of propionic acid showed a contrary tendency. It

is because of the high C/N ratio and easily degradable contents in the substrates (see Table 1),

which caused low pH (see Fig 4). The pathway of acetic acid convert into methane was inhibited

at low pH, and then the acid accumulation was appeared [40]. On account of feedback effects

the conversion of propionic acid was inhibited. Similar results have been reported that propi-

onic acid and lactic acid were the main products for the KW fermentation [41].

The propionic acid concentration in G3, G4 and G5 reached 3497.4, 1967.0 and 1262.4

mg/L, respectively, showing no obvious inhibition to methanogenesis of BRs. However, BR

of G1, in which the propionic acid concentration achieved 3666.2 mg/L, showed unstable per-

formance (Fig 3B), and did not showed the complete digestion failure. Pullammanappallil

Table 3. Individual VFA contents in the mono- and co-digestion of HARs.

Group TVFAs

mgCOD/L

Distribution of VFAs

acetic acid

%

propionic acid

%

isobutyric acid

%

butyric acid

%

valeric acid

%

isovaleric acid

%

G1 17620.9 24.6 31.5 0.3 38.3 4.8 0.5

G2 8241.3 64.3 18.4 3.2 11.9 1.9 0.3

G3 17768.6 30.3 29.8 0.6 37.0 2.2 0.2

G4 14387.0 46.1 20.7 2.6 27.3 3.2 0.4

G5 13749.7 46.7 13.9 2.0 33.1 4.2 0.6

G6 6823.6 45.2 12.5 3.0 29.7 8.6 1.1

G7 12328.8 27.6 50.2 3.0 14.5 3.4 0.9

G8 5359.2 59.4 20.0 5.0 12.0 2.1 1.6

https://doi.org/10.1371/journal.pone.0182361.t003

Co-digestion of rape straw with two co-substrates in two-phase AD system

PLOS ONE | https://doi.org/10.1371/journal.pone.0182361 August 2, 2017 13 / 19

https://doi.org/10.1371/journal.pone.0182361.t003
https://doi.org/10.1371/journal.pone.0182361


et al. [42]reported that the single-phase digestion would be inhibited seriously or cause the fail-

ure of system function when the propionic acid concentration was higher than 3000 mg/L.

Based on these results, it could be concluded that the two-phase co-digestion of ORS, KW and

DD present better capability to remove inhibition. Nevertheless, the potential risk of propionic

acid inhibition to methanogenesis could occur in the two-phase anaerobic co-digestion when

KW proportion was higher.

3.4.3 Ammonia nitrogen and alkalinity. The variations of total alkalinity (TA) and total

ammonia-nitrogen (TAN) during the digestion period are shown in Fig 2C and 2D. It is gener-

ally known that ammonia-nitrogen (NH4
+-N) can combine with carbon dioxide in water

to form ammonium bicarbonate, which is attributed to the alkalinity and help maintain the

pH value. As can be seen in Fig 2C, TAN concentrations of all the co-digestions decreased

slightly during the early phases in HARs. Subsequently, they began to rise and remained stable

between 538.5 and 1242.3 mg/L. Compared with mono-digestion with individual ORS, the

TAN concentration in the fermentation liquor of co-digestion was obviously higher (p<0.05).

Ammonia-nitrogen was produced from the hydrolysis process of organic nitrogen compounds

at the beginning of digestion, and the propagation of microorganisms consumed certain nitro-

gen. The TAN may increase again when the microorganism density was stable and the organic

nitrogen in the feedstock kept hydrolyzed slowly.

The function of alkalinity in fermentation liquor, which primarily is composed of carbon-

ate, bicarbonate and hydroxide, is to bind hydrogen ions. For the two-phase anaerobic diges-

tion, methanogenic effluent provided the bicarbonate alkalinity for pH buffering in the HAR.

These alkaline materials, which were generated during the fermentation period, have capacity

to buffer the acidic materials. As shown in Fig 2D, TA of co-digestions fluctuated in the range

from 1500 to 6300 mg CaCO3/L, all the TA of co-digestions were instable in the early phase

due to the VFAs accumulation, and gradually become steady with the consumption of VFAs.

The maximal TA obtained in G2 reached 6321 mg CaCO3/L. With the dissolution of organic

nitrogen from DD and KW, the TAN concentrations increased to neutralize the VFAs in acidi-

fication and increase the alkalinity. On the other hand, methanogenic effluent provided the

bicarbonate alkalinity and relieves the inhibition of VFAs in HARs.

Both concentrations of TAN and TA increased with the increase of DD proportion in the

feedstock under all different co-digestion conditions, and the corresponding pH increased at

the same time (Fig 4). Higher DD content in the substrates provided higher concentrations of

ammonia and may be the main source for buffering capacity improvement. A previous study

on the two-phase digestion of kitchen waste suggested that enough alkali was required for pH

buffering, and NaOH was therefore added to control the pH [27].

According to the results in this study, the addition of KW and DD in two-phase co-diges-

tion process induced high ammonia concentration and improved the buffering capacity of the

system. However, it is hard to reduce inhibition from ammonia in the two-phase co-digestion

when the feedstock contained high DD contents [10, 13]. What is more, excessive DD content

in feedstock may cause poor phase separation and low methane yield (Table 2). Therefore,

considering the TVFAs concentration and total methane yield in each kind of two-phase co-

digestion, the optimal mixing proportion of ORS, KW and DD are 50:40:10 when maximal

TVFAs contents, the total biogas yield and the total methane yield were obtained. Meanwhile,

the obvious inhibition to methanogenesis by VFAs in BR did not occur.

3.5 Biodegradation of ORS

The organic matters in ORS mainly consisted of cellulose, hemicellulose, lignin, proteins, pec-

tin and fat. In this study, the cellulose, hemicellulose and lignin (CHL) composed of 86.3% the
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dry matter in ORS (Table 1). As shown in Fig 5A, the main organic content (VS content) of

the ORS was degraded in the two-phase anaerobic co-digestion. It is known that those solid

organic substrates containing abundant lignocelluloses always have low biogas yield due to the

low hydrolysis rate in HARs. Therefore, hydrolytic-acidification process could be considered

as the rate-limiting step of ORS biodegradation.

Fig 5A shows that the VS degradation rate of ORS in the two-phase mono-digestion (G6) is

increased from 16.3 to 27.1% compared with the two-phase co-digestions. According to the

statistical analysis, the VS degradation rate obtained in G3 and G4 of 48.6±0.6 and 49.7±0.7%,

Fig 5. Biodegradation of ORS after two phase anaerobic digestion process: A. VS degradation rate

and surplus, B. cellulose, hemicellulose and lignin content in fermented oilseed rape straw. CHL:

cellulose, hemicellulose and lignin. The mean values were calculated from three repeats, and standard

deviations were represented by vertical bars. Different letters mean significant difference with a probability

p < 0.05.

https://doi.org/10.1371/journal.pone.0182361.g005
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respectively, was no significantly different (p>0.05), but significantly different from that in G1,

G2 and G4 (p<0.05). All of the co-digestions were very significantly improved (p<0.01) on VS

degradation rate compared to individual ORS in two-phase AD. No matter single co-substrate

(G1, G2) or two co-substrates (G3, G4 and G5) were added in two-phase AD, the ORS has better

biodegradability than with only individual ORS (G6). These results showed the similar trends

with previous research on the co-digestion of chicken manure with cereal residues [43], and

kitchen waste with straw [17]. These should be attributed to several reasons: firstly, the hydrolytic

and acidification efficiency had a high level when the pH was at 6.0 [27], which improves the con-

version of organic solid in ORS into dissolved organic matter; secondly, kitchen waste addition

could improve the cellulase activity compared with the individual ORS fermentation [7]; thirdly,

the C/N ratio of individual ORS was not suitable for the hydrolyzing and acidifying bacteria, and

DD addition could balance the C/N ratio and provide nitrogen source for the microorganisms

growth in AD process [44]. Additionally, further exploration is needed to find the relationship

between dynamics of microbial community and variation of the ORS: KW: DD ratio.

As can be seen in Fig 5B, the contents of cellulose and hemicellulose in the ORS in G1 to

G5 were lower than those in G6 after 36 days’ fermentation, and all the lignin contents were

higher than the raw ORS. The removal rate of cellulose (43.1–65.4%) and hemicellulose (39.5–

57.7%) were higher than that of lignin, leading to the relative increase of lignin contents in fer-

mented ORS. Cellulose removal rate of the ORS in two co-substrates addition system (G3, G4,

G5) were higher than single co-substrate addition system (G1, G2), showing the similar trend

as the VS degradation rate. It can be concluded that cellulose removal rate increased with the

increase of KW content, and the two co-substrates addition system (G3, G4, G5) obtained

higher cellulose removal rate than the G1 and G2. However, the removal rates of the hemicel-

lulose and lignin were not significantly affected by different co-digestions. The loss of lignin

might due to solubilization of low molecular weight lignin and lignin particles suspend in liq-

uid [45]. These results indicated that cellulose and hemicellulose in ORS are the main compo-

nents converted to VFAs and methane, and the addition of KW and DD as co-substrates could

significantly improve (p<0.05) the cellulose consumption rate compared to that in two-phase

mono-digestion.

4. Conclusions

Two-phase co-digestion of ORS with KW and DD as co-substrates was a promising approach

to improve the system stability, biogas and methane yields. Poor methane production rate and

the system stability were found in mono-digestion of ORS, KW and DD, due to high lignocel-

luloses content, low buffering capacity and low C/N ratio, respectively. The co-digestion of

ORS, KW and DD could increase methane yield which is attributed to the improvement of

buffering capacity by DD and the increased hydrolysis-acidification by proper pH. Besides, the

addition of KW and DD as co-substrates with ORS in two-phase AD significantly improved

the biodegradability of ORS.
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