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ABSTRACT

Background: With the continued spread of smartphones and development of the internet, the potential
negative effects arising from problematic smartphone use (PSU) in adolescents are being reported on an
increasing basis. This study aimed to investigate whether altered resting-state functional connectivity
(rsFC) is related to the psychological factors underlying PSU in adolescents. Methods: Resting-state
functional magnetic resonance images were acquired from 47 adolescents with PSU and 46 healthy
control adolescents (the CON group). Seed-based functional connectivity analyses were then performed
to compare the two groups with respect to rsFC in the right inferior frontal gyrus, associated with
various forms of self-control, and rsFC in the left inferior frontal gyrus. Results: Compared to the CON
group, the PSU group exhibited a reduction in rsFC between the right inferior frontal gyrus and limbic
areas, including the bilateral parahippocampal gyrus, the left amygdala, and the right hippocampus. In
addition, a reduction in fronto-limbic rsFC was associated with the severity of PSU, the degree of self-
control, and the amount of time the subjects used their smartphones. Conclusion: Adolescents with PSU
exhibited reduced levels of fronto-limbic functional connectivity; this mechanism is involved in salience
attribution and self-control, attributes that are critical to the clinical manifestation of substance and
behavioral addictions. Our data provide clear evidence for alterations in brain connectivity with respect
to self-control in PSU.
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INTRODUCTION

With the widespread adoption of the internet and the development of mobile technology, the
popularity of smartphones has rapidly increased over the last year. It is estimated that almost
90% of adults in South Korea owned a smartphone in 2019 (Pew Research Center, 2019). As
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smartphones are becoming an essential part of the lives of
people, there are growing concerns related to the negative
influence of problematic smartphone use (PSU), especially
regarding physical and mental health. Furthermore, it has
been reported that PSU has dramatically increased due to
the self-isolation and social distancing caused by the rapid
worldwide spread of coronavirus disease 2019 (COVID-19)
(Caponnetto et al., 2021). In response to the accumulating
negative consequences of PSU, particularly during the
COVID-19 pandemic, there has been a substantial increase
in the volume of research literature pertaining to PSU
(Alabdulkader, 2021; Ratan, Zaman, Islam, & Hosseinzadeh,
2021).

Addiction is a state characterized by compulsive and
repetitive engagement in rewarding stimuli despite adverse
consequences (Philibin & Crabbe, 2015). The term addiction
was once limited to the use of drugs or substances; however,
the scope of addiction has expanded to gambling, compul-
sive buying, excessive use of the internet, and other behav-
ioral addictions (Grant, Potenza, Weinstein, & Gorelick,
2010). The Diagnostic and Statistical Manual of Mental
Disorders (DSM-5) included “Internet Gaming Disorders
(IGD)” as a condition for further study while the 11th edition
of the International Classification of Diseases (ICD-11) also
included “Gaming disorder” as a clinically recognizable and
clinically significant syndrome. Based on these guidelines,
neuroimaging studies relating to IGD or gaming disorders
have thrived over recent years and have provided evidence of
neurobiological alterations that are typically related to ad-
dictions. Unlike IGD, which has reached a consensus of
appropriate terminology and distinct clinical diagnostic
classification, there is still significant scientific debate as to
whether PSU should be regarded as an addictive behavior
(Billieux, Maurage, Lopez-Fernandez, Kuss, & Griffiths,
2015; Ch�oliz, 2010). Thus, there have been few neuro-
imaging studies related to PSU (Choi et al., 2021; Chun et al.,
2017, 2018; Horvath et al., 2020; Hu, Long, Lyu, Zhou, &
Chen, 2017). It has been mentioned in the previous studies
that “compulsive use (Lin et al., 2017)”, “excessive use (Chun
et al., 2017, 2018; Ha, Chin, Park, Ryu, & Yu, 2008)”,
“addictive use (Ch�oliz, 2010, 2012; De-Sola Gutierrez,
Rodriguez de Fonseca, & Rubio, 2016; Kim, Lee, Lee, Nam,
& Chung, 2014; Kim et al., 2016; Mahapatra, 2019; van
Deursen, Bolle, Hegner, & Kommers, 2015)”, or “habitual
use (van Deursen et al., 2015; Wilmer, Sherman, & Chein,
2017)” of smartphones is a problematic behavior with
negative consequences for individuals. Moreover, it is a fact
that social problems caused by PSU have increased rapidly,
especially among the adolescents. Therefore, there is a clear
need to develop a universally accepted diagnostic instrument
for PSU and perform neuroimaging studies to identify cir-
cuit-based evidence underlying PSU.

According to a pathways model of problematic mobile
phone use, personality traits related to impulsivity such as
lack of planning or low self-control lead to uncontrolled
mobile phone use (Billieux, Maurage et al., 2015). A previous
study demonstrated that the habitual use of smartphones is a
crucial contributor to addictive smartphone behavior, and

that the loss of self-control appears to lead to a higher risk of
addictive smartphone behavior (van Deursen et al., 2015).
Self-control is described as the ability to ignore one’s inner
responses, to interfere with undesired behavioral tendencies,
and to refrain from acting upon such tendencies (Tangney,
Baumeister, & Boone, 2004). Indeed, individuals with high
levels of self-control are likely to achieve better outcomes in
a variety of aspects, including a higher grade point average,
lower incidence of binge eating and alcohol abuse, and a
better degree of psychological adjustment (Tangney et al.,
2004). The previous survey study reported that female in-
dividuals with high levels of impulsivity and low levels of
self-control are prone to engage in smartphone approach
behavior (Kim et al., 2016). Factor analysis investigating the
psychological factors related to media use revealed that self-
control had a significant influence on internet use, video
games, and mobile phones (Khang, Kim, & Kim, 2013). The
critical role of self-control has been investigated not only in
the survey studies but also in neuroscience studies related to
substance and behavioral addiction (Chun, Choi, Cho, Lee,
& Kim, 2015; Ko, Liu, Yen, Yen, et al., 2013; Montag et al.,
2018; Park et al., 2017; Wang et al., 2009). These findings
were consistent with the previous research’s finding that the
chronically addictive state is associated with profound dis-
ruptions in the brain among the interacting motivational
drive and self-control circuits (Nora D. Volkow & Baler,
2013). Collectively, existing studies clearly demonstrate that
a low level of self-control is one of the most critical factors
underlying addiction-like behaviors including PSU.

The inferior frontal gyrus (IFG) has been widely inves-
tigated due to its multifunctional role in human behavior.
Moreover, the functional connectivity of the IFG with other
regions of the brain is known to be asymmetrical when
compared between the right and left hemispheres (Du et al.,
2020). Studies involving neuroimaging and lesion-mapping
in humans have suggested that the right-lateralized IFG is a
region that is commonly activated when subjects are
engaged in various forms of self-control (Aron, Robbins, &
Poldrack, 2004; Cohen & Lieberman, 2010; Garavan, Ross,
Murphy, Roche, & Stein, 2002; McClure, Laibson, Loewen-
stein, & Cohen, 2004; Rubia, Smith, Brammer, & Taylor,
2003). Lesion-mapping studies in humans have shown that
damage to the right IFG (R.IFG) were correlated with
reduced levels of response inhibition, which is one of aspects
of self-control (Aron, Fletcher, Bullmore, Sahakian, &
Robbins, 2003). A transcranial magnetic stimulation (TMS)
study further showed that TMS-induced temporal disrup-
tion in the R.IFG led to reduced levels of inhibition in the
stop-signal task (Chambers et al., 2006); this could be
inferred as a reduced level of self-control performance.

Resting-state functional magnetic resonance imaging
(rs-fMRI) measures the spontaneous blood oxygen-level
dependent (BOLD) signal changes within different brain
regions in the absence of task stimuli (Biswal, Yetkin,
Haughton, & Hyde, 1995). Furthermore, rs-fMRI allows us to
investigate functional brain connectivity by reflecting intrinsic
interactions between functionally connected brain regions of
interest (ROIs) (Friston, Frith, Liddle, & Frackowiak, 1993).
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Resting-state functional connectivity (rsFC) has been used to
study a range of addictions, including substance addiction
and behavioral addiction, including internet addiction and
IGD. Considering there have yet been rsFC studies concern-
ing self-control in PSU, the investigation of rsFC in adoles-
cents with PSU will enhance our knowledge of brain function
during the early stages of PSU and will allow us to take the
first steps forward in preventing developmental alterations
that may continue into adulthood.

A recent study reported a strong relationship between
PSU and the loss of self-control (Khang et al., 2013; Kim
et al., 2016; van Deursen et al., 2015). Although these
findings were mostly derived from surveys, the specific
neural correlates underlying self-control and PSU have not
been investigated yet. Therefore, investigating right-later-
alized IFG connectivity underlying self-control ability will
help us to understand the neurological aspects of smart-
phone use. In this study, rs-fMRI was used to investigate
the neural correlates underlying self-control in adolescents
with PSU. Based on previous studies, which supported the
role of the R.IFG in self-control (Aron et al., 2004; Cohen
& Lieberman, 2010; Miller & Cohen, 2001), we selected the
R.IFG as a seed ROI. In addition, we analyzed the rsFC in
the L.IFG to confirm the role of the R.IFG in self-control.
As such, we hypothesized that adolescents demonstrating
PSU would show a reduced rsFC within the R.IFG.
In addition, we hypothesized that altered functional
connectivity within the R.IFG would be associated with
the severity of PSU symptoms and reduced levels of
self-control.

METHODS

Participants

A total of 632 adolescents (13–18 years-of-age) participated
in this survey after being recruited online. Of these, 51 ad-
olescents were classified as PSU according to the Smart-
phone Addiction Proneness Scale (SAPS; for further details,
see ‘Group Categorization’) for Youths (Kim et al., 2014).
The 51 adolescents with PSU were subsequently recruited
for fMRI experiments. Fifty-one age-matched adolescents
were also recruited as healthy controls (the CON group).

All participants underwent a structured interview from
the Korean Kiddie-Schedule for Affective Disorders and
Schizophrenia (K-SADS-PL) to screen out adolescents with
major medical disorders, neurological, or psychiatric disor-
ders. All participants were right-handed, as determined by
the Edinburgh Inventory (Oldfield, 1971). Four participants
in the PSU group, and one participant in the CON group,
were excluded due to their IQs being below 80, as assessed
using subtests of the Korean Wechsler Intelligence Scale for
Children, 4th edition (K-WISC-IV) (O’Donnell, 2009). Prior
to scanning, all participants were assessed for MRI safety.
Four participants in the PSU group were excluded from the
final analysis due to the poor quality of the acquired imaging
data. Therefore, our final analysis included 47 adolescents

with PSU (25 males and 22 females) and 46 CON adoles-
cents (26 males and 20 females).

Group categorizations

PSU was evaluated with the Korean Smartphone Addiction
Proneness Scale (SAPS) for Youths (Kim et al., 2014). The
SAPS consisted of 15 items scored on a four-point Likert
scale ranging from 1 (not at all) to 4 (always). The reli-
ability test of the scale yielded a Cronbach’s alpha of 0.880.
This scale consists of four factors: the disturbance of
adaptive functions, virtual life orientation, withdrawal, and
tolerance. The participants were diagnosed with PSU in the
following cases: if the total score exceeded 42 or if the
subscale scores for the disturbance of adaptive function,
withdrawal, and tolerance exceeded 14, 12, and 13,
respectively.

In addition, we also used the Smartphone Addiction
Scale (SAS) (Kwon et al., 2013) in order to enhance the
reliability and validity of this study. The SAS was developed
by Kwon et al. (2013) and is based on the Internet Addiction
Scale and smartphone characteristics; Cronbach’s alpha for
the SAS was 0.967.

Clinical assessments

Self-control was assessed by the Brief Self-Control Scale
(BSCS) (Tangney et al., 2004). The concept of self-control
measured by this scale refers to the ability to override or
change an individual’s inner responses while avoiding un-
desirable behaviors such as impulses (Tangney et al., 2004).
This scale consists of 13 items that measure general self-
control. Participants rate each item using a 5-point Likert
scale ranging from 1 (not at all like me) to 5 (very much like
me). Higher scores on the BSCS indicate higher levels of self-
control. Cronbach’s alpha for this scale was 0.85.

The intellectual ability of each participant was assessed
using the Vocabulary and Block Design subtests of the
K-WISC-IV (O’Donnell, 2009). We compared the subtest
scores on the K-WISC-IV between PSU and CON groups in
order to control the potential effect of intelligence.

Acquisition of imaging data

Functional and structural MRI data were acquired with a 3-
Tesla MAGNETOM Verio system (Siemens, Erlangen,
Germany) equipped with a 16-channel head coil. The par-
ticipant’s head was cushioned with earmuffs to minimize
head motion. During scanning, participants were instructed
to keep their head still and their eyes fixated on a crosshair.
Functional images were obtained with a T2p weighted
gradient echo-planar imaging sequence with the following
parameters: repetition time (TR) 5 2,000ms; echo time
(TE) 5 30ms; voxel size 5 2.03 2.03 4.0mm; matrix size
5 963 96; and slice number 5 28. Structural images were
obtained with a resolution of 1.03 1.03 1.0mm and were
acquired with a 3D T1-weighted gradient echo sequence
(TR 5 2,300ms, TE 5 2.22ms, and image matrix 5
2563 256, 176 slices).
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Functional connectivity analysis

Resting-state fMRI data were preprocessed and analyzed
with the CONN toolbox v.18b (www.nitrc.org/projects/
conn) implemented on MATLAB (Mathworks, Inc., MA,
USA). Functional images were corrected for slice-timing and
head motion and were normalized to the Montreal Neuro-
logical Institute (MNI) common Atlas space. Subsequently,
the anatomical data were segmented to produce gray matter,
white matter, and cerebrospinal fluid maps for each partic-
ipant that were then spatially smoothened with a Gaussian
kernel of 6mm (full width at half maximum). The time
course for each participant’s standard motion parameters,
along with the time course for artifact detection tool-based
“scrubbed” signal artifacts, were included as first-level
covariates for rs-fMRI data. Nuisance regression and band-
pass filtering (0.008–0.09Hz) were applied to remove un-
wanted effects from the BOLD signal, including motion,
physiological, and other artifactual effects.

Functional connectivity analyses were performed to
investigate differences between the two groups; these analyses
were performed using a seed-based ROI-to-ROI approach
implemented in the CONN toolbox v.18b (www.nitrc.org/
projects/conn). Whole-brain functional connectivity analysis
was performed in the left and right IFG across all other
cortical and subcortical areas using the Harvard-Oxford Atlas
in FSL (Jenkinson, Beckmann, Behrens, Woolrich, & Smith,
2012), defined as a priori in the CONN toolbox. Correlation
coefficients for the time series between the left and the right
IFG, and the entire whole brain region, were calculated and
then transformed into z-values using Fisher’s r-to-z trans-
formation. To control for potential confounding factors, we
used IQ, age, and sex, as covariates of no interest for each of
these analyses. We compared the resulting correlation co-
efficients for each participant using a two-sided independent
samples t-test to evaluate between-group differences in ROI-
to-ROI connectivity. The significance level was determined at
P < 0.05, and false discovery rate (FDR) correction was
applied to correct for multiple tests, as required.

Statistical analyses

All statistical analyses involving demographic variables,
clinical variables, and mean rsFC, were conducted in IBM
SPSS Statistics for Windows, version 20 (IBM Corp.,
Armonk, NY). We conducted a two-sample t-test for group
comparisons for the demographic and clinical variables. In
addition, we performed one-tailed Pearson’s correlation
analysis, merging the PSU and CON groups to investigate
the relationships between relative rsFC strength and clinical
measures, including SAPS and BSCS scores.

Previous studies demonstrated that alterations in the
function of the R.IFG were related to low levels of self-
control (Aron et al., 2003, 2004; Cohen & Lieberman, 2010;
Liakakis, Nickel, & Seitz, 2011) and that a low level of self-
control was a key trait underlying PSU. On this basis, we
conducted mediation analysis to investigate the specific re-
lationships between three variables: rsFC within the R.IFG,
self-control, and the severity of PSU. Mediation analysis was
performed in SPSS using the PROCESS module (Hayes,
2013). The strength of rsFC within the R.IFG was used as the
causal variable, with SAPS scores as the outcome variable,
and BSCS scores as the mediator variable.

Ethics

All participants, and their parents, provided written
informed consent in accordance with the Declaration of
Helsinki, and the study protocol was approved by the
Institutional Review Board of Seoul St. Mary’s Hospital. All
experiments were performed in accordance with the guide-
lines and regulations.

RESULTS

Demographics

Table 1 describes the demographic and clinical characteris-
tics of the participants. There were no significant differences

Table 1. Demographic characteristics of the PSU and CON groups

PSU (n 5 47) CON (n 5 46)

t-scoreMean SD Mean SD

Age 15.68 1.48 14.98 1.61 2.19
K-WISC 104.38 13.15 105.37 11.73 �0.381
Gender
Male 53.2% (n 5 25) 56.5% (n 5 26) c2 5 0.10
Female 46.8% (n 5 22) 43.5% (n 5 20)

Time spent on smartphone use per week (h) 29.35 14.51 17.51 11.80 4.29**
SAPS 39.40 7.82 21.96 3.54 13.80**
Disturbance of adaptive function 13.98 2.93 7.50 1.38 13.59**
Withdrawal 9.64 3.21 5.52 1.68 7.72**
Tolerance 11.85 2.62 6.59 1.68 11.50*

SAS 114.43 33.99 60.13 16.14 9.81**
BSCS 35.81 6.09 44.70 5.43 �7.42**

*P < 0.01, **P < 0.001.
PSU 5 problematic smartphone use; CON 5 control; K-WISC 5 Korean Wechsler Intelligence Scale for Children; SAPS 5 Smartphone
Addiction Proneness Scale; BSCS 5 Brief Self-Control Scale. The three subscales used for SAPS cut-off are specified.
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between the two groups in terms of age, sex, or K-WISC
scores. The participants with PSU spent significantly
more time on their smartphones per week [t(91) 5 4.29,
P < 0.001] and had significantly higher scores on the SAPS
[t(91)5 13.80, P < 0.001] and the SAS [t(91)5 9.81, P < 0.001]
when compared to the CON group. In addition, the PSU
group had significantly lower scores on the BSCS [t(91) 5
�7.42, P < 0.001] than the CON group.

MRI results

Figure 1 and Table 2 demonstrate group differences in ROI-
to-ROI functional connectivity. With regards to functional
connectivity, the PSU group showed significantly reduced
rsFC between the R.IFG and the left parahippocampal gyrus
(L.PHG) [t(88) 5 4.39, corrected P < 0.05; Fig. 1A], and
between the R.IFG and the right parahippocampal gyrus
(R.PHG) [t(88) 5 3.26, corrected P < 0.05; Fig. 1B]. In
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Fig. 1. Group Differences in ROI-to-ROI functional connectivity. Note: Orange circles characterize the seed ROIs. The bar graphs illustrate
the mean resting-state functional connectivity strength between (A) the right IFG and the left PHG, (B) the right IFG and the right PHG, (C)
the right IFG and the left amygdala, (D) the right IFG and the right hippocampus (E) the left IFG and the left PHG, (F) the left IFG and the
right PHG, (G) the left IFG and the left amygdala, and (H) the left IFG and the right hippocampus. PSU 5 problematic smartphone use;

CON 5 control; IFG 5 inferior frontal gyrus; PHG 5 parahippocampal gyrus; AMY 5 amygdala
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addition, there was weaker levels of connectivity between the
R.IFG and the left amygdala (L.amygdala) [t(88) 5 3.89,
corrected P < 0.05; Fig. 1C] and between the R.IFG and the
right hippocampus (R.hippocampus) [t(88) 5 3.22, cor-
rected P < 0.05; Fig. 1D] in the PSU group than in the CON
group. Although we observed a reduced rsFC in the R.IFG
seed, there was no significant group difference with regards
to the rsFC in the L.IFG seed (Fig. 1E-H).

The relationship between rsFC and the characteristics
of PSU

ROI-to-ROI connectivity analysis was performed for both
sides of the IFG; however, there was no significant difference
with regards to the rsFC in the L.IFG when compared be-
tween the two groups. Therefore, Pearson’s correlation
analysis was performed only between the rsFC of the R.IFG
seed, BSCS, and smartphone-related characteristics
(Table 3). The SAPS scores were negatively correlated with
BSCS scores when considered across all participants. Higher
SAPS scores were associated with lower rsFC values between
the R.IFG seed and the limbic regions (i.e., the bilateral
PHG, the L.amygdala, and the R.hippocampus). The rsFC
between the R.IFG and the R. hippocampus was negatively
correlated with the amount of time spent using

smartphones. Correlations between the BSCS scores and the
rsFC of the R.IFG seed are shown in Fig. 2. We identified
positive correlations between BSCS scores and R.IFG/L.PHG
connectivity (Fig. 2A), R.IFG/R.PHG connectivity (Fig. 2B),
and R.IFG/L. amygdala connectivity (Fig. 2C). As BSCS
increased, the rsFC of the R.IFG/R.hippocampus also tended
to increase, although this was not statistically significant
(Fig. 2D).

We also conducted correlation analysis between SAPS,
BSCS, and rsFC strength, in each group separately; however,
these analyses did not identify any significant differences
between the two groups.

We also used mediation analysis to investigate whether
the lower levels of self-control associated with the rsFC
strength of the R.IFG seed were linked to the severity of PSU
(Fig. 3). Four rsFCs of the R.IFG seed were shown to exhibit
significant differences between the two groups: R.IFG/
L.PHG, R.IFG/R.PHG, R.IFG/L.amygdala, and R.IFG/
R.hippocampus. Consequently, we conducted mediation
analysis to investigate each of these rsFCs. First, when using
the rsFC of the R.IFG/L.PHG as a causal variable (Fig. 3A),
mediation analysis revealed that the rsFC of the R.IFG/
L.PHG had an indirect influence on the severity of PSU via
self-control (Fig. 3A), with a standardized indirect effect of
�0.13, as revealed by a 95% bootstrap confidence interval
(CI) that was below zero (CI: �0.25 to �0.03). Second, when
using the rsFC of the R.IFG/R.PHG as a causal variable
(Fig. 3B), mediation analysis showed that the rsFC of the
R.IFG/R.PHG also had an indirect effect on the severity of
PSU via self-control (95% CI: �0.29 to �0.06). Third, as
shown in Fig. 3C, when the rsFC of the R.IFG/L.amygdala
was used as a causal variable, mediation analysis revealed
that the rsFC of the R.IFG/L.amygdala had an indirect in-
fluence on the severity of PSU via self-control (95% CI:
�0.28 to �0.04). Finally, when the rsFC of the R.IFG/
R.hippocampus was used as a causal variable (Fig. 3D), the
R.IFG/R.hippocampus did not predict self-control to be a
mediator. In this case, the mediation model could not
be tested according to Baron and Kenny’s method
(Hayes, 2013) since the causal variable could not predict the
mediator.

Table 2. Group Differences in ROI-to-ROI functional connectivity
(PSU<CON)

P

Seed Locus Region Peak T Uncorrected
FDR

corrected

R. IFG L. PHG 4.39 0.0000 0.0033
L. Amygdala 3.89 0.0002 0.0100
R. PHG 3.26 0.0016 0.0471

R. Hippocampus 3.22 0.0018 0.0471
L. IFG None - -

PSU 5 problematic smartphone use; CON 5 control; FDR 5 false
discovery rate; IFG 5 inferior frontal gyrus; PHG 5
parahippocampal gyrus.

Table 3. Pearson's correlations between the rsFC of the right IFG and variables related to PSU and personality, while merging data from the
PSU and CON groups

rsFC

BSCSR. IFG-L.PHG R. IFG-R.PHG R. IFG-L.AMY R. IFG-R.HIP

SAPS �0.330** �0.358** �0.293** �0.339** �0.671**
Disturbance of adaptive function �0.375** �0.287** �0.325** �0.258* �0.659**
Withdrawal �0.205* �0.324** �0.190 �0.301** �0.488**
Tolerance �0.312** �0.333** �0.305** �0.349** �0.662**

SAS �0.229* �0.265* �0.183 �0.343** �0.0597**
Time for smartphone use per week (h) �0.162 �0.189 �0.056 �0.285** �0.407**
BSCS 0.213* 0.279** 0.251* 0.140 1

*P < 0.01, **P < 0.001.
SAPS 5 Smartphone Addiction Proneness Scale; SAS 5 Smartphone Addiction Scale; BSCS 5 Brief Self-Control Scale. The three subscales
used for SAPS cut-off are specified.
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DISCUSSION

To our knowledge, this is the first study to demonstrate
alterations in the rsFC of the right IFG in adolescents with
PSU. In addition, this study showed that alterations in rsFC
in the R.IFG were correlated with self-control ability and the
severity of PSU. Furthermore, we found a mediating effect of
self-control in the relationship between rsFC within the
R.IFG and the severity of PSU.

Our findings demonstrated that adolescents with PSU
showed significantly lower levels of self-control and reduced
fronto-limbic rsFC than the CON group. The self-control
ability of adolescents tends to be lower than that of adults; this
phenomenon is known to be related to the development of
the brain during adolescence. The prefrontal cortex is asso-
ciated with decisions to delayed rewards, engaging in the
quantitative analysis of economic options and the assessment
of future opportunities for reward (Dixon & Christoff, 2012),
and undergoes gradual developmental changes during
adolescence and young adulthood (Kelley, Schochet, &
Landry, 2004). Limbic and paralimbic cortical structures,
known to be rich in dopaminergic innervation, are associated
with decisions to approach rewards that are immediately

available (McClure et al., 2004) and appear to mature earlier
than the prefrontal area (Casey, Jones, & Hare, 2008). This
discrepancy in development rates between the prefrontal and
limbic regions is deemed to increase the chances of risk-
taking behaviors (Balogh, Mayes, & Potenza, 2013) and
promotes poor decision-making (Somerville, Jones, & Casey,
2010). Adolescents tend to be more impulsive and lack self-
control; in addition to this, our group of PSU adolescents
exhibited a reduced fronto-limbic rsFC when compared to the
control group. This suggests that the ability to regulate
smartphone use in adolescents with PSU is prone to be
significantly lower than the ability of adults with PSU.
Moreover, the fact that smartphones are portable devices
makes adolescents more vulnerable to unrestrained smart-
phone use.

In this study, PSU adolescents exhibited reduced levels of
functional connectivity between the R.IFG and the amyg-
dala. The amygdala has been found to play an essential role
in the salience response (Santos, Mier, Kirsch, & Meyer-
Lindenberg, 2011) and in guiding goal-directed behavior
(Winstanley, Theobald, Cardinal, & Robbins, 2004); on that
account, its alterations have been repeatedly reported to be
associated with substance and behavioral addiction (Chun
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Fig. 2. Correlations between fronto-limbic rsFC strength and BSCS score. Positive associations between (A) R.IFG/L.PHG rsFC and BSCS
(r 5 0.21, P < 0.01), (B) R.IFG/R.PHG rsFC and BSCS (r 5 0.28, P < 0.001), (C) R.IFG/L.AMY rsFC and BSCS (r 5 0.25, P < 0.01), and
between (D) R.IFG/R.Hippocampus and BSCS (r 5 0.14). PSU 5 problematic smartphone use; CON 5 control; IFG 5 inferior frontal

gyrus; PHG 5 parahippocampal gyrus; AMY 5 amygdala
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et al., 2020; Wang, Shen, et al., 2017; Zhang & Volkow,
2019). Accordingly, the reduced R.IFG/amygdala rsFC
exhibited by the PSU group could represent alterations in
salience and executive networks and could thus lead to the
problematic overuse of smartphones.

Moreover, amygdala/PFC connectivity is known to
contribute to emotional regulation which plays a key role in
negative reinforcement and the motivational effects (Koob &
Moal, 2008). Previous surveys have reported higher levels of
depression and anxiety in individuals with PSU (Demirci,
Akg€on€ul, & Akpinar, 2015; Matar Boumosleh & Jaalouk,
2017). As such, adolescents with PSU, who experience dif-
ficulty in coping with their mood, might use their smart-
phones excessively to escape from a negative emotional state
(Elhai & Contractor, 2018). Although the majority of ado-
lescents go online to avoid their psychological problems, it is
likely that they can experience adverse outcomes that could
exert a negative influence upon their life (Mahapatra, 2019;
Young, 1999). Consequently, it is possible that these factors
(a reduced amygdala/PFC rsFC, a negative emotional state,
and excessive smartphone use) might interlock and reinforce
the problematic use of smartphones.

We observed decreased levels of functional connectivity
between the right IFG and the bilateral PHG in the PSU
group. The PHG is known to evaluate the behavioral sig-
nificance of sensory information (Salzmann, Vidyasagar, &
Creutzfeldt, 1993), and then transfer the contextual infor-
mation to the inferior frontal lobe (Nora D. Volkow & Baler,
2013). Accordingly, altered levels of activation in the PHG

have been repeatedly reported in cue-induced craving for
internet gaming (Han et al., 2011; Ko, Liu, Yen, Chen, et al.,
2013), nicotine dependence (Ko, Liu, Yen, Yen, et al., 2013),
and pathological gambling (Crockford, Goodyear, Edwards,
Quickfall, & el-Guebaly, 2005). A previous study of IGD
examined differences in the neural representations of IGD in
recreational gaming users during decision-making and
revealed reduced neural responses in the PHG, anterior
cingulate cortex, medial frontal gyrus, and IFG, in the IGD
group, thus suggesting that PHG plays a crucial role in
preventing individuals from developing compulsive and
addiction-like behaviors (Wang, Wu, et al., 2017). In line
with other studies of IGD, the PSU participants in this study
exhibited a reduced R.IFG/PHG rsFC; this reduction in rsFC
was associated with more severe PSU symptoms, thus sug-
gesting that R.IFG/PHG connectivity could represent a
neural-based biomarker for PSU.

In the present study, we observed a reduced rsFC be-
tween the R.IFG and the R.hippocampus in the PSU group,
and its negative correlation with the amount of time spent
using a smartphone. The R.IFG plays a critical role in self-
control and makes essential contributions to response sup-
pression and attentional control (Aron et al., 2003; Correas
et al., 2019). And it has been well established that the hip-
pocampus is crucial for the memory encoding and retrieval
(Eichenbaum, Yonelinas, & Ranganath, 2007; Poppenk,
Evensmoen, Moscovitch, & Nadel, 2013) that lead to
compulsive addictive behavior (Volkow et al., 2010). The
connectivity of prefrontal area and the hippocampus is

Fig. 3. Mediation analysis between rsFC with right IFG, self-control, and the severity of PSU. Across groups, BSCS scores partially mediated
the relationship between (A) rsFC of the right IFG/left PHG and the severity of PSU, (B) rsFC of the right IFG/right PHG and the severity of
PSU, and (C) rsFC of the right IFG/left PHG and the severity of PSU. (D) No mediation effect of self-control was found in the relationship
between the rsFC of the right IFG/right HIP. Path ‘a’ is from the rsFC with right IFG (causal variable) to the degree of self-control via BSCS
scores (mediator). Path ‘b’ is from self-control (mediator) to the severity of PSU (outcome variable). The direct effect c’ was calculated by
controlling for the mediator. rsFC 5 resting-state functional connectivity; PSU 5 problematic smartphone addiction; BSCS 5 brief self-

control scale; IFG 5 inferior frontal gyrus; PHG 5 parahippocampal gyrus; AMY 5 amygdala; HIP 5 hippocampus.
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known to be involved in a range of memory processes
(Howard Eichenbaum, 2017), and the aberrant functional
coupling between these regions could contribute to an array
of psychiatric disorders (Godsil, Kiss, Spedding, & Jay, 2013;
Meyer-Lindenberg et al., 2005), including addiction. In the
present study, R.IFG/R.hippocampal connectivity was found
to be reduced in adolescents with PSU; this was associated
with the amount of hours spent on a smartphone, and also
with withdrawal. Therefore, a longer time period spent on a
smartphone might influence on rsFC in the fronto-hippo-
campus, thus leading to an enhanced memory of smart-
phone-related cues and a deterioration in an individual’s
ability to suppress intrusive thoughts and memories related
to cravings directed towards smartphones.

As mentioned above, previous neuroimaging studies have
demonstrated that the right IFG is particularly involved in self-
control (Aron et al., 2004; Cohen & Lieberman, 2010; Garavan
et al., 2002; McClure et al., 2004; Rubia et al., 2003), and
numerous survey studies have revealed that lower self-control
is a critical factor that predicts PSU (Khang et al., 2013; Kim
et al., 2016; van Deursen et al., 2015). Therefore, mediation
analysis was conducted to elucidate the influence of self-con-
trol in the relationship between the rsFC of the right IFG and
PSU. The mediation analysis further demonstrated that the
fronto-limbic rsFC had an indirect influence on the severity of
PSU via self-control. Lack of self-control and impulsivity were
suggested as one of the psychological characteristics leading to
dysfunctional involvement in gambling (Blaszczynski &
Nower, 2002) and online video games (Billieux, Thorens, et al.,
2015), thereby providing neurological evidence in support of
pathological gambling and online games being considered
behavioral addictions. The results of fMRI and the mediation
analysis of the present study could provide neurological evi-
dence for the already existing theoretical model on how an
individual’s low self-control can lead to PSU, therefore
providing a foothold for PSU to be regarded as a behavioral
addiction. Volkow (2016) suggested that addiction is a brain
disease which consists of profound disruptions in decision-
making ability and emotional balance, and preventive in-
terventions should be designed to enhance social skills and
improve self-regulation (Volkow, Koob, & McLellan, 2016).
These results suggest the possible ways of reducing PSU
symptoms; one is strengthening the fronto-limbic rsFC using
neuromodulatory, the other is enhancing self-control. Several
functional neuroimaging studies have tested the modulation of
specific brain regions using transcranial direct current stimu-
lation (tDCS) or repeated high-frequency transcranial mag-
netic stimulation (rTMS) for smoking cessation (Amiaz, Levy,
Vainiger, Grunhaus, & Zangen, 2009; Eichhammer et al.,
2003), or the reduction of alcohol (Boggio et al., 2008) and
drug (Martinotti et al., 2019; Sharifi-Fardshad et al., 2018)
cravings. These treatments significantly attenuated cravings
towards addicted substances. On the basis of these previous
findings, we suggest the possible involvement of the R.IFG as a
target region to develop neuromodulatory treatments for PSU.
The other plausible intervention to alleviate PSU symptoms is
enhancing self-control through cognitive behavioral therapies
(CBTs), implementation intention, or mindfulness training

(van Koningsbruggen, Stroebe, Papies, & Aarts, 2011; von
Hammerstein et al., 2018; Young, 2007). In particular, CBTs
has revealed to be an effective treatment for behavioral
addiction such as pathological gambling (Jim�enez-Murcia
et al., 2007) and internet addiction (Du, Jiang, & Vance, 2010;
Young, 2013), therefore, it is expected to have an effect on the
treatment of PSU.

There are several limitations to the current study that
need to be considered. First, we did not consider the primary
reasons for smartphone use. Because numerous smartphone
applications exist, and because user patterns are so diverse
and heterogeneous, we did not categorize participants into
smaller groups based on their particular preferences for
smartphone use. Second, using cross-sectional data, it is
difficult to determine whether the alterations in the fronto-
limbic rsFC observed in the PSU group fully reflect a pre-
disposition to addiction-like behavior or whether these
represent an effect of long-term exposure to smartphones.
Thus, a longitudinal imaging study of adolescents is now
required to validate the causal mechanisms underlying PSU.

In summary, the present study provides evidence to
indicate that adolescents with PSU exhibit multiple rsFC
in the fronto-limbic regions. Furthermore, this reduced
rsFC was related to the severity of PSU and a lower level of
self-control. It is possible, therefore, that the rsFC alter-
ations in the PSU group could be derived from a lower
level of self-control, following a functional imbalance
within the brain regions associated with executive control
and reward-seeking. Understanding the alterations in
functional connectivity in adolescents with PSU could
guide researchers when developing interventions to con-
trol the symptoms of PSU. In addition, evidence sup-
porting the alteration in neurobiology in PSU has been
scarce; thus, more research is needed to better understand
the epidemiological and neurobiological factors to assist in
the intervention of PSU.
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