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Abstract

Zonulin is a protein associated with the tight junction complex opening at the intestinal epi-

thelium, previously linked to obesity, cardiovascular diseases, type 2 diabetes mellitus

(T2DM) and chronic kidney disease (CKD). However, its role in CKD has not been totally

elucidated. This study aimed to evaluate zonulin levels in subjects with diabetic kidney dis-

ease (DKD). This case-control study included two cases groups: 1) Advanced DKD cases:

T2DM patients with estimated glomerular filtration rate (eGFR) <60ml/min/1.73m2; 2) Albu-

minuric T2DM cases: diabetic patients with urinary albumin excretion (UAE) >30mg/g creati-

nine, but with eGFR>60ml/min/1.73m2. Two control groups were also included: 1) T2DM

controls: patients with T2DM without impaired kidney function; 2) Non-T2DM controls: sub-

jects without T2DM and normal renal function. Serum levels of zonulin were measured by

ELISA. Eighty-six individuals were included. Zonulin levels was different among study

groups (P = 0.003). T2DM controls presented higher zonulin levels than non-T2DM controls

[(131.35 (83.0–170.5) vs. 87.25 (54.7–111.8), P = 0.018] and advanced DKD cases [63.72

(45.03–106.0); P = 0.007]. Zonulin showed a positive correlation with eGFR (r = 0.222;

P = 0.040), total cholesterol (r = 0.299; P = 0.034), LDL (r = 0.258; P = 0.021), and negative

with albuminuria (r = -0.243; P = 0.024) and body fat (r = -0.271; P = 0.014). In the multivari-

ate logistic regression analyses, zonulin levels were independently associated to renal out-

comes [OR 0.99 (0.98–0.99, P = 0.012)] after 5-year inclusion. In conclusion, increased

zonulin levels in patients with TD2M without renal disease suggest an impaired intestinal

permeability. Moreover, its association with renal outcomes could indicate its use as a dis-

ease monitoring marker. However, the mechanisms behind this association should be better

understood.
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Introduction

The intestinal microbiota has been studied in several pathologies, including type 2 diabetes

mellitus (T2DM) [1] and chronic kidney disease (CKD) [2]. In both cases, a reduction in intes-

tinal beneficial bacteria and a proliferation of pathogenically bacteria have been suggested,

characterizing a condition named dysbiosis [3]. Besides this unbalance in microbiota patients

with advanced CKD have an incremental in microbial urease enzyme, which is responsible for

transforming excess urea into ammonia in the gut [4].

Both dysbiosis and ammonia accumulation have an impact in intestinal permeability and

CKD progression [5,6]. An impaired gut barrier presents a systemic inflammation pattern

which allows bacteria translocation and other pathogens into the circulation [7]. Several fac-

tors influence the intestinal barrier and permeability, such as microbiota, diet, use of some

medications, alcohol consumption, and smoking [8].

Zonulin is a family peptide produced in the intestinal and hepatic cells that regulates a pro-

tein complex named tight junctions [9]. Higher levels of zonulin have been associated with

increased intestinal permeability since it induces disruption between the junctions in the epi-

thelial intestine cells [10]. Zonulin is mostly stimulated by bacteria and gluten protein (glia-

din), making the intestine permeable by opening enterocytes [11].

Studies regarding zonulin as a marker of intestinal permeability have been associated with

several diseases [12]. As far as we know, some conditions were linked to increased zonulin levels,

representing their associations with an impaired gut permeability [13]. Non-coeliac gluten sensi-

tivity [14], inflammatory bowel syndrome [15], nkylosing spondylitis [16] and arthritis [17] also

have been linked to changes in intestinal permeability. Besides that, non-communicable diseases,

such as obesity [18] and cardiovascular diseases [19] were correlated to zonulin levels.

T2DM [20] and CKD [21] also have been associated to serum zonulin, but little is known

about zonulin and diabetic kidney disease (DKD). Additionally, there are inconsistences

according to the studies’ results. Therefore, this study aimed to evaluate zonulin serum levels

in DKD patients compared to healthy and diabetic subjects without kidney disease.

Methods

Design and patients

The study design was previously described elsewhere [22]. Subjects attending to an Endocri-

nology outpatient clinic at the Hospital de Clı́nicas de Porto Alegre were invited to this case-

control study. Recruitment date ranged between October 2013 and November 2014 and was

based on renal function and T2DM diagnosis. Two case groups were included: 1) Advanced

DKD cases: T2DM patients with estimated glomerular filtration rate (eGFR) <60 mL/min/

1.73m2, and 2) Albuminuric DKD cases: T2DM patients with urinary albumin excretion

(UAE)� 30 mg/g creatinine and eGFR�60 mL/min/1.73m2. Once cases were included, con-

trols were sought based on similar age, gender and body mass index (BMI) and were divided

into two control groups: 1) T2DM controls: patients with T2DM with UAE <30 mg/g creati-

nine and eGFR�60 mL/min/1.73m2, and 2) Non-T2DM controls: individuals without diabe-

tes and eGFR�60 mL/min/1.73m2. Exclusion criteria used in the original study were age

below 18 years, cancer, pancreatitis, dialysis, acute infection, previous transplantation, preg-

nancy, and alcohol or drug abuse. The present study also excluded patients with non-authori-

zation data for new studies, with inflammatory bowel diseases and those with serum zonulin

greater than 400ug/dL (because limitation in the assay).

Diabetes was defined according to American Diabetes Association criteria [23] and renal

function was estimated using the Chronic Kidney Disease–Epidemiology Collaboration
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(CKD-EPI) formula [24]. The study was approved by the Ethics Committee of the Hospital de

Clı́nicas de Porto Alegre, and all subjects gave informed written consent before participation.

Clinical, anthropometric and biochemical data evaluation

Clinical and sociodemographic data were collected through questionnaires and electronical

charts, and included age, gender, ethnicity, T2DM duration, hypertension, and medication

use.

Anthropometric evaluation consisted of weight and height measured in anthropometric

scale with a stadiometer, for later body mass index (BMI) estimation. Body composition was

evaluated by an electric bioimpedance (InBody 230; Biospace, Seul, Korea). All measures were

made while fasting, light clothes and without shoes [25].

Blood and spot urine tests were performed after 12-hour overnight fast. Levels of fasting

plasma glucose (Hexokinase UV enzymatic), HbA1c (HPLC), total cholesterol (enzymatic col-

orimetric), HDL-cholesterol (homogeneous enzymatic colorimetric), triglycerides (TG) (enzy-

matic colorimetric), high-sensitivity C-reactive protein (hsCRP) (immunoturbidimetry),

albuminuria (immunoturbidimetry), and serum creatinine (Jaffe method) were determined

using standardized techniques. LDL-cholesterol was calculated according to Fridelwald for-

mula: LDL-c = total cholesterol–(HDL-cholesterol + triglycerides / 5), when TG was below

400 mg/mL.

Blood samples were collected, centrifuged and kept in storage at -80˚C for zonulin and

interleukin-6 (IL-6) analysis. Zonulin concentration was quantified in serum samples, using

the haptoglobin (encoded HP; Hp2-Alpha; Alpha-2-Macroglobulin; Zonulin) concentration

assessed by ELISA (Cloud-Clone Corp, Katy, TX). The assay sensitivity was 2.92 ng/mL and

assay range was 6.25–400 ng/mL, while inter-assay variability was less than 12% for serum

samples. All zonulin samples were analyzed in duplicates. IL-6 concentration was determined

in serum samples, using Human IL-6 Quantikine ELISA kit (R&D Systems, Minneapolis, MN,

USA). Only 30.7% samples were analyzed in duplicates.

After 5 years of study inclusion, outcomes of each patient were assessed through medical

online records or by phone call when no information was available. The evaluated outcomes

were: decline in renal function (defined by change in stage of CKD: yes or no), onset dialysis

or renal transplantation, stroke, myocardial infarction, coronary procedures (percutaneous

coronary intervention and myocardial revascularization surgery), and death.

Statistical analysis

Data were analyzed through the Statistical Package for Social Sciences, version 18.0 (SPSS Inc,

Chicago, IL). Continuous variables were tested for normality by Shapiro-Wilk test. Since zonu-

lin concentrations presented asymmetric distribution, this variable was logarithmically trans-

formed before analysis. Comparisons between groups were performed using Chi-Square, One-

Way ANOVA with Levene and Tukey or Kruskal-Wallis with Dunn tests, when appropriate.

Correlations were tested by Pearson’s or Spearman’s correlation coefficient, according to vari-

able distribution. Significant variables from the correlations and that were not used in T2DM

and CKD diagnosis were applied to correct zonulin levels by a regression model. These vari-

ables were LDL and body fat percentage. Then, adjusted zonulin levels were compared among

groups using ANCOVA with Bonferroni test. For this analysis, zonulin log values were used,

but data presented in the result section are described as median for better understanding of

the findings. Zonulin levels were compared between patients who have or not have outcomes

at 5 years after study inclusion through Student’s t test. Multivariable Poisson regression analy-

sis was performed to identify the association of zonulin and presence of renal outcomes,
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adjusted for T2DM, dyslipidemia, smoking, obesity and age, known as possible risk factors to

higher intestinal permeability [13]. The level of statistical significance was established as 5%.

Sample size calculation was based on a previous study [26] considering a standard devia-

tion = 4, size effect = 0.54, power of 95% and level of significance of 5%. The total sample esti-

mated was 56 subjects. Because greater sample size was available from the previous study, we

had a power of 99.6%.

Results

From 114 eligible patients from the previous study [22], 28 were excluded because their serum

zonulin levels were greater than 400ug/dL or they did not consent to the new study, resulting

in 86 patients included in the present analysis.

The total sample was composed mostly by women (57%), with white ethnicity (67.4%) and

the mean age was 61.2 ± 1.02 years. Sociodemographic and clinical data among study groups are

presented in Table 1. Age, gender, ethnicity, smoking, BMI, body fat, total cholesterol, and hsCRP

were similar between groups. T2DM duration was also similar between groups with diabetes.

Advanced DKD cases presented worst HDL-cholesterol, triglycerides, and IL-6 levels. Non-

T2DM controls had lower hypertension prevalence and higher LDL-cholesterol levels (Table 1).

Serum zonulin levels were significantly different among groups (P = 0.003) and are depicted

in Fig 1. T2DM controls showed higher zonulin levels than non-T2DM controls [(131.35

(83.0–170.5) vs. 87.25 (54.7–111.8); P = 0.018] and advanced DKD cases [63.72 (45.03–106.0);

P = 0.007].

Zonulin presented a positive correlation with eGFR (r = 0.222; P = 0.040), total cholesterol

(r = 0.299; P = 0.034), LDL (r = 0.258; P = 0.021), and negative with albuminuria (r = -0.243;

P = 0.024) and body fat (r = -0.271; P = 0.014) (Table 2).

Table 1. Sociodemographic, clinical, biochemical and anthropometric characteristics among groups.

Non-T2DM control (n = 18) T2DM control (n = 26) T2DM albuminuric (n = 20) DKD (n = 22) P value

Age (years) 59.50 ± 10.37 59.73 ± 9.15 64.05 ± 8.63 61.68 ± 9.99 0.391

Female, n (%) 11 (61.1) 14 (53.8) 13 (65.0) 11 (50.0) 0.755

Caucasian, n (%) 11 (61.1) 18 (69.2) 15 (75) 14 (63.6) 0.808

Non-smoker, n (%) 9 (50.0) 14 (53.8) 9 (45.0) 13 (59.1) 0.540

T2DM duration (years) - 15.57 ± 9.49 14.3 ± 7.98 18.22 ± 9.24 0.353

Hypertension, n (%) 5 (33.3)a 25 (96.2)b 20 (100)b 22 (100)b <0.001

eGFR (mL/min/1,73m2) 100.0 (88.45–114.25)a 95.1 (85.38–116.25)a 98.0 (92.0–106.0)a 23.0 (17.0–33.64)b <0.001

Albuminuria (mg/L) 7.40 (2.99–12.30)a 11.70 (4.65–19.95)a 98.70 (61.30–209.97) b 618.15 (200.15–1854.7) b <0.001

Serum creatinine (mg/dL) 0.69 (0.58–0.87) a 0.73 (0.60–0.95) a 0.72 (0.55–0.84) a 2.51 (2.02–3.29) b <0.001

Fasting glucose (mg/dL) 90.0 (83.0–94.0) a 140.0 (113.75–169.50) b 162.0 (88.25–191.25) b 126.0 (73.0–171.5) b <0.001

HbA1c (%) 5.5 (5.3–5.7) a 7.85 (7.0–9.12) b 8.7 (7.6–9.4) b 7.9 (7.2–9.4) b <0.001

Total Cholesterol (mg/dL) 200.28 ± 33.08 179.15 ± 48.28 179.40 ± 40.52 181.73 ± 53.03 0.413

HDL-Cholesterol (mg/dL) 45.67 ± 8.97 a 40.65 ± 7.71 a 38.75 ± 11.0 a 36.5 ± 10.48 b 0.026

LDL-Cholesterol (mg/dL) 125.8 (101.95–144.3) a 97.7 (72.4–136.1) ab 94.0 (84.85–99.9) b 89.0 (72.0–122.5) b 0.008

Triglycerides (mg/dL) 126.56 ± 51.55 a 156.69 ± 69.78 ab 253.05 ± 213.10 b 255.64 ± 177.42 b 0.007

hsCRP (mg/dL) 3.06 (1.72–9.29) 3.44 (1.36–8.01) 2.66 (1.75–4.28) 4.54 (1.81–17.52) 0.262

IL-6 (pg/dL) 3.12 (3.12–3.18) a 3.12 (3.12–3.5) a 3.12 (3.12–4.06) a 7.03 (3.94–9.66) b <0.001

BMI (kg/m2) 28.2 (25.5–33.0) 30.0 (26.3–32.8) 31.7 (27.7–38.1) 30.9 (28.0–38.5) 0.078

Body fat (%) 37.1 (29.5–43.5) 34.8 (28.0–42.7) 38.35 (23.7–46.1) 38.25 (27.9–47.2) 0.700

Data expressed in n (%), median ± SD or median and interquartile range (P25 –P75). Different letters means p <0.05. T2DM: Type 2 diabetes mellitus; HbA1c: Glycated

hemoglobin; IL-6: Interleukin-6; BMI: Body mass index; hsCRP: High sensitivity C-reactive protein; eGFR: Estimated glomerular filtration rate.

https://doi.org/10.1371/journal.pone.0253501.t001
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After 5 years, 66 patients (76.7% of the sample) were evaluated for renal and cardiovascular

outcomes and death. With respect to renal outcomes, 24 patients had renal function decline

(39.3%), 10 patients started dialysis (15.5%) and just one patient had renal transplantation

(1.5%). Regarding cardiovascular outcomes, 6 patients had heart attack (9.2%), 3 patients had

Fig 1. Serum zonulin levels among groups. Serum zonulin levels are expressed in median among different study

groups. Values in bold indicate p<0.05. T2DM: Type 2 diabetes mellitus; DKD: Diabetic kidney disease.

https://doi.org/10.1371/journal.pone.0253501.g001

Table 2. Correlations between serum zonulin and renal, glycemic, lipid, inflammatory and body composition

parameters.

R (p)

N = 86

eGFR (ml/min/1.73 m2) 0.222 (0.040)

Creatinine (mg/dL) -0.171 (0.116)

Albuminuria (mg/L) -0.243 (0.024)

Fasting glucose (mg/dL) 0.136 (0.211)

HbA1c (%) 0.045 (0.681)

HOMA-IR -0.018 (0.873)

Total Cholesterol (mg/dL) 0.229 (0.034)

HDL-Cholesterol (mg/dL) -0.117 (0.285)

LDL-Cholesterol (mg/dL) 0.258 (0.021)

Triglycerides (mg/dL) 0.102 (0.384)

IL-6 (pg/mL) -0.180 (0.099)

hsCRP (mg/dL) -0.135 (0.220)

BMI (kg/m2) -0.198 (0.067)

Body fat (%) -0.271 (0.014)

Lean mass (kg) 0.182 (0.102)

Free fat mass (kg) 0.178 (0.109)

Total body water (kg) 0.173 (0.121)

BMI: Body mass index; DM: Diabetes mellitus; eGFR: Estimated glomerular filtration rate; HbA1c: Glycated

hemoglobin; hsCRP: High sensitivity C-reactive protein; IL-6: Interleukin-6.

https://doi.org/10.1371/journal.pone.0253501.t002
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stroke (4.6%), 7 patients performed any cardiovascular surgery (10.8%) and 9 patients died

(13.8%).

Patients who presented renal outcomes had lower zonulin levels (P = 0.007), as shown in

Table 3. In the multivariate logistic regression analysis, zonulin levels [OR 0.99 (0.98–0.99,

P = 0.012)] and hypertension [OR 0.07 (0.01–0.62, P = 0.017)] were independently associated

to renal outcomes, after adjustment for T2DM, dyslipidemia, smoking, obesity, and age.

Discussion

In the present study, patients with T2DM and normal renal function presented elevated levels

of zonulin. On the other hand, patients with compromised renal function, represented by

eGFR< 60mL/min/1.73m2, had lower zonulin levels. Correlations of zonulin with renal func-

tion, body fat percentage and lipid profile were also found in the present study.

It has been documented that T2DM patients present higher zonulin levels than non-dia-

betic subjects [20,26–28]. This evidence was observed in different stages of the disease. Even in

pre-diabetes condition, zonulin concentration were reported to be increased [27]. In newly-

diagnosed [20] and longstanding T2DM patients [26], zonulin levels were also elevated, when

compared to healthy subjects. The zonulin increment may indicates a higher intestinal perme-

ability in T2DM, since previous evidence describes zonulin as intestinal permeability marker

in diabetes [29].

However, the role of zonulin as a marker of intestinal permeability in kidney disease is con-

troversial. In the present study, lower zonulin was found in advanced DKD patients when

compared to T2DM controls, but values were similar to the non-T2DM group. Moreover,

when eGFR decreases, the zonulin also decreases, as demonstrated by the positive correlation

between these parameters. This finding was different than expected. The main hypothesis of

this study was that serum zonulin could be a marker of intestinal permeability in DKD, being

elevated in this condition, since CKD presents permeability impairment [30]. However, previ-

ous studies [21,31–34] present distinct results, in both directions.

Similar to our findings, Hasslacher et al. [26] reported a positive correlation between zonu-

lin levels and eGFR and a negative one with albuminuria in T2DM patients. The positive asso-

ciation between zonulin and eGFR were also observed in a sample of heart failure patients

[35], reinforcing that the decrease in renal function is followed by a decrease in serum zonulin.

In addition, there are evidences that pre-dialysis [21] and post-renal transplantation patients

[31] have lower zonulin levels than controls. Some authors suggest that zonulin may be

depleted in the kidneys due to renal failure [26,35].

Table 3. Association between zonulin (log) and renal, cardiovascular and death outcomes.

Patients (n = 65) Zonulin p

Renal outcomes 0.007

Yes (n = 30) 4.27 ± 0.50

No 4.64 ± 0.57

Cardiovascular outcomes 0.204

Yes (n = 16) 4.31 ± 0.47

No 4.52 ± 0.59

Death 0.060

Yes (n = 9) 4.13 ± 0.40

No 4.52 ± 0.58

Values are expressed in mean ± standard deviation.

https://doi.org/10.1371/journal.pone.0253501.t003
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On the other hand, there are also evidence of a negative correlation between zonulin and

eGFR, demonstrating that when renal function declines, zonulin could increase [33]. More-

over, a study with T2DM with advanced renal disease found higher zonulin levels than con-

trols, as well as lipopolysaccharide (LPS) and trimethylamine-N-Oxide (TMAO) [34]. In

hemodialysis patients, zonulin levels were higher than healthy individuals [32] and pre-dialysis

patients [33]. In this case, it was hypothesized that less renal elimination increases serum zonu-

lin [32].

It is suggested that zonulin may have other function in CKD, that not intestinal permeabil-

ity. A systematic review showed conflicting results with respect to permeability assessment

methods in CKD. The authors conclude that CKD patients have impaired intestinal perme-

ability; however, data interpretation should be cautious, and new markers which do not have

renal influence or gut bacteria are necessary [36]. In the same way, it was previously docu-

mented that constipation is associated with increased uremic toxins that impacts on intestinal

permeability [37]. However, zonulin levels were not different among peritoneal dialysis

patients according to the presence of constipation [38]. Moreover, after an intervention with

prebiotics, zonulin levels did not change despite the reduction of the p-cresyl uremic toxin

[39]. These findings are in agreement with the hypothesis that zonulin may have other func-

tion in CKD.

In the present study, lower zonulin concentrations were observed in patients who presented

renal outcomes, such as renal function decline and hemodialysis after 5 years study inclusion.

Moreover, zonulin levels were an independently preditor of renal outcomes. A hypothesis for

the possible mechanism is the increase in renal glomerular permeability, with increase in albu-

minuria, allowing zonulin entrance, and impacting in renal health. It is in agreement with the

negative correlation found in this study between zonulin and albuminuria.

In this context, zonulin could be a predictor of DKD progression and not an intestinal per-

meability marker. Poor outcomes were previously associated to lower zonulin levels in other

conditions. A study evaluating intestine integrity in HIV patients showed that higher zonulin

levels seem to predict survival [40]. Still, when measuring cardiovascular and all causes mortal-

ity related markers, a study with heart failure patients demonstrated that lower zonulin levels

could point to worst prognosis [35].

In obesity, zonulin has been studied as a marker of intestinal permeability [18]. Some stud-

ies observed higher zonulin levels in obese patients, according to body mass index [18,20,41].

Even so, its increment could be an independent risk factor for overweight and obesity [42].

Nonetheless, data evaluating zonulin levels and body composition is scarce. Our findings show

a controversial association, where higher zonulin levels were correlated to less body fat. How-

ever, this data should be carefully interpretated, considering that our sample was mainly repre-

sented by DKD patients.

According to serum lipid evaluation, there was also a positive correlation between zonulin

and total cholesterol and LDL, which is in agreement to the literature. Previous studies

reported the association of zonulin with triglyceride and total cholesterol [20,41]. Moreover,

higher zonulin levels were also associated with hyperlipidemia [42]. This association could be

explained due to the communication between the gut and adipose tissue [43].

This study has some limitations, such as the lack about urinary zonulin values. Further-

more, the sample size is relatively small, however we had power for study conduction, based

on previous sample size calculation.

This is the first study assessing serum zonulin levels in renal complications of T2DM in Bra-

zilian subjects, with evaluation of major outcomes. Serum zonulin seems to be an impaired

intestinal permeability marker in T2DM patients with normal renal function. Nevertheless,

DKD impact in zonulin levels is not totally elucidated. Further studies are necessary to
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investigate the association of zonulin in DKD and explore its use as a marker of intestinal per-

meability or the disease progression. In addition, we suggest different intestinal permeability

assessment markers in DKD, for further clarification.
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