
BioMed CentralBMC Bioinformatics

ss
Open AcceMethodology article
Workflows in bioinformatics: meta-analysis and prototype
implementation of a workflow generator
Alexander Garcia Castro1,2, Samuel Thoraval2,3, Leyla J Garcia4 and
Mark A Ragan*1,2

Address: 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia, 2Australian Research Council (ARC)
Centre in Bioinformatics, Australia, 3LIBROPHYT, Bioinformatique, Centre de Cadarache, Bâtiment 185, DEVM, 13108 St Paul-Lez-Durance,
France and 4Universidad de la Sabana, Bogota, Colombia

Email: Alexander Garcia Castro - a.garcia@imb.uq.edu.au; Samuel Thoraval - samuel.thoraval@librophyt.com;
Leyla J Garcia - leyla.garcia@unisabana.edu.co; Mark A Ragan* - m.ragan@imb.uq.edu.au

* Corresponding author

Abstract
Background: Computational methods for problem solving need to interleave information access
and algorithm execution in a problem-specific workflow. The structures of these workflows are
defined by a scaffold of syntactic, semantic and algebraic objects capable of representing them.
Despite the proliferation of GUIs (Graphic User Interfaces) in bioinformatics, only some of them
provide workflow capabilities; surprisingly, no meta-analysis of workflow operators and
components in bioinformatics has been reported.

Results: We present a set of syntactic components and algebraic operators capable of
representing analytical workflows in bioinformatics. Iteration, recursion, the use of conditional
statements, and management of suspend/resume tasks have traditionally been implemented on an
ad hoc basis and hard-coded; by having these operators properly defined it is possible to use and
parameterize them as generic re-usable components. To illustrate how these operations can be
orchestrated, we present GPIPE, a prototype graphic pipeline generator for PISE that allows the
definition of a pipeline, parameterization of its component methods, and storage of metadata in
XML formats. This implementation goes beyond the macro capacities currently in PISE. As the
entire analysis protocol is defined in XML, a complete bioinformatic experiment (linked sets of
methods, parameters and results) can be reproduced or shared among users. Availability: http://if-
web1.imb.uq.edu.au/Pise/5.a/gpipe.html (interactive), ftp://ftp.pasteur.fr/pub/GenSoft/unix/misc/
Pise/ (download).

Conclusion: From our meta-analysis we have identified syntactic structures and algebraic
operators common to many workflows in bioinformatics. The workflow components and algebraic
operators can be assimilated into re-usable software components. GPIPE, a prototype
implementation of this framework, provides a GUI builder to facilitate the generation of workflows
and integration of heterogeneous analytical tools.

Published: 07 April 2005

BMC Bioinformatics 2005, 6:87 doi:10.1186/1471-2105-6-87

Received: 21 December 2004
Accepted: 07 April 2005

This article is available from: http://www.biomedcentral.com/1471-2105/6/87

© 2005 Castro et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 10
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/6/87
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15813976
http://if-web1.imb.uq.edu.au/Pise/5.a/gpipe.html
http://if-web1.imb.uq.edu.au/Pise/5.a/gpipe.html
ftp://ftp.pasteur.fr/pub/GenSoft/unix/misc/Pise/
ftp://ftp.pasteur.fr/pub/GenSoft/unix/misc/Pise/
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2005, 6:87 http://www.biomedcentral.com/1471-2105/6/87
Background
Computational approaches to problem solving need to
interleave information access and algorithm execution in a
problem-specific workflow. In complex domains like
molecular biosciences, workflows usually involve iterative
steps of querying, analysis and optimization. Bioinfor-
matic experiments are often workflows; they link analyti-
cal methods that typically accept an input file, compute a
result, and present an output file. Most tool-driven inte-
gration approaches have so far addressed the problem of
providing a single GUI for a set of analytical methods.
Combining methods into a flexible framework is usually
not considered. Analytical workflows provide a path to
discover information beyond the capacities of simple
query statements, but are much less easy to implement
within a common environment.

Workflow management systems (WFMS) are basically sys-
tems that control the sequence of activities in a given proc-
ess [1]. In molecular bioscience, these activities can be
divided among those that address query formulation, and
those that focus more on analysis. At this abstract level,
WFMS could serve to control the execution of both query
and analytical procedures. All of these procedures involve
the execution of activities, some of them manual, some
automatic. Dependency relationships among them can be
complex, making the synchronization of their execution a
difficult problem.

One dimension of the complexity of workflows in molec-
ular biosciences is given by the various transformations
performed on the data. Syntactic (operational) interoper-
ability establishes the possibility for data to be piped from
one method into another. Semantic issues (another
dimension) arise from the fact that we need to separate
domain knowledge from operational knowledge. We
should be able to describe a task of configuring a work-
flow from its primary components according to a required
specification, and implement a program that realizes this
configuration independently of the workflow and compo-
nents themselves.

Biologists provide rich descriptions of their experiments
(materials and methods) so they can be easily replicated.
Once techniques have been standardized, usually this
knowledge is encapsulated in the form of an analytical
protocol. With in silico experiments as well, analytical pro-
tocols make it possible for experiments to be replicated
and shared, and (via meta-information) for the knowl-
edge behind these workflows to be captured. These proto-
cols should be reproducible, ontology-driven, curated
internally, and annotated externally.

Systems such as W2H/W3H [2] and PISE [3] provide some
tools that allow methods to be combined. W3H is a task

framework that allows the methods available under W2H
[4] to be integrated; however, those tasks have to be hard-
coded. In the case of PISE, the user can either define a
macro using Bioperl http://www.bioperl.org, or use the
interface provided and register the resulting macro. In
either case, it is assumed that the user can program, or
script in Perl. Macros cannot be exchanged between PISE
and W2H, although these two systems provide GUIs for
more or less the same set of methods (EMBOSS: [5]).
Indeed, macros cannot be easily shared even among PISE
users. Biopipe http://www.biopipe.org, on the other
hand, provides integration for some analytical tools using
Bioperl API (Application Programming Interface) using
MySQL to store results as well as the workflow definition;
in this way, users are able to store results in MySQL and
monitor the execution of the pre-defined workflow.

The TAVERNA http://taverna.sourceforge.net project pro-
vides similar capabilities to those offered by GPIPE. How-
ever, on one hand inclusion of new analytical methods is
not currently possible since no GUI generator is provided,
and on the other hand as TAVERNA is part of myGrid [6]
it follows a different integrative approach (Web Services).
Pegasys [7] is a similar approach, going beyond analytical
requirements and providing database capacities.

GPIPE provides a real capacity for users to define and
share complete analytical workflows (methods, parame-
ters, and meta-information), substantially mitigating the
syntactic complexity that this process involves. Our
approach addresses overall collaborative issues as well as
the physical integration of tools. GPIPE provides an
implementation that builds on a flexible syntactic struc-
ture and a set of algebraic operations for analytical work-
flows. For testing purposes we provide a simple example
of a workflow (inference of a phylogeny of rodents) that
involves piping among three methods. Although here
their execution takes place on a common server, it is
equally possible to distribute the process over a grid using
GPIPE.

Results
Our workflow follows a task-flow model; in bioinformat-
ics, tasks can be understood as analytical methods. If
workflow models are represented as a directed acyclic
graph (DAG), analytical methods then appear as nodes,
and state information is represented as conditions
attached to the edges. Our syntactic structure and alge-
braic operators can be used to represent a large number of
analytical workflows in bioinformatics; surprisingly, there
are no other algebraic operators reported in the literature
capable of symbolizing the different operations required
for analytical workflows in bioinformatics (or, indeed,
more broadly in e-science, although they are widely used
in the analysis of business processes). Different groups
Page 2 of 10
(page number not for citation purposes)

http://www.bioperl.org
http://www.biopipe.org
http://taverna.sourceforge.net

BMC Bioinformatics 2005, 6:87 http://www.biomedcentral.com/1471-2105/6/87
have developed a great diversity of GUIs for EMBOSS and
GCG, but a meta-analysis of the processes within which
these analytical implementations are immersed is not yet
fully available. Some of the existing GUIs have been devel-
oped to make use of grammatical descriptions of the ana-
lytical methods, but there exists no standard meta-data
framework for GUI and workflow representation in
bioinformatics.

Syntactic and algebraic components
Our workflow conceptualization (Figure 1) closely fol-
lows those of Lei and Singh [8] and Stevens et al. [9]. We
have adapted these meta-models to processes in bioinfor-
matic analysis. We consider an input/output data object as a
collection of input/output data. For us a transformer is the
atomic work item in a workflow. In analytical workflows,
it is an implementation of an analytical algorithm (analyt-
ical method). A pipe component is the entity that contains
the required input-output relation (e.g. information
about the previous and subsequent tasks); it assures syn-
tactic coherence. Our workflow representation has tasks,
stages, and experimental conditions (parameters). In our
view, protocols are sets of information that describe an
experiment. A protocol contains workflows, annotations,
and information about the raw data; therefore we under-
stand a workflow to be a group of stages with interdepend-
encies. It is a process bound to a particular resource that
fulfils the analytical necessities.

We identify needs common to analytical workflows in
bioinformatics:

• Flexibility in structuring and modelling (open-ended,
sometimes ad hoc workflow definition, allowing decision-
making whilst a workflow is being executed).

• Support for workflows with a complex (or nested) inner
structure of individual steps (such that multi-level model-
ling becomes appropriate). Biological workflows may be
complex not simply because of the discrete number of
steps, but due to the highly nested structure of iteration,
recursion and conditional statements that, moreover, may
involve interaction with non-workflow systems.

• Distribution of workflow execution over grid
environments.

• Management of failures. This particular requirement is
related to conditional statements: where the service will be
executed should be evaluated based on considerations of
availability and efficiency made previous to the execution
of the workflow. In situations where a failure halts the
process, the system should either recover it, or dispatch it
somewhere else without requiring intervention by the
user.

• System functionality features such as browsing and vis-
ualization, documentation, or coupling with external
tools, e.g. for analysis.

• A semantic layer for collaborative purposes. This seman-
tic layer has many other features, and may be the
foundation for intelligent agents that facilitate collabora-
tive research.

Syntactic components describing bioinformatic analysis workflowsFigure 1
Syntactic components describing bioinformatic analysis workflows.
Page 3 of 10
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:87 http://www.biomedcentral.com/1471-2105/6/87
Executing these bioinformatic workflows further requires:

• Support for long-running activities with or without user
interaction.

• Application-dependent correctness criteria for execution
of individual and concurrent workflows.

• Integration with other systems (e.g. file managers, data-
base management systems, product data managers) that
have their own execution/correctness requirements.

• Reliability and recoverability with respect to data.

• Reliable communication between workflow compo-
nents and processing entities.

Among these types of requirements, we focus our analysis
only on those closely related to workflow design issues,
more specifically (a) the piping of data, (b) the availabil-
ity of conditional statements, (c) the need to iterate one
method over a set of different inputs, (d) the possibility of
recursion over a parameter space for a method, (e) and the
need for stop/break management. Algebraic operators can
accurately capture the meaning of these functional
requirements. To describe an analytical workflow, it is
necessary to consider both algebraic operators and syntac-
tic components. In Table 1 we present the definition of

Syntactic components and algebraic operatorsFigure 2
Syntactic components and algebraic operators.

Table 1: Algebraic operators

Operator: Iteration (I) I [Transformer](CC1, CC2...CCn)
Operator: Recursion (R) R [Transformer: Parameter](Parm_Space)
Operator: Condition (C) C [functional condition(true:PATH;false:PATH;value:PATH)]
Operator: Suspension/resumption (S) S [re-take jobs: execution]
Page 4 of 10
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:87 http://www.biomedcentral.com/1471-2105/6/87
those algebraic operators we propose, and in Figure 2 we
illustrate how these operators and syntactic elements
together can describe an analytical workflow.

Iteration is the operator that enables processes in which
one transformer is applied over a multiple set of inputs. A
special case for this operator occurs when it is applied over
a blank transformer; this case results in replicates of the
input collection. Consider an analytical method, or a
workflow, in which the same input is to be used several
times; the first step would be to use as many replicates of
the input collection as needed. The recursion operation
takes place when one transformer is applied with param-
eters defined not as a single value, but as a range or as a set
of values. The conditional operator has to do with the con-
ditioned execution of transformers. This operation can be
attached to a function evaluated over the application of a
recursion, or of an iteration; if the stated condition is true,
then the workflow executes a certain path. Conditional
statements may also be applied to cases where an argument
is evaluated on the input; the result affects not a path, but
the parameter space of the next stage. The suspension/
resumption operation stands for the capacity of the work-
flow to stop and re-capture the jobs.

Formal Concept analysis (FCA) is a mathematical theory
based on ordered sets and complete lattices. Numerous
investigations have shown the usefulness of concept lat-
tices for information retrieval combining query and navi-
gation, learning and data-mining, visual constructors and
visual programming [10]. FCA helps one to define valid
objects, and identify behaviours for them. We are cur-
rently working on a complete FCA for biological data
types and operations (database and analytical). Here we
define operators in terms of pre- and post-conditions, as a
step toward eventual logical formalization. We focus on
those components of the discovery process not directly
related to database operations; a good integration system
will "hide" the underlying heterogeneity, so that one can
query using a simple language (which views all data as if
they are already in the same memory space). Selection of
the query language depends only on the data model. For
the XML "data model", XML-QL, XQL, and other XML
query languages are available. For the nested relational
model there are nested relational calculi and nested rela-
tional algebras. For the relational model SQL, relational
algebras and so on are available. For database operations,
the issues that arise are lower-level (e.g. expression of disk
layout, latency cost, etc. in the context of query optimisa-
tion), and it is not clear that any particular algebra offers
a significant advantage.

Operator: Iteration (I): I[Transformer, (CC1, CC2, ...,
CCn)]: (CC1', CC2', ..., CCn')

Pre-condition:

T = Transformer ∧ T ≠ blank

C = {CC1, CC2, ..., CCn} such that CCi ∈ { Biological
data types }

Post-condition:

C' = {CC'1, CC'2, ..., CC'n} such that CC'i = T(CCi) ∧ 1 ≤
i ≤ n

Operator: Iteration (I): I[blank: num, (CC1, CC2, ...,
CCn)]: (CC1, CC2, ..., CCn)1, (CC1, CC2, ..., CCn)2, ...,
(CC1, CC2, ..., CCn)num

Pre-condition:

num ∈ , num = number of replicates.

C = {CC1, CC2, ..., CCn} such that CCi ∈ { Biological data
types }

Post-condition:

C' = {CC'1, CC'2, ..., CC'n} such that CC'i = CCi ∧ 1 ≤ i ≤ n

Operator: Recursion (R): R[Transformer: Parameter,
(Parm_Space)]: Parm_Space'

Pre-condition:

P = Parameter such that P ∈ Parm_Space ∨ (Parm_Space = {
Parm_Values } ∨ Parm_Space = { Parm_Values })

T = Transformer

Post-condition:

Parm_Space' = T (Parm_Space)

Operator: Condition (C): C[Functional_Condition]:
PATH

Pre-condition:

FC = Functional_Condition

Post-condition:

PATH = true ∨ false ∨ value

Operator: Suspension/Resumption (S): S[re-take, jobs]:
Execution

¡

Page 5 of 10
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:87 http://www.biomedcentral.com/1471-2105/6/87
Pre-condition:

(Re-take = true) ∨ (Re-take = false ∧ jobs = Set of jobs which
should be suspended)

Post-condition:

(Re-take = true ∧ ((Execution = true ∧ Previously sus-
pended jobs are re-taken)∨ (Execution = false ∧ There
were no suspended jobs))) ∨ (Re-take = false ∧ (Execution
= true ∧ ∀ j such that j ∈ jobs, j is suspended))

A more-detailed example involves the inference of molec-
ular phylogenetic trees by executing software that imple-
ments three main phylogenetic inference methods:
distance, parsimony and maximum likelihood. Figure 3
illustrates how our algebraic operators and syntactic com-
ponents define the structure of this workflow.

In collaboration with CIAT (Center for International
Tropical Agriculture, Cali, Colombia) we have imple-
mented an annotation workflow using standard technol-
ogy (GPIPE/PISE) and web services (TAVERNA). Our case
workflow is detailed in Figure 4.

Implementation of both of these workflows was a manual
process. GUI generation was facilitated by using PISE as
our GUI generator, and this simplified the inclusion of
new analytical methods as needed. Database calls had to
be manually coded in both cases. Choreographing the
execution of the workflow was not simple, as neither has
a real workflow engine. It proved easier to give users the
ability to manipulate parameters and data with PISE/
GPIPE, partly due to wider range of methods within BioP-
erl partly because algebraic operators were readily availa-
ble as part of PISE/GPIPE. From this experience we have
concluded that, due to the immaturity of current available
web service engines, it is still most practical to implement

Phylogenetic analysis workflowFigure 3
Phylogenetic analysis workflow.
Page 6 of 10
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:87 http://www.biomedcentral.com/1471-2105/6/87
simple XML workflows that allow users to manipulate
parameters, use conditional operators, and carry out write
and read operations over databases. This balance will, of
course, presumably shift as web services mature in the
bioinformatics applications domain.

Workflow generation, an implementation
We have developed GPIPE, a flexible workflow generator
for PISE. GPIPE extends the capabilities of PISE to allow
the creation and sharing of customised, reusable and shar-
eable analytical workflows. So far we have implemented
and tested GPIPE over only the EMBOSS package,
although extension to other algorithmic implementations
is possible where there is an XML file describing the com-
mand-line user interface.

Workflows automate businesses procedures in which
information or tasks are passed between conforming enti-
ties according to a defined set of rules; some of these busi-
ness rules are defined by the user, and in our

implementation are managed via GPIPE. For our pur-
poses, the conforming entities are analytical methods
(Clustal, Protpars, etc.). Syntactic rules drive the interac-
tion between these entities (e.g. to ensure syntactic coher-
ence between heterogeneous file formats). GPIPE also
assures the execution of the workflow, and makes it possi-
ble to distribute different jobs over a grid of servers. GPIPE
addresses these requirements using mostly Bioperl.

In GPIPE, each analysis protocol (including any annota-
tions, i.e. meta-data) is defined within an XML file. A Java
applet provides the user with an exploratory tool for
browsing and displaying methods and protocols. Syn-
chronization is maintained between client-side display
and server-side storage using Javascript. Server-side
persistence is maintained through serialized Perl objects
that manage the workflow execution. GPIPE supports
independent branched tasks in parallel, and reports errors
and results into an HTML file. The user selects the
methods, sets parameters, defines the chaining of differ-

Case workflowFigure 4
Case workflow.
Page 7 of 10
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:87 http://www.biomedcentral.com/1471-2105/6/87
ent methods, and selects the server(s) on which these will
be executed. GPIPE creates an XML file and a Perl script,
each of which describes the experiment. The Perl file may
later be used on a command-line basis, and customized to
address specific needs. The user can monitor the status of
workflow execution, and access intermediary results. A
workflow built with GPIPE can distribute its analyses onto
different, geographically disperse GPIPE/PISE servers.

Discussion
The syntactic and algebraic components we introduce
above make it possible to describe analytical workflows in
bioinformatics precisely yet flexibly. Detailed algebraic
representation for these kinds of processes have not previ-
ously been used in this domain, although they are com-
monly used to represent business processes. Since open
projects such as Bioperl or Biopipe contain the rules and
logic for bioinformatic tasks, we believe that having an
algebraic representation could contribute importantly to
the development of a biological "language" that allows
developers to avoid the tedious parsing of data and ana-
lytical methods so common in bioinformatics. The sche-
matic representation for workflows in bioinformatics that
we present here could evolve to cover other tool-driven
integrative approaches such as those based on web serv-
ices. Workflows in which concrete executions take place
over a grid of web services involve basically the same syn-
tactic structure and algebraic operators; however, a clear
business logic needs to be defined beforehand for those
web services in order to deepen the integration beyond
simply the fact of remote execution. A higher level of
sophistication for the pipe component as well as for the
conditional operator may be needed, since remote execu-
tion requires (for example) assessment and availability of
the service for the job to be successfully dispatched and
processed. For our implementation we use two agents,
one on the client side and the other on the server side,
with the queue handled by PBS (Portable Batch System).
It is possible to add a semantic layer, thereby allowing
conceptual selection of the transformers; clear separation
between the operational domain and the knowledge
domain be would then be achieved naturally.

Semantic issues are particularly important with these
kinds of workflows. An example may be derived from Fig-
ure 3, where three different phylogenetic analysis work-
flows are executed. These may be grouped as equivalent,
but are syntactically different. Selection should be left in
the hands of the user, but the system should at least
inform about this similarity.

Despite agreement on the importance of semantic layers
for integrative systems, such a level of sophistication is far
from being achieved. Lack of awareness of the practical
applications of such technologies is well illustrated with a

traditional and well-studied product: Microsoft Word®.
With Word, syntactic verification can take place as the user
composes text, but no semantic corroboration is done. For
two words like "purpose" and "propose", Word advises on
syntactic issues, but gives no guidance concerning the con-
text of the words. Semantic issues in bioinformatic work-
flows are more complex, and it is not clear if existing
technologies can effectively overcome these problems.

Transformers and grid components are intrinsically
related because the services are de facto linked to a grid
component. It has been demonstrated that the use of
ontologies facilitates interoperability and the deployment
of software agents [11]; correspondingly, we envision
semantic technology supporting the agents to form the
foundation of future workflow systems in bioinformatics.
The semantic layer should make the agents more aware of
the information.

More and more GUIs are available in bioinformatics; this
can be seen in the number of GUIs for EMBOSS and GCG
alone. Some of them incorporate a degree of workflow
capability, more typically a simple chaining of analytical
methods rather than flexible workflow operations. A uni-
fied metadata model for GUI generation is lacking in the
bioinformatics domain. Web services are relatively easy to
implement, and are becoming increasingly available as
GUI systems are published as web services. However, web
services were initially developed to support processes for
which the business logic is widely agreed upon, well-
defined and properly structured, and the extension of this
paradigm to bioinformatics may not be straightforward.

Automatic service discovery is an intrinsic feature of web
services. The accuracy of the discovery process necessarily
depends on the ontology supporting this service. Systems
such as BioMoby and TAVERNA make extensive use of
service discovery; however, due to the difficulty in describ-
ing biological data types, service discovery is not yet accu-
rate. It is not yet clear whether languages such as OWL can
be developed to describe relations between biological
concepts with the required accuracy. Integrating informa-
tion is as much a syntactic as a semantic problem, and in
bioinformatics these boundaries are particularly ill-
defined.

Semantic and syntactic problems were also identified
from the case workflow described in Figure 4. There, we
saw that to support the extraction of meaningful informa-
tion and its presentation to the user, formats should be
ontology-based and machine-readable, e.g. in XML for-
mat. Lack of these functional features makes
manipulation of the output a difficult task that is usually
addressed by use of parsers specific to each individual
case. For workflow development, human readability can
Page 8 of 10
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:87 http://www.biomedcentral.com/1471-2105/6/87
be just as important. Consider, for example, a ClustalW
output where valid elements could be identified by the
machine and presented to the user together with contex-
tual menus including different options over the different
data types. In this way the user would be able to decide
what to do next, where to split a workflow, and over
which part of the output to continue or extend the analy-
sis. Inclusion of this functionality would allow the work-
flow to become more concretely defined as it is used.

Failure management is an area in which we can see a clear
difference between the business world and bioinformat-
ics. In the former, processes rarely take longer than an
hour and are not so computationally intensive, whereas in
bioinformatics, processes tend to be computationally
intensive and may take weeks or months to complete.
How failures can be managed to minimize losses will
clearly differ between the two domains. Due to the imma-
turity of both web services and workflows in bioinformat-
ics, it is still in most cases more practical to hard-code

analytical processes. Improved failure management is one
of the domain-specific challenges that faces the applica-
tion of workflows in bioinformatics.

So far we have intentionally referred to GUIs and work-
flows as more-or-less independent. A glimpse into the cor-
responding metadata reveals that GUIs are themselves
components of workflow systems. In the bioinformatics
domain this relationship is particularly attractive, since
algebraic operations are usually highly nested. The inter-
face system should therefore provide a programming
environment for non-programmers. The language as such
is not complex, but makes extensive use of statements
such as while...do, if...then...else, and for...each. The repre-
sentation should be natural to the researcher, separating
the knowledge domain from the operational domain.

Conclusion
We have developed GPIPE, a flexible workflow generator
that makes it possible to export workflow definitions

GPIPEFigure 5
GPIPE. http://if-web.imb.uq.edu.au/Pise/5.a/gpipe.html
Page 9 of 10
(page number not for citation purposes)

http://if-web.imb.uq.edu.au/Pise/5.a/gpipe.html

BMC Bioinformatics 2005, 6:87 http://www.biomedcentral.com/1471-2105/6/87
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

either as XML or Perl files (which can later be handled via
the Bioperl API). Our XML workflow representation is
reusable, execution and edition of those generated work-
flows is possible either via the BioPerl API or the provided
GUI. Each analysis is configurable, as users are presented
with options to manipulate all available parameters sup-
ported by the underlying algorithms. Integration of new
algorithms, and Grid execution of workflows, are also
possible. Most available integrative environments rely on
parsers or syntactic objects, making it difficult to integrate
new analytical methods into workflow systems. We are
planning to develop a more wide-ranging algebra that
includes query operations over biological databases as
well as different ontological layers that facilitate data
interoperability and integration of information where
possible for the user. We do not envision GPIPE to be a
complete virtual laboratory environment; future releases
will provide a content management system for bioinfor-
matics with workbench capacities developed on top of
ZOPE http://www.zope.org. We have tested our imple-
mentation over SUSE and Debian Linux, and over Solaris
8.

Authors' contributions
AGC was responsible for design and conceptualization,
took part in implementation, and wrote a first draft of the
manuscript. ST was the main developer of GPIPE. LJG
assisted with server issues and FCA. MAR supervised the
project and participated in writing the manuscript.

Acknowledgements
We gratefully acknowledge the collaboration of Dr Fernando Rodrigues
(CIAT) in developing the case study outlined in Figure 4, and Dr Lindsay
Hood (IMB) for valuable discussions. ST thanks Université Montpellier II for
travel support. This work was supported by ARC grants DP0344488 and
CE0348221.

References
1. Hollingsworth D: The workflow reference model. [http://

www.wfmc.org/standards/docs/tc003v11.pdf].
2. Ernst P, Glatting K-H, Shuai S: A task framework for the web

interface W2H. Bioinformatics 2003, 19:278-282.
3. Letondal C: A Web interface generator for molecular biology

programs in Unix. Bioinformatics 2001, 17:73-82.
4. Senger M, Flores T, Glatting K-H, Ernst P, Hotz-Wagenblatt A, Suhai

S: W2H: WWW interface to the GCG sequence analysis
package. Bioinformatics 1998, 14:452-457.

5. Rice P, Longden I, Bleasby A: EMBOSS: the European Molecular
Biology Open Software Suite. Trends Genet 2000, 16:276-277.4.

6. Stevens R, Robinson AJ, Goble C: myGrid: personalised bioinfor-
matics on the information grid. Bioinformatics 2003, 19:302i-304i.

7. Shah SP, He DYM, Sawkins JN, Druce JC, Quon G, Lett D, Zheng
GXY, Xu T, Ouellette BFF: Pegasys: software for executing and
integrating analyses of biological sequences. BMC Bioinformatics
2004, 5:40.

8. Lei K, Singh M: A comparison of workflow meta-models. Work-
shop on behavioural modelling and design transformations: Issues and
opportunities in conceptual modelling. Los Angeles 1997. ER'97, 6–7
November 1997

9. Stevens R, Goble C, Baker P, Brass A: A classification of tasks in
bioinformatics. Bioinformatics 2001, 17:180-188.

10. Ganter B, Kuznetsov SO: Formalizing hypothesis with concepts.
In 8th International Conference on Conceptual Structures, ICCS Conceptual

Structures: Logical, Linguistic, and Computational Issues. Darmstadt, Ger-
many. Lecture Notes in Computer Science 1867 Edited by: Mineau G,
Ganter B. Springer-Verlag; 2000:342-356. August 14–18 2000

11. Sowa FJ: Top-level ontological categories. International Journal of
Human Computer Studies 1995, 43:669-685.
Page 10 of 10
(page number not for citation purposes)

http://www.zope.org
http://www.wfmc.org/standards/docs/tc003v11.pdf
http://www.wfmc.org/standards/docs/tc003v11.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12538250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12538250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11222264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11222264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9682058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9682058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10827456
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10827456
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15096276
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15096276
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11238075
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11238075
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Syntactic and algebraic components
	Workflow generation, an implementation

	Discussion
	Conclusion
	Authors' contributions
	Acknowledgements
	References

