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ABSTRACT
Objective: The purpose of this study was to investigate the effects of chromium picolinate (CrPic)
supplementation associated with aerobic exercise using measures of oxidative stress in rats
exposed to air pollution.
Methods: Sixty-one male Wistar rats were divided into eight groups: residual oil fly ash (ROFA)
exposure and sedentary (ROFA-SED); ROFA exposure, sedentary and supplemented (ROFA-SED-
CrPic); ROFA exposure and trained (ROFA-AT); ROFA exposure, supplemented and trained (ROFA-
AT-CrPic); sedentary (Sal-SED); sedentary and supplemented (Sal-SED-CrPic); trained (Sal-AT); and
supplemented and trained (Sal-AT-CrPic). Rats exposed to ROFA (air pollution) received 50 μg of
ROFA daily via intranasal instillation. Supplemented rats received CrPic (1 mg/kg/day) daily by oral
gavage. Exercise training was performed on a rat treadmill (5×/week). Oxidative parameters were
evaluated at the end of protocols.
Results: Trained groups demonstrated lower gain of body mass (P < .001) and increased exercise
tolerance (P < .0001). In the gastrocnemius, trained groups demonstrated increased SOD activity (P
< .0001) and decrease levels of TBARS (P = .0014), although CAT activity did not differ among
groups (P = .4487).
Conclusion: Air pollution exposure did not lead to alterations in oxidative markers in lungs and heart,
and exercise training was responsible for decreasing oxidative stress of the gastrocnemius.
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1. Introduction

Air pollution is currently classified as a leading environmental
causeof cancer and rankedasoneof the top10causesofdisabil-
ity [1–3]. Furthermore, polluted air is related to premature mor-
tality, estimated to cause a globalmortality burden ofmore than
3 million premature deaths/year. The projections of emission
scenarios indicate that these values could double by 2050, if
any measure of air quality control could be made [4,5]. There
is strong evidence that pollutants present in air are responsible
for the detrimental effects of air pollution, triggering oxidative
stress and systemic inflammation [3,6,7]. These effects contrib-
ute to the pathologicalmechanism, increasing the susceptibility
of the population to developing chronic diseases [6,7].

Physical inactivity is one of the most significant public
health problems of the twenty-first century and is the fourth
leading cause of death worldwide [8,9], whereas physical
activity demonstrates well-established health benefits [10–
12]. Exercise training induces the formation of reactive
oxygen species (ROS), which act as important mediators of
physiologic signaling and cellular adaptations, modulation
of muscle contraction, regulation of antioxidant protection
and repair of oxidative damage [13,14]. The majority of
studies investigating air pollution and exercise, however,
have demonstrated controversial findings [13–16].

Chromium picolinate (CrPic) is a trivalent chromium
complex largely used to control glucose levels and improve
insulin sensitivity. Furthermore, CrPic supplementation has
exhibited antioxidant activity in animals with established oxi-
dative stress, being responsible for increasing glutathione
(GSH) levels, catalase (CAT) and superoxide dismutase (SOD)
activity, in addition to decreasing lipid peroxidation [17–22].
CrPic antioxidant activity has not been investigated in associ-
ation with air pollution exposure, however. Considering the
antioxidant properties of this supplement, it could possibly
decrease the damaging effects of air pollution on health,
attenuating the action of oxidative molecules and, sub-
sequently, the damage they induce [23,24].

The aim of the present study was to examine the effects of
CrPic supplementation associated with aerobic exercise
during subchronic air pollution exposure in measures of oxi-
dative stress. In addition, we investigated the adaptation of
aerobic exercise in groups exposed to air pollution and sup-
plemented with CrPic.

We tested the hypothesis that air pollution exposure may
increase body mass and decrease exercise tolerance, as well
as inducing oxidative damage in the lungs, heart and gastro-
cnemius, whereas supplementation of CrPic and aerobic train-
ing protocols may lead to beneficial effects on those variables.
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2. Materials and methods

2.1. Animals

This study was performed using 61 male Wistar rats (45 days
old) obtained from the Animal Breeding Unit of the Universi-
dade Federal de Ciências da Saúde de Porto Alegre (UFCSPA).
The animals were housed under standard conditions (food
and water ad libitum, temperature between 22 and 24°C,
light–dark cycle of 12 h). The handling of the animals obeyed
resolutions of the National Council on Animal Experimentation
and all procedures were in accordance with the Guide for the
Care and Use of Laboratory Animals adopted by the National
Institute of Health (NIH-USA). This study was approved by
CEUA/UFCSPA, under the protocol number 159/15.

2.2. Experimental design

Sixty-onemaleWistar rats were divided into eight experimental
groups: residual oil fly ash (ROFA) exposure and sedentary
(ROFA-SED, n = 8); ROFA exposure, sedentary and sup-
plemented (ROFA-SED-CrPic, n = 6); ROFA exposure and
trained (ROFA-AT, n = 8); ROFA exposure, supplemented and
trained (ROFA-AT-CrPic, n = 7); sedentary (Sal-SED, n = 8);
sedentary and supplemented (Sal-SED-CrPic, n = 8); trained
(Sal-AT, n = 8); supplemented and trained (Sal-AT-CrPic, n = 8).
Intranasal instillation of ROFA and CrPic supplementation pro-
tocols were performed daily for 90 days, and the training pro-
tocol was performed for the same period of time (5×/week).

2.3. Intranasal instillation of ROFA

Animals exposed to air pollution received 50 μg of ROFA via
intranasal instillation daily for 90 days. ROFA was applied as
a recognized form of particulate matter. The dose used rep-
resents a concentration of 29 μg/m³, which is the value
found in a polluted city [25]. ROFA particles were collected
from an electrostatic precipitator installed in one of the chim-
neys of a large steel plant in São Paulo, Brazil. Characterization
of ROFA is included in Table 1. A suspension of 50 μg of ROFA
was prepared in 10 μl of sterile saline solution. When rats were
60 and 90 days old, ROFA suspensions of 50 μg were prepared
in 20 and 30 μl sterile saline solutions, respectively. The
volume was adjusted to ensure that the suspension would
reach the lungs, considering that as the rats’ respiratory

systems developed, a greater volume would be necessary
[26,27]. Control groups underwent the same instillation proto-
col, but received only saline.

2.4. Chromium picolinate supplementation

Supplemented groups received 1 mg/kg of CrPic in 1 ml
sterile saline solution (presentation form: powder, with
purity of≥ 98%, Pharma Nostra®, Brazil) by oral gavage daily
for 90 days. Animals were weighed every 15 days to allow
for dose adjustment [19]. Control groups underwent the
same supplementation protocol, but received only saline.

2.5. Exercise tolerance test

All rats underwent an exercise tolerance test to measure their
maximal running capacity before and after the period of
experiments. First, animals were subjected to an adaptation
period of five days and run for 10 min/day [28]. The test con-
sisted of running on an electric treadmill with an inclination of
15°, starting with a speed of 5 m/min and increasing by an
increment of 5 m/min every 3 min until exhaustion. Exhaus-
tion was established as the time at which the animal was
unable to run for at least 15 s, even while receiving an electri-
cal stimulus (1.5 μA) [29].

2.6. Training protocol

The animals in trained groups underwent aerobic exercise
training, which was performed on a motorized treadmill five
days/week with a moderate intensity of 70% for 90 days.
The running time started at 20 min on the first week and
was extended by 10 min/week until 50 min/day was
reached (all rats were running) [29,30].

2.7. Tissue collection

After 90 days of experimental protocols, animals were
anesthetized via exposure to isoflurane in oxygen (induction
5%, 2 L/min) for 5 min in an induction chamber and then
euthanized via the exsanguination method. Lungs, heart
and gastrocnemius were dissected and stored in −80°C for
subsequent analyses of oxidative stress.

2.8. Oxidative stress analysis

2.8.1. Tissue preparation
To prepare tissues, lungs, heart and gastrocnemius were
defrosted, weighed in an analytical balance and homogenized
in KPi buffer (KCl 1.15%, pH 7.4) containing protein inhibitors.
Homogenization was performed in a tissue homogenizer (CT-
136.1, Cientec®), after which samples were centrifuged and
supernatants were stored at −80°C until oxidative stress ana-
lyses were conducted.

2.8.2. Protein concentration
Protein concentration of the tissues homogenates was
measured via Bradford’s method [31] using bovine serum
albumin as a standard. The sample absorbance was deter-
mined at 595 nm, using a Lambda 35 spectrophotometer
(Perkin-Elmer of Brazil, SP, Brazil).

Table 1. Characterization of metals in residual oil fly ash.

Metal µg/g (mean ± SD)

Pb 3.1 ± 0.09
Al 789.9 ± 23.28
Zn 20.3 ± 0.04
Cd 0.04 ± 0.002
Ba 30.2 ± 0.31
Cu 9.7 ± 0.15
Ni 287.0 ± 10.8
As 4.1 ± 0.05
Se 7.5 ± 0.20
Mn 48.3 ± 0.98
Sr 8.4 ± 0.16
Sb 2.3 ± 0.57
Fe 20,397.2 ± 283.3
Mg 372.5 ± 1.93
P 388.5 ± 255.8
Cr 7.6 ± 0.23

Note: Pb: Lead; Al: Aluminum; Zn: Zinc; Cd: Cadmium; Ba: Barium; Cu: Copper; Ni:
Nickel; As: Arsenic; Se: Selenium; Mn: Manganese; Sr: Strontium; Sb: Antimony;
Fe: Iron; Mg: Magnesium; P: Phosphorus; and Cr: Chromium.
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2.8.3. Superoxide dismutase activity
SOD activity was determined based on the inhibition of pyrogal-
lol auto-oxidation by the enzyme, following the method
described by Marklund and Marklund [32]. Sample absorbances
were determined using a Lambda 35 spectrophotometer
(Perkin-Elmer of Brazil, SP, Brazil), at 420 nm after 60 and
120 s. The results were expressed as USOD/mg of total protein.

2.8.4. CAT activity
CAT activity was determined based on the decomposition of
hydrogen peroxide at 25°C, following the method described
by Aebi [33]. Sample absorbances were determined using a
Lambda 35 spectrophotometer (Perkin-Elmer of Brazil, SP,
Brazil), at 240 nm for 120 s. The results were expressed in
nmol/mg of total protein.

2.8.5. Thiobarbituric acid-reactive substances
To determine lipid peroxidation, thiobarbituric acid-reactive
substances (TBARS) levels were measured according to the
technique described by Esterbauer and Cheeseman [34].
Sample absorbances were determined at 535 nm using a
Lambda 35 spectrophotometer (Perkin-Elmer of Brazil, SP,
Brazil). TBARS concentration was expressed in nmol/mg of
total proteins. To calculate TBARS levels, a standard curve gen-
erated based on known concentrations of 100 nmol/ml
1,1,3,3-tetrametoxypropane in 1% H2SO4 solution was utilized.

2.9. Statistical analysis

Data are expressed as mean ± standard deviation (SD). Statisti-
cal analyses were begun using the Kolmogorov–Smirnov test
to evaluate normality of all variables. Two-way repeated
measures analysis of variance (ANOVA) was then performed, fol-
lowed by Tukey’s post hoc test to compare body mass variables
between treatment and control groups. Other variables were
analyzed using one-way ANOVA, followed by Tukey’s post hoc

test to compare between treatment and control groups. For
statistical analysis and graphics creation, SigmaPlot version
12.0 for Windows (Systat Software, Inc.) and GraphPad Prism
version 6.0 for Windows (Prism 6; GraphPad Software, Inc.)
were used. A P < .05 was considered statistically significant.

3. Results

Our study started with 64 animals; however, during the study,
there were three losses (one from the ROFA-AT-CrPic group
and two from the ROFA-SED-CrPic group) due to causes not
related to the experiments (data not shown). Initial body
mass did not differ among groups (P > .05) and at the end
of the study, all groups showed a mean increase in body
mass of 236% (P < .001). Furthermore, when final body mass
was compared among groups, the trained groups demon-
strated lower gain of body mass in comparison to the Sal-
SED group (P < .05; Figure 1).

Exercise tolerance tests performed at the beginning of the
study demonstrated no difference among groups (P = .8879).
In the final exercise tolerance test, however, an increase in
exercise tolerance was observed in the trained groups when
compared to the sedentary groups (P < .0001; Figure 2).

Activity levels of SOD and CAT in lung tissue did not differ
among groups (P = .2756 and P = .1198, respectively), nor did
TBARS levels differ among groups (P = .7189; Figure 3). Simi-
larly, in heart tissue, no differences were observed among
groups in relation to SOD (P = .0763) and CAT (P = .4999)
activity levels, or TBARS levels (P = .8656; Figure 4).

In the gastrocnemius, SOD activity was higher in the groups
that underwent aerobic training (ROFA-AT, Sal-AT and Sal-AT-
CrPic) than in all sedentary groups (ROFA-SED, ROFA-SED-
CrPic, Sal-SED and Sal-SED-CrPic; P < .0001; Figure 5). No differ-
ences in CAT activity were observed among groups (P = .4487),
but levels of TBARS were lower in trained groups when com-
pared to the ROFA + SED and Sal-SED-CrPic groups (P = .0014).

Figure 1. Body mass before and after 12 weeks of chromium picolinate (CrPic) supplementation and aerobic exercise intervention in rats exposed to residual oil fly
ash (ROFA). Values presented as mean ± SD. Statistical analysis: two-way repeated measures analysis of variance (ANOVA) followed by Tukey’s post hoc test. ROFA-
SED, ROFA exposure and sedentary (n = 8); ROFA-SED-CrPic, ROFA exposure, sedentary and supplemented (n = 6); ROFA-AT, ROFA exposure and trained (n = 8);
ROFA-AT-CrPic, ROFA exposure, supplemented and trained (n = 7); Sal-SED, sedentary (n = 8); Sal-SED-CrPic, sedentary and supplemented (n = 8); Sal-AT, trained
(n = 8); Sal-AT-CrPic, supplemented and trained (n = 8). Symbols represent comparisons among groups based on the post hoc analysis: &P < .05 vs. Initial Body
Mass; *P < .05 vs. ROFA-SED; @P < .05 vs. ROFA-SED-CrPic; #P < .05 vs. Sal-SED; †P < .05 vs. Sal-SED-CrPic.
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4. Discussion

The main findings of the present study were an improvement
in exercise tolerance and a reduction in oxidative stress in the
gastrocnemius muscle in rats that underwent aerobic training.
These findings were evidenced by an increase in both exercise
tolerance and SOD activity, and a decrease in TBARS levels in
the gastrocnemius muscle. Oxidative stress parameters evalu-
ated in lung and heart tissues, however, did not differ among
groups.

Regarding body mass, all groups exhibited increases in
body mass during the study, which was expected due to
the growth process. Conversely, aerobic exercise could

attenuate mass gain, likely due to increased energy expendi-
ture, resulting in a negative energy balance and, conse-
quently, a reduction of mass gain. Such an outcome was
observed in an experimental study by Cigarroa et al. [35],
which demonstrated that a treadmill intervention could coun-
terbalance the mass gain of animals fed a cafeteria diet.

Our findings suggest that aerobic training leads to exercise
tolerance, evidenced by an increased maximal velocity, as
demonstrated in experimental studies that use aerobic train-
ing [28,29]. The repetitive muscle contraction during exercise
training can lead to a variety of responses that increase
aerobic metabolism capacity and exercise tolerance [36–38].

Figure 2. Exercise tolerance test before and after 12 weeks of chromium picolinate (CrPic) supplementation and aerobic exercise intervention in rats exposed to
residual oil fly ash (ROFA). (a) Initial exercise tolerance test; (b) final time of exercise tolerance test. Values presented as mean ± SD. Statistical analysis: one-way
ANOVA followed by Tukey’s post hoc test. ROFA-SED, ROFA exposure and sedentary (n = 8); ROFA-SED-CrPic, ROFA exposure, sedentary and supplemented (n =
6); ROFA-AT, ROFA exposure and trained (n = 8); ROFA-AT-CrPic, ROFA exposure, supplemented and trained (n = 7); Sal-SED, sedentary (n = 8); Sal-SED-CrPic, seden-
tary and supplemented (n = 8); Sal-AT, trained (n = 8); Sal-AT-CrPic, supplemented and trained (n = 8). Symbols represent comparisons among groups based on the
post hoc analysis: *P < .05 vs. ROFA-SED; @ P < .05 vs. ROFA-SED-CrPic; # P < .05 vs. Sal-SED; †P < .05 vs. Sal-SED-CrPic.

Figure 3. Oxidative stress in lung tissue after 12 weeks of chromium picolinate (CrPic) supplementation and aerobic exercise intervention in rats exposed to residual
oil fly ash (ROFA). Analyses of (a) superoxide dismutase (SOD) activity in lung tissue; (b) catalase (CAT) activity in lung tissue and (c) thiobarbituric acid-reactive
substance (TBARS) levels in lung tissue. Values presented as mean ± SD. Statistical analysis: one-way ANOVA followed by Tukey’s post hoc test. ROFA-SED, ROFA
exposure and sedentary (n = 8); ROFA-SED-CrPic, ROFA exposure, sedentary and supplemented (n = 6); ROFA-AT, ROFA exposure and trained (n = 8); ROFA-AT-
CrPic, ROFA exposure, supplemented and trained (n = 7); Sal-SED, sedentary (n = 8); Sal-SED-CrPic, sedentary and supplemented (n = 8); Sal-AT, trained (n = 8);
Sal-AT-CrPic, supplemented and trained (n = 8).
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In the present study, no differences in SOD and CAT
activity, or TBARS levels, in the lungs and heart were
observed among groups. Consistent with our results, a

study reporting exposure to 50 and 250 μg of ROFA for 90
days also observed no change in oxidative stress markers,
such as SOD, CAT and TBARS [39]. Interestingly, acute

Figure 4. Oxidative stress in heart tissue after 12 weeks of chromium picolinate (CrPic) supplementation and aerobic exercise intervention in rats exposed to residual
fly oil ash (ROFA). Analyses of (a) superoxide dismutase (SOD) activity in heart tissue; (b) catalase (CAT) activity in heart tissue and (c) thiobarbituric acid-reactive
substance (TBARS) levels in heart tissue. Values presented as mean ± SD. Statistical analysis: one-way ANOVA followed by Tukey’s post hoc test. ROFA-SED, ROFA
exposure and sedentary (n = 8); ROFA-SED-CrPic, ROFA exposure, sedentary and supplemented (n = 6); ROFA-AT, ROFA exposure and trained (n = 8); ROFA-AT-
CrPic, ROFA exposure, supplemented and trained (n = 7); Sal-SED, sedentary (n = 8); Sal-SED-CrPic, sedentary and supplemented (n = 8); Sal-AT, trained (n = 8);
Sal-AT-CrPic, supplemented and trained (n = 8).

Figure 5. Oxidative stress in gastrocnemius muscle after 12 weeks of chromium picolinate (CrPic) supplementation and aerobic exercise intervention in rats exposed
to residual oil fly ash (ROFA). Analyses of (a) superoxide dismutase (SOD) activity in gastrocnemius tissue; (b) catalase (CAT) activity in gastrocnemius tissue and (c)
thiobarbituric acid-reactive substance (TBARS) levels in gastrocnemius tissue. Values presented as mean ± SD. Statistical analysis: one-way ANOVA followed by
Tukey’s post hoc test. ROFA-SED, ROFA exposure and sedentary (n = 8); ROFA-SED-CrPic, ROFA exposure, sedentary and supplemented (n = 6); ROFA-AT, ROFA
exposure and trained (n = 8); ROFA-AT-CrPic, ROFA exposure, supplemented and trained (n = 7); Sal-SED, sedentary (n = 8); Sal-SED-CrPic, sedentary and sup-
plemented (n = 8); Sal-AT, trained (n = 8); Sal-AT-CrPic, supplemented and trained (n = 8). Symbols represent comparisons among groups based on the post hoc
analysis: *P < .05 vs. ROFA-SED; @P < .05 vs. ROFA-SED-CrPic; #P < .05 vs. Sal-SED; †P < .05 vs. Sal-SED-CrPic.
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inhalation of concentrated ambient particles and ROFA has
been found to lead to potential oxidant injuries, followed
by an up-regulation of antioxidant defenses. After a 24 h
inhalation period, reversibility of oxidative stress occurs,
suggesting that oxidants mediated by pollution exposure
may trigger adaptive responses in the lungs and heart
[40–43]. Moreover, our study was performed using healthy
animals. In contrast, studies using different experimental
models of diseases have demonstrated that an underlying
condition represents the greatest risk after ROFA exposure,
as once oxidants and inflammatory migration occur at
sites where there is a pre-established inflammation; this is
not observed in healthy animals [44–46].

Regarding evaluations of oxidative stress in the gastrocne-
mius, we found increased SOD activity together with
decreased TBARS levels in trained groups, suggesting a posi-
tive effect of aerobic exercise on oxidative stress in the gastro-
cnemius muscle. Supporting our results, muscle activity
during exercise increases ROS formation and simultaneously
promotes an increase in the antioxidant defense system, as
well as improving resistance to oxidative stress [38,47]. Fur-
thermore, higher levels of SOD activity in skeletal muscle
are related to intensity and duration of exercise, as evidenced
by studies reporting that higher intensities and longer dur-
ations of exercise were associated with increased SOD activity
[47].

We found no significant difference in CAT activity among
groups, indicating no alteration in levels of this enzyme in
skeletal muscle in response to exercise. Likely, CAT activity
did not exhibit changes due to the action of other antioxidant
mechanisms in skeletal muscle that neutralize hydrogen per-
oxide, such as glutathione peroxidase (GPx) and peroxiredox-
ins. Endurance exercise promotes an increase of 20–177% in
GPx activity and peroxiredoxins are constitutively secreted
from the skeletal muscle, becoming more abundant than
CAT and GPx [47–49].

Notably, the reduced TBARS levels observed in trained
groups in our study could be associated with the increased
SOD activity, which may prevent against lipid peroxidation,
considering that ROS generation induced by exercise is a
stimulus for activating the expression of antioxidant
enzymes [6,50]. Naturally, a decrease in TBARS levels would
be a consequence of the SOD activity [38,47].

In relation to the lack of effect of supplementation, CrPic
can play an antioxidant effect when there is an oxidative dis-
ruption, because CrPic supplementation could preserve the
antioxidant status when there are a depletion of antioxidant
enzymes and an increase in oxidative stress [51–53]. In the
present study, positive action of CrPic was not observed,
likely because there was no depletion of antioxidant
enzymes or increased oxidative stress in our sample. Other
studies investigating the effects of antioxidant supplemen-
tation have reported that supplementation has led to ben-
eficial effects and reduced oxidative stress only in
individuals with low baseline antioxidant profiles
[43,51,54,55].

In conclusion, this study showed that in a healthy
sample, subchronic ROFA exposure did not lead to altera-
tions in oxidative markers. Furthermore, exercise training
could decrease body mass gain and increase exercise toler-
ance, as well as increasing SOD activity and decreasing lipid
peroxidation of skeletal muscles, such as the
gastrocnemius.
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