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Metastable quantum dynamics of an asymmetric triangular cluster that is coupled to a reservoir is
investigated. The dynamics is governed by bath-mediated transitions, which in part require a thermal
activation process. The decay rate is controlled by tuning the excitation spectrum of the frustrated cluster.
We use the master equation approach and construct transition operators in terms of many-body states. We
analyze dynamics of observables and reveal metastability of an excited state and of a magnetically polarized
ground state.

M
odern electronics relies on the ability of devices to switch internal states in a controllable manner. With
the recent advantages in manufacturing complex nanoscale systems with engineered wavefunctions and
energy surfaces, prediction of characteristic timescales has become an important and challenging task

for a theory1,2. In particular, systems such as metal/oxide/metal memory cells3, spintronic devices4, including
quantum dots of single atoms and molecules on metallic surfaces5–7, and organic solar cells8 are of a quantum
nature and exhibit a complex energy landscape, resulting in a dynamics with multiple characteristic timescales.

In general, multiscale transition dynamics appear in any system with a complex energy surface and are
enhanced when the system interacts with an external reservoir. These dynamics manifest themselves in the
presence of metastable states, in which the system stays for a long time. The existence of multiscale transition
dynamics is not limited to a particular class of compounds and is possible in a wide range of systems, including
chemical reactions9, polarons in molecular junctions10,11, and black holes12. In a classical picture, metastability
occurs for any isolated local energy minima. To describe quantum objects, one should consider metastable states
as those from which a transition to lower energy states is prohibited by selection rules. The destruction of
metastable states is possible via thermal activation to higher-lying energetic configurations or via tunneling.

Nanoscale systems are of a quantum nature and the transitions occur between different multi-electron con-
figurations. A natural way to observe metastability is by studying the relaxation dynamics in the presence of a
weak coupling to the environment. It is usually represented as a reservoir of non-interacting particles and is
described by the Hamiltonian HE~

X
k

ekc{kck with states k forming a band. This reservoir is coupled to the

system by particle exchange reflected in a hybridization Hamiltonian HI~
X

ak
cakc{ackzc�akc{kca

� �
where

subscript a enumerates localized states of the system and coefficients cak represent their hybridization amplitudes.
It is thus of crucial importance to provide a microscopic description of the dynamics which takes into account the
full many-particle nature of the eigenstates of the systems, decoherence effects, and charge/energy transfer due to
the coupling with the surrounding environment.

Various involved computational approaches such as time-dependent numerical renormalization group13,
time-dependent density matrix renormalization group14–17, time-dependent functional renormalization
group18–20 and other methods based on quantum Monte Carlo algorithms21–23 do not allow one to access the
behavior of the system at large times. On the other hand, the reduced density matrix theory24–29 provides a feasible
way to access long-time properties of an interacting open quantum system. An exact version of this formalism can
be coupled with the numerical methods mentioned above to obtain long-time dynamics at certain limits30,31. A
frequently used approximation is described by the Redfield equation32,33 which has been used in many contexts
including nuclear magnetic resonance34–36, quantum optics37–39 and tunneling through quantum dots40–43.

In the reduced density matrix theory, the environment acts as a reservoir of particles and energy for the system
and is often assumed to be of Markovian nature. A Fermi golden rule approach44,45 allows one to write the rate
equations for diagonal elements of the density matrix rS(t) 5 trEr(t). The method of full counting statistics46–48
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builds upon it to allow for an efficient evaluation of time-dependent
observables and correlation functions. This approach neglects
quantum interference effects between different eigenstates. To take
them into account, one can employ the Lindblad formalism49–51. For
a range of non-interacting problems the standard choice of transition
operators as local creation and annihilation operators is known to be
valid52–54. The Lindblad formalism is also widely used for correlated
systems interacting with an empty bath. This is a typical setup in the
field of quantum optics where driven quantum systems emit photons
to the vacuum but does not receive them back39. Much less is known
on the applicability of the Lindblad approach for the description of
the correlated quantum systems that can exchange particles with the
bath. This situation is relevant for the description of nanoclusters,
molecules, quantum dots, etc. interacting with a substrate.

In this report we consider the correlated quantum triangular clus-
ter exchanging electrons with the fermionic reservoir. We construct
an extension of the standard Lindblad one-particle formalism for
correlated open quantum systems exchanging particles with the bath.
Using the obtained formalism, we describe the physics of metasta-
bility in the relaxation process of the correlated system.

We follow the standard approach of constructing the master equa-
tion for the reduced density matrix by employing a perturbation
theory in powers of HI and considering the terms up to the second
order (so-called a sequential tunneling approximation40,42). The
main distinction of the approach from the standard schemes that
the transitions operators are constructed as matrices in the space of
many-particle states. The time evolution in a leading contribution
involves single-electron exchange with a reservoir. At low tempera-
tures this results in a metastable many-body state of the system. We
found that the metastablity arises from the specific structure of
many-body spectrum and the coupling to a bath via the one-particle
exchange channel. We consider a cluster of three atoms or quantum
dots with local Coulomb interaction, which has a rich multiplet
structure55,56 due to the interplay between frustration and interaction.
The parameters of the cluster can be changed by using different
isotopologues of nanoclusters or molecules57,58, while the substrate
acts as a reservoir. The quantum simulation using ultracold atoms in
optical traps is accessible. One can change the geometry of clusters
and an interaction parameters directly59 and the environment is
represented by a surrounding cloud of particles.

Results and Discussion
We considered the relaxation dynamics of an open quantum system.
It is described by the master equation

d
dt

rS tð Þ~{i HS,rS tð Þ½ �zLrS tð Þ: ð1Þ

The first Liouvillean term governs the unitary evolution of the
system with the Hamiltonian HS c{a,ca

� �
. The second one takes into

account the influence of the environment. It is obtained by applying a
sequential tunneling approximation as described in Methods section.

We found that L splits into so called one-particle L? and many-
particle Lm contributions. The first one is represented in terms of
single-particle operators c{a, ca as in the well-known Lindblad form-
alism approach39. The second one has an essentially many-particle
nature and vanishes in the following cases: 1) infinite temperature T
5 ‘, 2) infinite chemical potential m 5 2‘ or m 5 1‘. This implies
that the influence of correlations in the system on its relaxation
dynamics comes into play only when both the temperature and the
chemical potential of the reservoir are not infinite. The many-particle
part Lm of the superoperator is responsible for the relaxation to the
Gibbs state at large time scales with the temperature T and chemical
potential m determined by the reservoir. This is also the case in a
Fermi golden rule approach, but in contrast to it, master equation

formalism describes the evolution of both diagonal and off-diagonal
elements of density matrix rS.

We have modeled the multiscale dynamics in an asymmetric tri-
angular quantum dot with local Coulomb interaction which is shown
in Figure 1. The expression for the Hamiltonian of the system under
investigation is

HS~
X

s~:,;

Vc{1sc2szVc{2sc3szV 0c{3sc1szh:c:
� �

zU
X3

i~1

ni:{
1
2

� �
ni;{

1
2

� � ð2Þ

Here U is the on-site interaction strength, V, V9 5 2V are hopping
amplitudes. This setup represents a minimal frustrated interacting
model, where the frustration occurs due to an antiferromagnetic
exchange interaction in the chain of odd number of nodes. The
interplay between frustration and interaction gives rise to a nontri-
vial structure of the energy spectrum which can be tuned by para-
meters of the model. This allows us to probe different relaxation
regimes by changing the single parameter - interaction strength U.
We choose hopping amplitude V as an energy scale of the system and
break the C3 rotational symmetry by setting V9 ? V. This separates
dynamical effects originating from electronic correlations from those
specified by geometry. States of the system are classified using inte-
grals of motion – the number of electrons N in the cluster, the square
of its spin momentum S2 and the z-component Sz of its spin
momentum. Note that the chemical potential on the cluster is mC

5 U/2. The triangular cluster lacks the electron-hole symmetry and
its ground state does not necessarily correspond to N 5 3 electrons.
The low energy part of the spectrum of the Hamiltonian (2) is shown
in Figure 2 as a function of U. At U < 2.64 the ground state changes
from N 5 2 triplet state to N 5 3 duplet state. There are also level
crossings of excited states, which may result in distinctly different
decay behavior when the system is brought to the contact with the
bath. We consider dynamics when the bath is weakly coupled to the
cluster. The details of the formalism used for the description of the
relaxation processes of the open system in the regime of strong
correlations are presented in the Supplementary Materials.

The relaxation process is determined by the selection rules, DN 5
61, DSz 5 61/2. These are imposed on transitions between many-
body states because the elementary process generated by the inter-
action Hamiltonian is a transfer of one electron. The resulting

Figure 1 | Schematic representation of the triangular cluster with one site
coupled to the reservoir with temperature T and chemical potential m. It is

modeled by the Fermi-Hubbard Hamiltonian in the half-filling regime

with on-site interaction strength U and hopping amplitudes V 5 1, V9 5 2.

Coupling strength is characterized by a parameter J.
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metastability includes (i) slow mixing of degenerate ground states
which are not coupled by direct transitions, and (ii) slow decay of
non-ground states from which direct transitions to lower energy ones
are not allowed. In both cases the relaxation happens through transi-
tions to intermediate states lying higher in energy, and its rate R1 /
Jexp(2DE/T) depends on the temperature of the reservoir, and the
effective coupling parameter J. The increase in T causes the system to
escape faster from the metastable state. This holds in the time region
t *v V

�
J2 where the thermal activation is the only mechanism of

metastability decay. For larger times the effects of next order pertur-
bations come into play. They allow exchanges with the reservoir by
two particles at a rate R2 / J2/V. Transitions between states with the
same occupation number and DSz 5 61 act as another mechanism
of the decay process and should be taken into account at low tem-
peratures when the thermal activation rate is negligible.

We demonstrate discussed features of relaxation in the decay of a
fully spin polarized state N 5 3, S 5 3/2, Sz 5 3/2 at small temper-
ature. It can be prepared by applying an external static magnetic field
to the system. The behavior of dynamics depends on the interaction
strength, so different values of U are considered. They are taken from
the regions delimited by level crossing points A1, A2 and A3 as shown
in Figure 2. The dynamics are manifested in the expectation values of
observables Sz(t) and N(t) as shown in Figure 3. Their time depend-
ence levels out at characteristic times Jt , 10–100. For U 5 2.0 (lying
below A1) there is a transition channel from the initial state to the
ground state, so that metastability does not appear. For U 5 2.64
(lying at A1) the system relaxes to an equiprobable mixture of a
singlet state and two doublet states with ÆNæ 5 8/3 and ÆSzæ 5 0 at
large times. This mixing becomes metastable in the region above A1.
The system moves to the state with Sz 5 1/2 of the ground doublet
while the state with Sz 5 21/2 can only be reached through an
excitation to the singlet state. This process might be accelerated by
tuning the system closer to A1 – compare U 5 3.0 and U 5 3.5.
Passing through A2 point changes the number of transition channels
leading to the ground state from 2 to 1. The curve for U 5 4.5 levels
out more slowly than the curve for U 5 3.5 because the intermediate
state N 5 2, S 5 1 becomes higher in energy than the initial state.
Increasing U above A3 point blocks the transition through the second
intermediate state N 5 4, S 5 1 as well. For U 5 6.0 an initial fully
spin polarized state becomes metastable with respect to the decay.

The existence of multiple crossing points (A1, A2 and A3) in
Figure 2 upon the variation of onsite interaction strength U of both
ground and excited states reveals an important implication of the role

of frustration in correlated fermionic systems. Not only it leads to a
multitude of possible ground-state phases, but also to a rich manifold
of metastability patterns upon the decay from excited states. The
considered system can be seen as a constituting block for the aniso-
tropic Hubbard model on a triangular lattice, which receives sub-
stantial interest being prototypical to the spin-liquid physics of the
correlated charge-transfer organic salts60. Richness of the phase dia-
gram is related to an interplay between frustration effects and the
anisotropy of the triangular lattice; the latter is present in our con-
sideration as V ? V9. We therefore expect rich metastable relaxation
dynamics patterns, controlled by the frustration of the lattice in other
frustrated strongly correlated systems, which represents a substantial
interest for further studies.

The presented approach requires operations with the density
matrix and can be directly applied to the correlated cluster of only
a small size, due to the exponential growth of the Hilbert space of the
system. Certain increase of the system size can be achieved when the
truncation of the many-body spectrum is possible. This is the case
for systems where a limited number of transition channels works61,62

or at small temperatures of the bath when only the lowest energy
states are involved in the dynamics. The relevant part of the many-
body spectrum can be efficiently obtained by the Lanczos method.
For a construction of the many-body density matrix, there is a vari-
ety of established approximate methods of computational quantum

Figure 2 | Lowest energy terms as functions of the on-site interaction
strength U. Different colors are used for terms with different occupation

numbers, line thickness indicates their multiplicity 2S 1 1. Level crossings

A1, A2 and A3 show points where tuning U leads to the change in dynamics

behavior.

Figure 3 | The decay of a fully spin polarized state in the frustrated
triangular cluster coupled to the reservoir at temperature T 5 0.02. The

interaction parameter U is tuned as indicated by different colors.

Dynamics of (a) cluster magnetization ÆSzæ and (b) cluster occupation ÆNæ
is presented. One can see that tuning U allows to control the relaxation

process of the excited state of the cluster.
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chemistry of molecules, including Hartree-Fock method and its
extensions63.

To summarize, we considered a correlated triangular cluster where
the interplay between interaction and frustration results in level
crossings which have an effect on the decay behaviour. We have
shown that the dynamics of open correlated quantum systems
requires an extensiton of the standard Lindblad one-particle form-
alism. Working with a many-body spectrum of the correlated tri-
angular cluster, we were able to capture its non-trivial multiscale
relaxation dynamics to the thermal equilibrium as a result of weak
coupling to the reservoir. We demonstrated the dynamics of the spin
and charge degrees of freedom of the system and explained the
arising metastability by selection rules which are imposed on transi-
tions between many-body states. The multistage relaxation process
involves the excitation to the states lying higher in energy. As a result,
the time scale of dynamics becomes dependent on the temperature of
the reservoir. The approach can be applied to a number of problems
in quantum chemistry, nanoelectronics and quantum information
technology.

Methods
In the master equation approach a weak hybridization of an open quantum system
with the environment is treated in a perturbative manner. At the same time corre-
lations are taken into account exactly by calculating many-particle eigenstates jnæ and
eigenenergies En of the isolated system. Small reservoir excitations from the equi-
librium Gibbs state rB normally decays fast on a resolved time-scale, so the Markov
approximation holds. In the lowest non-vanishing order the resulting equation reads

d
dt

rS tð Þ~{i HS,rS tð Þ½ �{
ð?

0

dt’trE

HI , e{i HSzHEð Þt’HI ei HSzHEð Þt’,rS tð ÞrE

h ih i
:

ð3Þ

Substituting HE, HI in this expression is covered in details in Supplementary
Materials. For a practical purpose we discard the dependence on energy of the
hybridization function Jab eð Þ~2p

X
k

cakc�bkd e{ekð Þ assuming that a wide band

approximation is fullfilled.
Transition operators are defined as follows

La~
X
mn

f enmð Þ m caj jnh i mj i nh j

�La~
X
mn

1{f enmð Þð Þ m caj jnh i mj i nh j,
ð4Þ

where f eð Þ~ exp
e{m

T

� �
z1

� �{1
is a Fermi distribution function. The master

equation takes the form

d
dt

rS tð Þ~{i HS,rS tð Þ½ �z 1
2

X
ab

Jab c{arS tð ÞLbz
	

z�LbrS tð Þc{a{c{a�LbrS tð Þ{rS tð ÞLbc{a


zh:c:

ð5Þ

There is a relation of La, �La to the Lindblad formalism approach employing
operators c{a and ca in the master equation. The following correspondence was found:

1) La~�La~
1
2

ca at T 5 ‘, 2) La 5 0, �La~ca at m 5 2‘, and 3) La 5 ca, �La~0 at m 5

1‘. Though for concreteness the dynamics of fermions is considered in the paper,
the developed formalism can be applied to both kinds of particle statistics.
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