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We are curious by nature, particularly when young. Evolution has endowed
our brain with an inbuilt obligation to educate itself. In this perspectives
article, we posit that self-tuition is an evolved principle of vertebrate brain
design that is reflected in its basic architecture and critical for its normal devel-
opment. Self-tuition involves coordination between functionally distinct
components of the brain, with one set of areas motivating exploration that
leads to the experiences that train another set. We review key hypothalamic
and telencephalic structures involved in this interplay, including their anatom-
ical connections and placement within the segmental architecture of conserved
forebrain circuits. We discuss the nature of educative behaviours motivated by
the hypothalamus, innate stimulus biases, the relationship to survival in early
life, and mechanisms by which telencephalic areas gradually accumulate
knowledge. We argue that this aspect of brain function is of paramount impor-
tance for systems neuroscience, as it confers neural specialization and allows
animals to attain far more sophisticated behaviours than would be possible
through genetic mechanisms alone. Self-tuition is of particular importance
in humans and other primates, whose large brains and complex social cogni-
tion rely critically on experience-based learning during a protracted childhood
period.

This article is part of the theme issue ‘Systems neuroscience through the
lens of evolutionary theory’.

1. Introduction

A critical early mission of the brain is to direct its own education [1]. Genetic pro-
grammes are limited in their capacity to confer sophisticated behaviours. However,
the brain has evolved systems that develop specialization through experience.
Thus, acquiring experience is itself part of a developmental programme that
allows inherently adaptable neural circuits to reach their normal functional matur-
ity and behavioural capacities. In humans and other primates with large brains
and long childhoods, neural specialization comes about gradually over years of
experience. Across species, some learned specializations are shared broadly,
whereas others are linked to a given ecology or sensory modality.

In this perspectives article, we posit that the vertebrate forebrain has evolved
to support an interplay between brain areas that drives its own education based
on a curiosity-driven exploration of the environment. We refer to this process as
self-tuition. We begin by describing a broad conceptual framework
for understanding this behavioural process. We propose that developmental
self-tuition follows from an innate motivation to explore one’s environment in a
targeted way. After laying out our proposal, we review key neural structures
and anatomical brain architecture that may be involved in self-tuition. We focus
on the hypothalamus and its generation of motivated behaviours during early
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Figure 1. Theoretical depiction of the expression and development of self-tuition in the brain. (a) In the newborn brain, interactive behaviour with the environment
is strongly driven by innate factors, including the internal generation of motivated behavioural states (purple, e.g. in the hypothalamus) and the biased processing
of important stimuli (blue, e.g. in sensory pathways). The resulting experiences lead to gradual functional specialization of adaptable control circuits (pink, e.g. in
the telencephalon). (b) Following extensive developmental experience, the adult brain engages in a broader range of interactive behaviours, which are orchestrated
more directly by the trained central control circuits. Innate drives and biases continue to promote various behaviours in the adult, but these can now be overridden

by the trained control circuits.

life. These behaviours are commonly associated with homeo-
stasis and basic survival [2,3]. We propose that, in addition,
these behaviours and the resulting experiences are critical dri-
vers for the normal development of the telencephalon. We then
provide examples of how early life behaviours can serve the
dual role of immediate survival and longer-term training of
the brain. We highlight one particularly important mode of
statistical learning related to developing expertise in face recog-
nition in primates. While we posit that this aspect of brain
operation is a conserved feature of the vertebrate brain, we
focus on mammals, and particularly primates, whose long
childhood affords them an extended developmental window
for this process to unfold.

It is well established that neural circuits throughout the brain
become specialized based upon an animal’s behavioural
experiences with the environment, and that this learning is
most intense during development (for a recent review, see
[4]). The behavioural and neural aspects of these processes
are well understood in, for example, the early visual system,
where spontaneous eye opening, and the subsequent exposure
to visual input during a critical period of plasticity, is required
for the normal development and maturation of its circuits [5].
We posit that such preordained coordination between spon-
taneous behaviours and developmental plasticity is a central
principle of brain design that shapes its specialization for a
wide range of behaviours. For example, social circuits in the
brain are trained through innate but complex behaviours
such as play, conflict, and, in the case of primates, preoccupa-
tion with important visual stimuli such as faces. Just as eye
opening is required for normal development of the early
visual system, early life exploratory and curiosity-driven beha-
viours are critical for the normal development of brain regions
invested in other cognitive operations.

The topic of developmental plasticity often comes to the
fore when scientists grapple with neuroscientific problems
that feature the complex interaction between genetics and
environment [6-11]. Less often discussed, however, is the
brain’s critical and evolved obligation to educate itself through

the active solicitation of species-appropriate interactions with
the environment. Instead of pre-programming an extensive
array of environmental knowledge, the brain has evolved to
motivate certain types of exploration of the environment.
This exploration leads to its learning of statistical regularities
and gradual acquisition of knowledge and expertise within
its neural systems, which then support the adult repertoire
of behaviours.

Programmed self-tuition is thus a recursive and dynamic
ingredient in the normal development of the brain. It is sche-
matized in figure 1. A newborn animal enters the world with
a limited behavioural repertoire that includes some innate
motivational drives and sensory selection biases. Initially,
vast portions of the brain consist of naive but inherently
adaptable circuits. Ultimately, these adaptable circuits are
destined to gain control over the tactical aspects of everyday
behaviour (figure 1a). However, in this nascent stage, behav-
ioural interactions with the outside world operate within a
relatively narrow range, often within a protected maternal
environment. As the animal first experiences the conse-
quences of its own actions and interactions with the
environment, circuits throughout the brain begin to incorpor-
ate expertise about the details of sensory stimuli and events,
motor execution, and cognitive and social behaviours. As the
animal grows, its experiences broaden. The adaptable
elements of the brain become increasingly specialized and
autonomous, leading to a gradual shift in the basic oper-
ational principles of the brain (figure 1b). Over time, trained
circuits begin to subsume control over motivated behaviour,
incorporating their learned expertise in various cognitive
domains to add sophistication and contingency to the behav-
ioural repertoire. A more refined curiosity continues to
promote environmental interactions that foster new modes
of self-tuition, as some innate drives and stimulus biases con-
tinue to prod the adult brain to take certain actions. In the
vertebrate brain, the key players in early life self-tuition are
the hypothalamus, as the tutor, and the telencephalon, as
the student that gradually becomes the master. The hypo-
thalamus can play the dual role of motivating exploratory
behaviour, and providing feedback, via interactions with
the dopamine system, when a behaviour has achieved a
goal that satisfies a need [12-15].



The hypothalamus is known best for initiating behavioural
drives and controlling the neuroendocrine system. Its structure
and development are highly conserved among vertebrates
[16,17]. The selective stimulation of hypothalamic circuits in
the adult brain initiates a range of natural behaviours that
are aimed to satisfy physiological and reproductive needs
[2,18-23]. Hypothalamic activity is critical for survival, both
of the individual and of the species [24,25], through eating,
drinking, thermoregulation, defensive behaviours, repro-
duction and rearing of young [2]. Many of these survival
behaviours have additional consequences, emphasized here,
of gradually shaping and specializing adaptable portions of
the brain, most notably in the telencephalon. While knowledge
of the ontological onset and progression of specific hypothala-
mic circuits driving such behaviours is imprecise, these circuits
are likely to be most important early in life [1], when explora-
tion is most advantageous for adaptive systems [26,27].
Whether such behaviours should be called ‘motivated’ in a tra-
ditional sense, may be a semantic matter. In his drive reduction
theory, Hull suggested that motivation follows from increased
drives or physiological needs, and that satisfaction of these
needs is itself reinforcing [28]. This view of reinforcement,
and the behaviour it motivates, is more closely related to survi-
val than abstract behavioural concepts like reward and
punishment [29,30]. This broader conception of reinforcement
covers open loop motivational schemes such as those at play in
spontaneous behaviours. Thus, reinforcement of hypothala-
mus-driven early life behaviours can be seen to be manifest
over both short and long timescales.

The telencephalon, by contrast, is an instrument for devel-
oping expertise and learning complex behaviours. In the early
postnatal period, as an animal engages interactively with the
environment, the telencephalon is subject to continual modifi-
cation as animals are exposed to important features of their
environment. While its basic components and anatomical
connections are in place at the time of birth in primates
[31-38], abundant neural plasticity persists during the post-
natal period. Dendritic spines and synapses proliferate after
birth [39,40], peaking in different brain areas in the first
months or early years of life before declining to adult levels
during adolescence [41]. Exuberant white matter projections
undergo pruning, including long-range descending projec-
tions [42,43]. Postnatal neurogenesis is thought to support
forms of early life plasticity in the telencephalon [44-46] and
cerebellum [47]. Patterns of myelination and gene expression
related to cell differentiation continue to evolve gradually,
through adolescence [48,49]. Within the cerebral cortex, one
view holds that the most delayed maturation and protracted
plasticity takes place in high-level associative neocortical
areas [39,50-58]. A contrasting view suggests that the limbic
areas retain the highest plasticity in the adult cortex, maintain-
ing higher expression of markers for axonal growth and lower
levels of myelin and perineuronal nets [59,60].

The steady stream of behavioural interactions initiated
by the hypothalamus during early life, together with the
multiple forms of plasticity expressed by the telencephalon
during that period, are the necessary ingredients for self-
tuition. In the next section, we go deeper into the anatomical
architecture of the vertebrate forebrain, discussing key
aspects of the telencephalic and hypothalamic circuitry. We
highlight the shared segmental relationship of these two
structures, as well as the patterns of connections that shape
their cooperative role in the brain’s self-tuition.

The basic layout of the vertebrate brain has been conserved
over roughly half a billion years [61]. In the past decades, a
systematic mapping of its genoarchitecture during develop-
ment has transformed our understanding of its structural
components and their segmental relationships. At the heart
of the issue, which is captured in the prosomeric model of
brain organization [62,63] (figure 2), is the anatomical
relationship between the hypothalamus and telencephalon
within the neural tube. As these two critical elements are
also at the core of developmental self-tuition, it is worth
describing briefly the prosomeric model, the positioning of
these key structures, and how this new framework bears on
our conception of other relevant pathways, such as promi-
nent white matter tracts and sensory pathways.

The prosomeric model is a segmental perspective that over-
turns a century-old view on the layout of the vertebrate
forebrain. Most relevant for this article, the classical depictions
of the neural tube layout considered the hypothalamus to be a
portion of the diencephalon, and therefore to lie caudal to the
telencephalon in a separate segment of the brain. However,
myriad studies of comparative genoarchitecture gathered in
the last two decades now place the hypothalamus at the
rostral-most portion of the neural tube, with the classical tele-
ncephalon (end-brain) identified as its dorsal elaboration
[63,64] (figure 2a). As a consequence, the hypothalamus and
traditional telencephalon are now believed to occupy the
same segmental territory of the neural tube (neuromere).
Within this neuromere, the telencephalon bears a similar
anatomical relationship to the hypothalamus as the tectum
bears to the midbrain or the cerebellum bears to the rostral
pons. The fact that both structures reside within the same
neuromere may be important from an evolutionary perspec-
tive. Structures occupying the same brain segment are more
likely to retain their basic organization and interrelationship
through evolutionary change [65]. In the case of developmental
self-tuition, this conserved organization may translate to func-
tional principles, namely the coordinated and progressing
early life roles of the hypothalamus and telencephalon.

The prosomeric framework alters not only the topological
view of brain areas, but also their interconnections. The connec-
tions in and out of the telencephalon are particularly relevant
to the present article (figure 2b), and are described more fully
in the next section. In reference to the brain’s segmental
structure, some important fibre pathways such as the
fornix, connecting hippocampal circuitry to the septum and
mammillary bodies, remain largely within the same brain
segment. Other fibre pathways such as corticothalamic/
corticotectal pathways, providing cortical input to alar aspects
of the diencephalon and midbrain, turn to run longitudinally
and thus cross between brain segments. Likewise, sensory
pathways that enter the central nervous system pass through
different neuromeric territories and can be viewed in the con-
text of the prosomeric model. This is shown for the two
senses featured in this article (figure 2c). Visual fibres enter
the hypothalamic tissue, with the bulk of projections passing
through multiple neuromeres to its caudalmost destination in
the optic tectum. Olfaction, by contrast, enters through the
olfactory bulb, which is part of the telencephalon, and projects
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Figure 2. Neural pathways important for self-tuition in the context of the prosomeric model. (a) Depiction emphasizing the dorsal position of the telencephalon
relative to the hypothalamus, with the acroterminal region of the hypothalamus (orange) identified as the rostral margin of the neural tube. Within the schematic of
the flattened telencephalic vescicle, the septal and amygdala regions are shown to span subpallial and pallial territories and the hippocampal territory is identified
at the pallial margin, corresponding to the medial pallial terrirtory. Adapted from Puelles et al. and Puelles & Rubenstein [62,63]. (b) Depiction of four prominent
white matter tracts that facilitate communication between the hypothalamus and telencephalon. (c) Entry of olfactory and visual pathways into the brain through
the telencephalon and hypothalamus, respectively, including primary targets where important stimuli can be identified through innate mechanisms. (d) Classic
naming of telencaphalic components that participate in different types of learning, incduding early life learning. (abb, alar-basal boundary; ac, anterior commissure;
bnst, bed nucleus of the stria terminalis; db, diagonal band; inf, infundibulum; me, medial nucleus of the amygdala; mm, mamillary bodies; pa, pallium; pc,
piriform cortex; pd, pallidum; pi, pineal gland; po, preoptic area; sc, superior colliculus; st, striatum.).

principally to areas within the telencephalon. Finally, within
the telencephalon, pallial structures (e.g. isocortex, limbic
cortex, hippocampus, olfactory cortex) have a concentric
arrangement [59,66] (figure 2d).

This emerging view of forebrain organization thus places
the tutor (i.e. the hypothalamus) in the same conserved brain
segment as the student (i.e. the telencephalon). In the sim-
plest formulation, there would need to be no direct
interaction between these structures. The hypothalamus
could train the telencephalon only through the generation
of behaviour, and the telencephalon would benefit from
this experience. However, the evidence suggests that the
interconnections between these two structures makes the pro-
cess of self-tuition more complicated, and more interactive,
than that simple model. In the next section, we review several
important projections between the hypothalamus and the

telencephalon. The common denominator of these connec-
tions is that they articulate motivational circuits, giving the
hypothalamus influence over telencephalic actions.

(b) Pathways for hypothalamic influence over the
telencephalon

The hypothalamus can initiate behaviour through many
pathways. It exerts substantial control over the endocrine
system, regulating hormonal activity that can influence
early life behaviour in all vertebrate species [3]. It can also
stimulate directly motor and autonomic centres through its
descending projections to the brainstem and spinal cord
[42,67]. Anatomically, the layout of the hypothalamus [68],
its input and output projections [69], intrinsic connectivity
[70], relationship to the endocrine system [71] and internal
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Figure 3. Hypothalamic pathways for engaging the telencephalon in complex behaviours. (a) Pathways and relevant hypothalamic, pallial and subpallial territories
depicted in the context of the prosomeric model. (b) Subset of known connections between hypothalamus and limbic thalamocortical circuits. Each of four such circuits
is depicted as loops, following the conventions of Alexander et al. [72]. The hypothalamus projects to different medial pallial (i.e. hippocampal) and ventral pallial (e.g.
amygdala) circuitry in a coarsely topographic manner. For clarity, neuromodulatory connections, such as those stemming from peptidergic neurons (orexin, oxytocin,
vasopressin) are omitted from this diagram. (ant thal, anterior thalamus; BLA, basolateral portion of the amygdala; bnst, bed nucleus of the stria terminalis; CA,
cornu ammonis territory of the hippocampus; ce, central nucleus of the amygdala; cOFC, caudal portion of the orbitofrontal cortex; dp, dorsal pallidum; ds, dorsal striatum;
fx, fomix; ic/ped, internal capsule/peduncle; mfb, medial forebrain bundle; MDm, medial portion of the medial dorsal nucleus of the thalamus; mm, mamillary bodies; ms,
medial septum; Is, lateral septum; po, preoptic area; PVT, paraventricular nucleus of the thalamus; rm, retromamillary area; RSP, restrosplenial cortex; so, supraoptic area;
st, stria terminalis; tu, tuberal region; Sub, subiculum; vmPFC, ventromedial portion of the prefrontal cortex; vp, ventral pallidum; vs, ventral striatum.).

functional differentiation are daunting and difficult to
summarize [2].

Here we review one interesting set of connections, which
may be relevant for controlling complex behaviours during
early life. These are the anatomical projections into telencepha-
lic circuitry. The principal motif of these projections (figure 3)
is innervation of subpallial structures in limbic areas, namely
the septal nuclei and extended amygdala. Such connections
are considered part of the limbic brain and have long
been recognized as important for motivation [73-75]. In the
context of early life self-tuition, such projections afford the
hypothalamus some control over the expertise of the telence-
phalon to carry out goal directed behaviour. Figure 3
presents several important hypothalamic projections to tele-
ncephalic circuitry, which is presented in the context of
parallel recurrent pathways involving pallial, striatal, pallidal
and thalamic structures [24,72].

The direct influence of the hypothalamus comes through
three predominant pathways [69]. The first hypothalamus
pathway projects to subpallial structures, including bed
nucleus of the stria terminalis (bnst) and septum, which inter-
act principally with the amygdala and hippocampal circuitry,
respectively [24]. These pathways are perhaps the best example
of the hypothalamic influence on telencephalic motivational
circuits, perhaps influencing the expression of exploratory
behaviours governed by associated pallial structures such as
the amygdala and hippocampus, respectively [76,77].

The second hypothalamic pathway projects to thalamic
nuclei that themselves project to the telencephalon. Interestingly,
this relay in the thalamus may be analogous, with respect to its
circuit organization, to sensory relay pathways [78]. The recipi-
ent thalamic structures include the paraventricular nucleus
(PVT), and the anterior thalamic and reuniens nuclei, which in
turn project to the amygdala and hippocampal associated

circuitry, respectively [69]. The hypothalamic-thalamic projec-
tions exhibit a coarse topography, with alar hypothalamic
regions projecting primarily to the PVT [79], and basal regions
(primarily the mammillary bodies) projecting to the nucleus
reuniens and the anterior thalamic nuclei [80]. This topography
may reflect different hypothalamic signals impinging on differ-
ent circuits. For example, it has been suggested that the alar
(previously rostral) hypothalamus establishes behavioural
goals including approach to food, water, a sexual partner, or
escape from a predator, whereas the basal (previously caudal)
hypothalamus, particularly the mammillary nuclei, is important
for orienting, locomotion and navigation [24].

The third hypothalamic pathway is composed of direct pro-
jections to the telencephalon, including its pallial components.
These projections are notably from neuromodulatory popu-
lations that deliver neuropeptides such as orexin, oxytocin,
vasopressin and histamines [81-85]. This set of projections is
known to have a significant impact on behaviour, including
complex social behaviours, and is likely to play an important
role in early life tuition.

Thus, in addition to its direct control of motor circuits
through descending projections [24], the hypothalamus has
the ability to intervene directly in the expression of behaviour
initiated by the telencephalon. This intervention is principally
through telencephalic motivational centres within limbic
areas. These multiple pathways afford the hypothalamus mul-
tiple layers of control over complex behaviour, which may be
particularly strong during early life but also persist into adult-
hood. In the adult, they have the potential to weigh in on,
and sometimes override, important aspects of cognition and
decision-making [3]. In the next section we explore expression
of early life motivated behaviour, the way it is shaped by
innate stimulus preferences, and principles by which the
telencephalon can learn from the resulting experiences.
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4. The functional expression of self-tuition

In the above sections, we laid out theoretical considerations
and anatomical features of the vertebrate brain thought to con-
tribute to the generation of early life behaviours. Here, we
discuss how a few such behaviours are manifest in mammals,
often serving dual roles of immediate survival and long-term
training of the telencephalon and shaping of behaviour.

(a) Prenatal behaviours

Some behaviours that can lead to experience-based learning are
initiated in utero. Thus, some modes of self-tuition can begin
before an animal is even born. This is particularly evident in
precocial animals such as ungulates [86,87] and guinea pigs
[88], whose ecology requires their locomotion shortly after
birth. However, even extremely altricial species exhibit in
utero behaviours, such as the wallaby, whose postnatal climb-
ing movements that are required to ascend to the pouch and
milk supply, first appear days before emerging from the birth
canal [89]. In humans and other primates, in utero motor pro-
grammes prompt the fetus to move its body spontaneously,
including the limbs, fingers, mouth and eyes [90-92]. Prior to
term, a human fetus also practices sucking, swallowing and
even rudimentary breathing actions [93]. These actions are
sometimes collectively described as ‘motor babbling’, provid-
ing movement feedback for the fetus that allows its brain to
understand the concept of space and the consequence of its
own actions [91]. Even at this prenatal stage, the hypothalamus
may play a role in coordinating behaviours through early life
hypothalamic projections to the motor circuits in the brain
stem and spinal cord [42,94].

(b) Mammalian social behaviours
Other self-initiated behaviours are manifest in the early post-
natal period and serve to shape higher-order aspects of brain
function, including social cognition. Because actions in the
postnatal period are often concerned with immediate survival,
the spontaneous behaviours are generally viewed within that
context. However, early behavioural experiences related to
nutrition, protection and threat avoidance also provide valu-
able experiences for learning, exposing the developing brain
to a range of complex stimuli and social interactions that
have the additional role of shaping its sensory, motor and
cognitive circuits.

In mammals, a shared behaviour is the suckling action of
a newborn from its mother. While the manifestation of this
behaviour varies across diverse species with different litter
structures and levels of altriciality, its core aspects are con-
served. Newborn suckling behaviour depends critically on
circuits in both the hypothalamus, to instigate behaviour,
and olfactory structures responsive to pheromones released
by the mother [95-97]. This internal drive and innate sensory
capacity are critical for survival, as newborn mammals that
do not suckle successfully from their mothers cannot survive
[98]. At the same time, the act of suckling initiates more com-
plex behaviours, including interactions related to long-term
social bonding. For example, the attractant pheromones
expressed by the mother to encourage suckling, together
with the olfactory signals learned during this period, support
the mutual recognition between newborns and mothers, as
well as newborn recognition of siblings [99,100]. This recog-
nition and the early life interactions prior to weaning, initiate

longer-term dyadic relationships with affiliative and competi-
tive behaviours, and even eventual mating decisions [101].
Following weaning, these relationships change [102] and the
brain must be sufficiently trained to undertake new experi-
ences such as obtaining food and confronting predators. This
set of stages is, in some sense, genetically programmed and
built into the maturation of the mammalian brain.

(c) Primate social behaviours

While olfaction is a dominant social modality among mam-
mals, particularly in early life [103], vision is also
important, particularly in large mammalian species such as
primates and ungulates [104]. Vision affords animals with
the capacity to quietly observe their environment, including
conspecifics, prey and predators, from a distance. It also
serves to mediate important physical interactions with the
environment, such as the placement of the forelimb during
locomotion and visual guidance of manual reaching and
grasping. In the social domain, vision provides a medium
for recognizing and interpreting other individuals. In the pri-
mate brain, multiple cortical areas appear specialized for
the perception of faces, bodies and other social information
[105-107], with evidence that some such features are shared
among mammals [104,108,109]. Studies in humans and mon-
keys suggest that face expertise and the cortical areas that
support it emerge during infancy and mature gradually
[52,110-114]. Importantly, this maturation requires experience
with faces during this developmental period. For example,
while the location of cortical face patches appears genetically
predetermined, they exhibit their normal adult functionality
only following experience with faces [6,115-117].

Thus, the primate brain is obligated to create the conditions
for gaining experience with faces in order to reach its full poten-
tial in domains such as individual recognition and the reading
of facial expressions. These conditions are, in part, set in place
by early life social behaviours that might drive exposure to
faces. Social and exploratory play is an important element for
brain development that is common to most animal species
and most strongly expressed during infancy [118]. Moreover,
comparative analysis across primates suggests that the
amount of social play is linked, in part, to the actions of the
hypothalamus [119]. Some evidence suggests that the medial
prefrontal cortex, perhaps through its substantial interaction
with the hypothalamus [83], may play an explicitly prosocial
role in directing attention toward social stimuli early in life
[6,120]. Also important are innate stimulus biases toward
faces that begin to shape the expression of this social behaviour
almost immediately after birth [121-123]. One hypothesis
suggests that early attention to faces is imposed by genetically
specified sensorimotor circuitry within the superior colliculus
[7,124]. Some support for this hypothesis comes from the identi-
fication of very short-latency neurons in the superior colliculus
of the adult macaque that respond selectively to face-like pat-
terns [125-127]. As the telencephalon gains experience with
the species-typical range of social interactions, including the
rules of looking behaviour in dyadic interactions and normal
variation in facial structure andbehaviour, it increasingly takes
over the direction of most aspects of social exchange.

One important and difficult question is how the brain,
through extensive experience with complex stimuli such as
individual faces, modifies itself through its accumulated
experiences. Recent work studying the encoding of faces
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suggests that an important mode of learning in the cerebral
cortex involves the utilization of learned norms [128]. At an
abstract level, norms are internally stored references that the
brain has extracted through experience [129,130]. In the case
of faces, the brain represents faces relative to an internally
stored template of average facial structure that is presumably
learned through experience [131-137]. It is interesting to
speculate that normative learning is a fundamental and evo-
lutionarily conserved principle that guides plasticity in the
telencephalon. According to this idea, self-tuition leads to
the gradual extraction and internalization of norms in mul-
tiple domains, honing an animal’s behavioural repertoire,
and make it more sensitive to subtle stimuli and events.
This mode of learning creates a predictive framework,
which carries great advantage for cognitive performance
[138-141], as well as survival and procreation.

In this article, we discussed the prospect that the basic design
of the vertebrate brain has evolved to meet the needs of
developmental self-tuition. This conserved paradigm for
achieving adult-level brain function uses behaviours spurred
by motivated states originating in the hypothalamus, along

1. Gopnik A. 2020 Childhood as a solution to explore-
exploit tensions. Phil. Trans. R. Soc. B 375,

to the neocortex. Curr. Opin. Neurobiol. 24,
157-165. (doi:10.1016/j.conb.2013.11.010)

with innate stimulus preferences built into sensory circuits,

to compel certain species-appropriate modes of interaction
with the environment. These interactions gradually train the
non-hypothalamic telencephalon to take over important
aspects of perception and behaviour, including the direction
of its own education. This learning benefits from the gradual
statistical embedding of important information about the
world, affording the telencephalon intelligence and auto-
nomy over multiple domains of cognition. Only through
such learning are vast regions of the brain able to achieve
their adult functions. As such, programmed self-tuition
is an essential developmental paradigm, facilitating competi-
tive survival and procreation in an unbroken chain of
vertebrate evolution.
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