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ABSTRACT The Actinobacteriophages Elezi, Asa16, and Niobe infect Arthrobacter
globiformis B-2979 and are closely related to Eraser and London in Cluster AZ. They
have flexible noncontractile tails, are predicted to be temperate phages, and their
genome sizes range between 43,471 bp and 43,602 bp.

Bacteria in the genus Arthrobacter are Gram-positive rod-shaped obligate aerobes,
and their genomes are considered to have a high GC percent. Arthrobacter bacteria

exist in the air, water, soil, and some cheeses, and play important roles in the degrada-
tion of many different synthetic toxic compounds (1).

Actinobacteriophages Elezi, Asa16, and Niobe were isolated from soil in Connecticut,
USA (Table 1) by adding 35 mL of PYCa growth medium to approximately one gram of soil
and shaking the samples for 1 h at 250 rpm at 30°C, and then filtering the samples through
a 0.22 mm filter. The flowthrough was then inoculated with 0.5 mL of a saturated culture
of Arthrobacter globiformis NRRL B-2979 and incubated at 30°C for 2 days shaking at
250 rpm. All three phages were predicted to be temperate. Consistent with the compara-
tive genomics predictions, transmission electron microscopy of all three phages using 1%
uranyl acetate staining of lysates on 200 to 400 mesh carbon-Formvar-coated copper grids
showed a siphoviral tail morphology.

Genomic DNA was isolated from a high-titer lysate of the purified phages using a
Promega Wizard DNA Clean-Up kit and prepared for sequencing with an NEB Ultra II v3
reagents Library kit. The samples were sequenced and demultiplexed using an Illumina
MiSeq platform with 150-bp single-end reads. A random subset of the total untrimmed
reads was assembled, using Newbler v2.9 and Consed v29.0 (2) according to Russell et al. (3)
with coverage being between 1,377 and 2,348-fold (Table 1). Based upon an observed
buildup of reads in Consed with identical start positions, and rare reads that crossed the
ends, the three genomes were predicted to be linear with eleven bases and 3’ single-
stranded overhangs with the sequence CGAAGGGGCAT. The phages that infect Arthrobacter
globiformis NRRL B-2979 have been grouped into seventeen ‘Clusters’ and three ‘Singletons’,
with the Cluster AZ being the largest cluster of phages that can infect this host (4). These
three phages have been assigned to be in Cluster AZ based on sharing 35% or greater of
gene content similarity with other Cluster AZ members (5).

Genes were predicted with the programs Glimmer v.3.02b (6) and Genemark v.3.25 (7). A
search for tRNA and tmRNA sequences was performed with ARAGORN v.1.2.41 (8) and
tRNAscan-SE v.2.09 (9), and none were predicted in any of these three genomes. The
genomes were annotated using the web application PECAAN v.20211202 (https://discover
.kbrinsgd.org), and DNAMaster v.5.23.6 (10). Average nucleotide identity (ANI) values were cal-
culated for all Cluster AZ phages using PyANI v.0.2.11 (https://github.com/widdowquinn/
pyani) (11). Elezi, Asa16, and Niobe were closely related to Eraser and London, with a pairwise

Editor Kenneth M. Stedman, Portland State
University

Copyright © 2022 Elezi et al. This is an open-
access article distributed under the terms of
the Creative Commons Attribution 4.0
International license.

Address correspondence to Nicholas P.
Edgington, EdgingtonN1@SouthernCT.edu.

The authors declare no conflict of interest.

Received 15 April 2022
Accepted 21 July 2022
Published 9 August 2022

September 2022 Volume 11 Issue 9 10.1128/mra.00368-22 1

GENOME SEQUENCES

https://orcid.org/0000-0002-4424-1741
https://discover.kbrinsgd.org
https://discover.kbrinsgd.org
https://github.com/widdowquinn/pyani
https://github.com/widdowquinn/pyani
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1128/mra.00368-22
https://crossmark.crossref.org/dialog/?doi=10.1128/mra.00368-22&domain=pdf&date_stamp=2022-8-9


TA
B
LE

1
Ph

ag
e
ge

no
m
e
ch

ar
ac
te
ris
ti
cs

an
d
as
se
m
b
ly
re
su
lt
s

Ph
ag

e
Pl
aq

ue
d
ia
m

(m
m
)

G
PS

co
or
d
in
at
es

G
en

om
e

ac
ce
ss
io
n
n
o.

SR
A
ac
ce
ss
io
n
n
o.

To
ta
l

re
ad

s
Fo

ld
co

ve
ra
g
e

G
en

om
e

si
ze

(b
p
)

G
C
p
er
ce
n
t

(%
)

N
o.

of
g
en

es

Pe
rc
en

to
fh

yp
ot
h
et
ic
al

op
en

re
ad

in
g
fr
am

es
w
it
h

n
o
kn

ow
n
fu
n
ct
io
n
(%

)
El
ez
i

5
41

.5
54

16
7
N
,7
2.
95

97
22

W
M
T6

39
65

3.
1

SR
X
12

19
87

65
42

1,
19

5
1,
37

7
43

,4
71

66
.6

68
41

A
sa
16

4.
74

41
.3
34

7
N
,7
2.
94

21
W

M
Z6

81
50

6.
1

SR
X
12

19
87

64
71

4,
16

6
2,
34

8
43

,6
01

66
.6

69
42

N
io
b
e

8
41

.3
33

49
N
,7
2.
94

56
66

W
M
Z8

20
08

7.
1

SR
X
12

19
87

70
51

9,
33

1
1,
72

9
43

,6
02

66
.7

69
42

Announcement Microbiology Resource Announcements

September 2022 Volume 11 Issue 9 10.1128/mra.00368-22 2

https://www.ncbi.nlm.nih.gov/nuccore/MT639653
https://www.ncbi.nlm.nih.gov/sra/SRX12198765
https://www.ncbi.nlm.nih.gov/nuccore/MZ681506.1
https://www.ncbi.nlm.nih.gov/sra/SRX12198764
https://www.ncbi.nlm.nih.gov/nuccore/MZ820087.1
https://www.ncbi.nlm.nih.gov/sra/SRX12198770
https://journals.asm.org/journal/mra
https://doi.org/10.1128/mra.00368-22


ANI average range between 0.9828 and 0.9988. All three genomes have a similar number of
total predicted open reading frames (ORFs), and ORFs with no predicted function (Table 1).
The genome organization of these three phages is common to many other actinobacterio-
phages, where the predicted structural genes were on the left side of the linear genome, and
more of the ORFs of unknown function reside on the right side of these genomes.

Data availability. The complete genome sequences and sequence read archives
for Elezi, Asa16, and Niobe are available at NCBI’s GenBank (Table 1).
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