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ABSTRACT

Protein sequence database search programs may
be evaluated both for their retrieval accuracy—
the ability to separate meaningful from chance
similarities—and for the accuracy of their statis-
tical assessments of reported alignments. However,
methods for improving statistical accuracy can
degrade retrieval accuracy by discarding composi-
tional evidence of sequence relatedness. This evi-
dence may be preserved by combining essentially
independent measures of alignment and composi-
tional similarity into a unified measure of sequence
similarity. A version of the BLAST protein database
search program, modified to employ this new mea-
sure, outperforms the baseline program in both
retrieval and statistical accuracy on ASTRAL, a
SCOP-based test set.

INTRODUCTION

Computer programs that search protein or DNA databases
often are evaluated by their ability to distinguish true biologi-
cal relationships from chance similarities. Such an evaluation
requires a test query set and database for which the true rela-
tionships are known. Given a query sequence, a database
search program returns alignments in some specific order,
often ranked using an objective measure such as an alignment
score, E-value or P-value. One way to evaluate search accu-
racy is with ROC (receiver operating characteristic) analysis
(1). To produce a ROC curve, the number of true positives is
plotted against the number of false positives returned as one
descends the retrieval list. The ROCn score, the normalized
area under this curve up to the first n false positives, has
become a popular measure of search accuracy. ROCn scores
may be calculated for individual queries or, if objective
scores render distinct database searches comparable, the
search results from many different queries may be pooled
to produce a single combined ROC curve and score (2).

Although ROCn scores capture one aspect of search
method quality, they ignore an important issue. In practice,
most database searches return results for which the true and
false positives are not known. Even a perfect ordering, with
all the true results preceding all the false ones, may be of
limited use if a user has no effective method for drawing a
line between the two classes. Most protein database search
programs now provide, in addition to an ordered list, E- or
P-values with which to assess whether any given result can
be explained by chance. Many applications rely critically
upon these values for further analyses. For example,
PSI-BLAST (3) and related iterative protein profile search
programs use an E-value threshold to automatically include
alignments in further rounds of analysis; a single false
positive below this threshold can corrupt all subsequent
results (4). Although unreliable E-values may be countered
by setting a very stringent threshold, this can squander efforts
that have gone into improving retrieval accuracy. Accor-
dingly, as important a consideration for a program’s utility
as the degree to which it separates true from chance simi-
larities may be the accuracy with which it calculates
E-values (5).

A central question in calculating alignment E-values is
defining the random distribution to which they refer. The
simplest approach is to calculate E-values with reference
to a random protein model, based on standard amino acid
frequencies; this is the baseline behavior of the BLAST
programs (3,6). The most immediate problem arises from
‘low-complexity’ segments—protein regions with extremely
restricted amino acid usage—which depart drastically from
the random model. It is usually not of interest to align such
segments, and they may be filtered out of consideration
using a program such as SEG (7). However, even after
low-complexity segments have been removed, many proteins
have distinctly biased amino acid compositions. Such biases
are typical of some protein families, but particular organisms
also have AT- or CG-biased genomes, leading by means of
the genetic code to characteristically biased proteomes
(8,9). Accordingly, many authors have proposed calculating
the significance of an alignment of two proteins by consi-
dering their amino acid compositions within some model
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for generating random sequences (2,10,11). If one does not
account for compositional bias, the reported E-values or
P-values may be orders of magnitude too low. As we show
below, an implementation of this basic idea within BLAST
greatly improves the accuracy of its statistical evaluations.

One might expect that adopting a more accurate calculation
of E-values would yield improved retrieval accuracy as well.
However, retrieval accuracy actually decreases, even when
the search results from many queries are pooled (2). A possi-
ble explanation is that similar amino acid compositional
biases for two proteins constitutes, in itself, some evidence
of protein relationship. The challenge, then, is to produce a
mathematically justified way of taking compositional similar-
ity into account when assessing sequence relationships.

The approach we take here is to consider two distinct
measures of sequence similarity: the traditional measure of
alignment similarity and a new measure of compositional
bias similarity. We investigate empirically the distribution
of compositional similarity among unrelated proteins. This
allows us to define an associated compositional P-value
distinct from an alignment P-value. We find that, on average,
related proteins have a greater compositional similarity than
unrelated proteins. Furthermore, we find that for unrelated
sequence pairs, alignment and compositional P-values are
effectively independent. Therefore, we can combine these
P-values into a single, unified P-value (12–14), which can
serve as a new measure for assessing sequence similarity.
We show that this measure recaptures the previously forfeited
retrieval accuracy, while at the same time yielding accurate
statistics. By also employing the previously described com-
positional score adjustment (15–17), we generate a program
that substantially outperforms the baseline BLAST program
on an ASTRAL test set (18,19) both in retrieval accuracy
and in the accuracy of its reported E-values.

THEORY

Variants of BLAST

We will compare five variants of the gapped protein-query,
protein-database BLAST program (3), which we distinguish
in this paper with different prefixes: B-BLAST, S-BLAST,
SU-BLAST, C-BLAST and CU-BLAST (Table 1). The base-
line program B-BLAST is modified in a few minor ways from
the default protein–protein BLAST program available on the
web site of the National Center for Biotechnology Informa-
tion (NCBI) (20). As noted below, some of these changes
are for testing purposes only, in order to minimize the number
of confounding factors when comparing B-BLAST to the
other BLAST variants, while others may be retained in future
web versions of BLAST.

The program S-BLAST scales the scores of a standard
matrix, for each alignment reported, based upon the composi-
tions of the two sequences compared. This approach, which
improves statistical evaluations, was introduced by Schäffer
et al. (2). The program SU-BLAST, which is new to this
paper, combines the alignment similarity of S-BLAST with
compositional similarity, described below, to produce a
unified measure of sequence similarity.

The program C-BLAST conditionally adjusts the scores of
a standard matrix, for each alignment reported, based upon
the compositions of the two sequences compared. The
approach is described in Altschul et al. (15), and is based
on methods from Yu et al. (17) and Yu and Altschul (16).
The program CU-BLAST, which is new to this paper,
combines the alignment similarity of C-BLAST with com-
positional similarity, described below, to produce a unified
measure of sequence similarity.

All five variants use the program SEG (7) to filter database
sequences for low-complexity regions. SEG replaces certain
amino acids with the character ‘X’, which is also used to
signify an unknown amino acid. Past default versions of
BLAST have assigned a fixed negative score to the aligned
pair (a, X), where a is a standard amino acid. Here, all
five variants assign to (a, X) a weighted average of the scores
for a aligned to the twenty standard amino acids. The new
way to score aligned letter pairs involving X may be retained
in future default versions of BLAST. Here, the calculated
composition of any sequence that is filtered using SEG
ignores those amino acids that are replaced with ‘X’.

All five variants use the optional Smith-Waterman algo-
rithm (21) to generate all local alignments actually reported.
Also, in this final alignment step, all five variants use five
more bits of precision for their substitution scores than are
used by the standard BLOSUM-62 matrix (22). In both
respects, B-BLAST differs from past default versions of
BLAST.

Except for its extra precision in the final step, B-BLAST
uses the standard BLOSUM-62 matrix in conjunction with
scores of �11� k for gaps of length k. For its E-value
calculations, it employs gapped statistical parameters that
are estimated (23) for a set of standard amino acid frequen-
cies (24). S-BLAST uses ‘composition-based statistics’ (2)
to scale the BLOSUM-62 substitution scores for any pair of
sequences, while leaving the gap scores fixed. The program
SU-BLAST, introduced here, combines a measure of com-
positional bias similarity with S-BLAST’s measure of align-
ment similarity to produce a unified measure of sequence
similarity. C-BLAST and CU-BLAST replace the scaled
BLOSUM-62 scores of S-BLAST and SU-BLAST with the
conditionally compositionally adjusted scores described by
Altschul et al. (15).

There is one additional change we made for testing
purposes only. The implementation of composition-based
statistics, available for many years on the web-site of the
NCBI, places upper and lower bounds of 1.0 and 0.5 on
the factor by which a substitution matrix can be scaled. The
upper bound is imposed to improve slightly the program’s
retrieval accuracy and speed (2). The lower bound, rarely
invoked, improves the utility of the program’s output for
certain applications. However, these artificial bounds con-
found the issues we wish to study here, and so we have

Table 1. Summary of the five variants of BLAST considered in this study

Program Scoring adjustment Unified P-values

B-BLAST None No
S-BLAST Compositional Scaling No
C-BLAST Compositional Adjustment No
SU-BLAST Compositional Scaling Yes
CU-BLAST Compositional Adjustment Yes

Compositional Scaling refers to the method in (2) and Compositional
Adjustment refers to the method in (15).
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removed the upper bound entirely, and reduced the lower
bound to 0.05.

Finally, since the publication of the paper introducing
‘conditional compositional adjustment’ to derive a new sub-
stitution matrix (15), we have found that in addition to the
three criteria therein described, a fourth is appropriate for
invoking compositional adjustment. Specifically, compo-
sitional adjustment should be used for any comparison
involving a protein of length at least 50 amino acids and
whose two most abundant residues constitute at least 40%
of the protein. The implementations of C-BLAST and
CU-BLAST studied here employ this additional criterion,
but it has no measurable effect on the paper’s results.

BLAST heuristics

All variants of BLAST we study involve scaling or adjusting
the substitution matrix for each alignment reported. BLAST
is a heuristic program, not guaranteed always to find the opti-
mal alignments, and scaling or adjusting the substitution
matrix separately for each database sequence would unduly
increase execution time. Accordingly, we re-evaluate only
those database sequences which pass an initial screen. Speci-
fically, the standard gap scores, BLOSUM-62 matrix, and
statistical parameters for standard amino acid frequencies
(24) are used to calculate preliminary E-values. Any database
sequence producing an alignment with a preliminary E-value
less than or equal to a set threshold, here taken to be 100, is
retained for further evaluation. The substitution and gap
scores are rescaled or adjusted, and an optimal local
alignment is generated using the rigorous Smith-Waterman
algorithm.

SU-BLAST and CU-BLAST calculate compositional
P-values to combine with alignment P-values in order to
produce unified P- and E-values for reporting. Because align-
ments are produced only for database sequences that pass
the initial screen, SU-BLAST and CU-BLAST calculate
compositional P-values for only these sequences.

Statistics

For the comparison of random sequences, an analytic,
asymptotic statistical theory has been developed for the distri-
bution of scores of ungapped local alignments (25,26). In
brief, for the comparison of two random sequences of lengths
m and n, the number of distinct local alignments with score
at least S is approximately Poisson distributed, with expected
value

E ¼ Kmn e�lS‚ ð1Þ

where K and l are calculable parameters dependent upon the
scoring system and amino acid distribution. The Poisson dis-
tribution implies that the maximum score follows an extreme
value distribution (27), with the probability of achieving a
score at least S given by

P ¼ 1 � e�E ¼ 1 � expð� Kmn e�lSÞ: ð2Þ

This formula may be inverted, yielding

E ¼ � lnð1 � PÞ: ð3Þ

For ungapped alignments, l is defined only for scoring sys-
tems with negative expected score. It is the unique positive
solution to the equation

X

1<i‚ j<20

pi p
0
j e

sijx ¼ 1 ‚ ð4Þ

where sij is the score for aligning amino acids i and j, and pi
and p0 j are the background probabilities, respectively, for
amino acid i in the first sequence and amino acid j in the
second (25,26). Empirically, for typical scoring regimes,
optimal gapped local alignments follow the same type of
distribution as do ungapped local alignments (28), although
the distribution’s parameters l and K can not be calculated
analytically but may be estimated by random simulation (23).

The E-value or P-value of an alignment score depends
upon the lengths of the sequences compared. E- or P-values
may be reported in the context of a pairwise comparison or in
the context of a database search. For the database search con-
text, the length n of a single sequence is replaced in formulas
1 and 2 by the aggregate length N, in residues, of all database
sequences. By default, the BLAST programs report database
E-values, but because we will discuss pairwise E- and
P-values below, we will always use a hat symbol to indicate
pairwise as opposed to database E- or P-values. The relation-
ship between the pairwise and database E-values for an align-
ment involving a database sequence of length n (29) is given
by the formula

E ¼ N

n
ÊE: ð5Þ

Unified P- and E-values

As described below, we will combine an alignment pairwise
P-value P̂Pa with a compositional P-value Pc to calculate a
unified pairwise P-value P̂Pu: Because BLAST reports
database E-values, it must perform the following calculations
to convert an alignment database E-value Ea into a unified
database E-value Eu:

ÊEa[
n

N
Ea ðEquation 5Þ;

P̂Pa[ 1 � e�ÊEa ðEquation 2Þ;

P̂Pu[ f ðP̂Pa‚PcÞ ðsee belowÞ;

ÊEu[� lnð1 � P̂PuÞ ðEquation 3Þ;

Eu[
N

n
ÊEu ðEquation 5Þ;

Eu is reported, and can be converted into a database P-value
Pu using Equation 2 if desired.

Program evaluation

We evaluate versions of BLAST both for the reliability of
their statistics and for their retrieval accuracy. To study the
reliability of the statistics produced, we compare 10 000 shuf-
fled mouse sequences of length at least 150 with shuffled
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human RefSeq (20) sequences from Build 35 of the human
genome. For each query, we record the lowest database
P-value returned. We then plot the number of queries for
which this P-value is <x.

To study retrieval accuracy, we use the ‘astral40’ data set
(18,19), based upon the SCOP structural classification of
proteins (30,31), for ROC analysis. Specifically, the 3586
astral40 sequences related to at least one other astral40
sequence are compared to the complete data set, and the
results of all searches are pooled by E-value. For increasing
E-value, the number of true positives is plotted against the
number of false positives, and a ROC5000 score is calculated.

RESULTS

Here, we first study the statistical and retrieval accuracy
of the previously described programs B-BLAST and
S-BLAST. We then describe a measure of similarly biased
amino acid compositions in two proteins and a method for
combining this compositional similarity with alignment simi-
larity to create a unified assessment of sequence similarity.
We implement this unified measure in SU-BLAST, whose
statistical and retrieval accuracies we study. Finally, we
replace the compositional scaling employed by S-BLAST
and SU-BLAST with conditional compositional matrix
adjustment to create C-BLAST and CU-BLAST, and study
the performance of these programs. The central idea behind
such compositional matrix adjustment is to find target
frequencies for aligned amino acid pairs that are consistent
with the background frequencies of the sequences being com-
pared, but as close as possible to the target frequencies
implicit in a standard substitution matrix. For the comparison
of sequences with different background frequencies, the
resulting substitution matrix is asymmetric. It is fruitful to
employ compositional adjustment only under certain condi-
tions (15), with compositional scaling (2) used when these
conditions fail.

B-BLAST and S-BLAST

The proper statistical parameters l and K for the distributions
of Equation 1 and 2 depend upon the amino acid composi-
tions of the sequences being compared. Thus the significance
of alignments with the same nominal score can vary, depen-
dent upon the context in which the alignments arise. For
example, using BLOSUM-62 scores (22), a high-scoring
alignment is much more likely to arise by chance from
the comparison to two cysteine-rich proteins than from the
comparison of two proteins with more typical amino acid
compositions. Numerically, this is mediated in Equation 1
primarily by the cysteine-rich compositions implying a
smaller value of l, which discounts the nominal score.

The baseline B-BLAST program evaluates all alignments
using gapped statistical parameters l*g and K*

g estimated
(23) for a standard amino acid composition (24). Thus, for
alignments involving proteins whose compositions imply a
gapped lg substantially smaller than l*g, the E-values reported
may be much smaller than justified.

BLAST estimates the number of alignments that are
expected to achieve a given score by chance, i.e. from the
comparison of unrelated proteins. Our test of BLAST

statistics retains the compositions of real proteins, while
scrambling the order of their amino acids. Figure 1 shows
that B-BLAST’s statistics are far from accurate. For example,
in 10 000 randomized B-BLAST database searches, 639
(6.4%) yield best matches with P-value < 10�4, when only
one would be expected. Furthermore, some queries can
yield best matches with extremely inaccurate statistical
assessments: 143 queries (1.4%) returned best matches with
P-value < 10�10. Note also that when the best random
match has an extremely low P-value or E-value, many
other matches frequently do as well. For example, a single
query whose best match had a B-BLAST P-value of
10�12 yielded 101 matches with E-value < 10�4.

This problem with BLAST statistics is understood to be
due primarily to similarly biased compositions among many
protein sequences and is largely mitigated by the
‘composition-based statistics’ (2) employed by S-BLAST.
To estimate rapidly the statistical parameters for gapped
alignments, S-BLAST multiplies the standard BLOSUM-62
matrix by a distinct constant for each pair of sequences, so
that the scaled matrix has the same ungapped scale parameter
l in the new compositional context that the unscaled matrix
has in the standard context. The gap costs remain fixed. When
the new scoring system is employed, the optimal local align-
ment may change. Therefore alignments must be recalcu-
lated, as described in the Theory section above, after the
substitution matrix has been scaled.

Figure 1 shows that the statistics of S-BLAST are far more
accurate that those of B-BLAST, and even slightly conserva-
tive. From 10 000 database searches, only six best matches
are returned with P-value < 10�3, where ten are expected.
In some applications it is crucial to exclude false positives
reliably, for example when constructing a PSI-BLAST
position-specific score matrix for further database searches
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Figure 1. The accuracy of BLAST statistics. 10 000 shuffled mouse
sequences were compared to shuffled human RefSeq (20) sequences from
Build 35 of the human genome. The number of queries whose best match had
a reported P-value < x is plotted against x, using a log–log scale. Curves are
shown for B-BLAST, S-BLAST, SU-BLAST, C-BLAST and CU-BLAST.
The diagonal line indicates the theoretical prediction for all curves. The
vertical line at x ¼ 10�4 indicates the point at which a single query with equal
or better P-value is expected.
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(3). In these instances, S-BLAST is strongly preferred to
B-BLAST (2). However, if one ignores the accuracy of
reported statistics and pays attention only to the relative
abilities of the two programs to separate true from chance
similarities, then B-BLAST appears better; Figure 2 shows
that its ROC curve lies significantly above S-BLAST’s.
This seemingly paradoxical result can be understood by rec-
ognizing that similarly biased compositions can in themselves
constitute evidence for sequence relatedness. This evidence is
effectively discarded when one calculates the significance of
an alignment given the compositions of the sequences being
compared. The problem we now address is whether this evi-
dence can be recaptured in a mathematically justified manner,
thereby restoring the retrieval accuracy of B-BLAST while
retaining the statistical accuracy of S-BLAST.

Compositional similarity

To study coordinated amino acid biases among related and
unrelated proteins, we first require an appropriate measure.
The difference between the substitution scores used by
B-BLAST and S-BLAST, a difference that caused a sizable
erosion in retrieval accuracy, was multiplication by a factor
proportional to the ungapped scale parameter l. We therefore
propose to use l itself, calculated for a fixed reference set
of substitution scores, but using the observed amino acid
frequencies of two proteins, as a measure of coordinated
amino acid bias. An analysis of equation (4) whose solution
is l (26) shows that l will be low for any pair of proteins with
an unusually large number of amino acids having high mutual
substitution scores as defined by the reference substitution
matrix.

There is no model from which one may derive an accurate
distribution of l for unrelated proteins. Accordingly, we pro-
ceed by calculating l, based on the BLOSUM-62 substitution
scores (22), for all pairs of unrelated proteins from the
astral40 data set (18,19). The resulting empirical probability
density function for l is shown in Figure 3. We use this

distribution to assign to any particular value of l an empirical
compositional P-value, Pc(l), equal to the area under the
density curve to the left of l. Because for small l the data
supporting our empirical distribution become sparse, we set
a lower bound on Pc(l) of 10�6, which is returned whenever
l less than equal to 0.068.

Figure 3 also shows the empirical probability density of l
for pairs of related sequences from the astral40 data set. Our
strategy is to glean from the separation between the distri-
butions for related and unrelated sequences evidence of
sequence relatedness based on compositional considerations
alone.
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of this database. The results are pooled and sorted by E-value, and ROC curves are produced by plotting the number of true positives against the number of false
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scores for these programs are also shown, each having a standard error of ± 0.0002 (2). In (B), the same ROC curves are shown in a semi-log plot, using the scales
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Combining alignment and compositional significance

How may one combine Pc for a pair of sequences with a
traditional alignment-score P-value, Pa, calculated using
composition-corrected substitution scores, to derive a valid
unified P-value, Pu, based upon both compositional and
alignment evidence? One approach is to assume that Pa and
Pc are independent random variables with a uniform distribu-
tion on the interval (0,1). Define a new random variable equal
to the product of Pa and Pc, which has an easily calculated
probability density over (0,1), from which a unified P-value
may be derived (12–14). The resulting Pu is given by

Pu ¼ PaPc ð1 � lnPaPcÞ: ð6Þ

For this formula to be valid, Pa and Pc should be accurate and
independent. If we calculate Pa using composition-based
statistics (2), as described above for S-BLAST, there should
be little if any dependence between Pc and Pa. To test
whether this is effectively the case, for each best match of
a shuffled mouse sequence to a shuffled human RefSeq
sequence, we calculated Pa and Pc and plotted their joint
empirical probability density in Figure 4. There was close
to no evident dependence between the values of Pa and Pc,
although Pa was systematically high. For values of Pa <
�0.3, the probability density shown in Figure 4 is close to
uniform, although appreciably < 1.0. This implies that for
such Pa, Equation 6 should yield values for Pu that are
consistently conservative by a constant multiplicative factor.
This is approximately what is observed in Figure 1.

SU-BLAST

We have implemented a program, here called SU-BLAST,
that uses both compositional and alignment evidence to
assess protein sequence similarity. Before we discuss this
program’s retrieval and statistical accuracy, two technical
details bear comment.

First, because we wish to combine compositional similarity
not just with the best hit from a database search, but in prin-
ciple with the best hits for all sequences, it is appropriate to

apply Equation 6 with pairwise P-values P̂Pa and P̂Pu in place
of database P-values Pa and Pu. Therefore, to calculate a uni-
fied database E-value Eu from an alignment database E-value
Ea, we have to perform the five-step calculation described
above in the Theory section. Second, as described in the
Theory section above, SU-BLAST returns a result only for
those sequences whose preliminary alignment E-value is
lower than a set threshold. This heuristic is unlikely to
exclude many alignments with low unified E-values because
alignment similarity generally carries much more information
than compositional similarity.

We tested SU-BLAST for retrieval and statistical accuracy.
As shown in Figure 1, SU-BLAST’s reported statistics are
noticeably more conservative than those of S-BLAST, but
are still accurate within an order of magnitude. However, as
shown in Figure 2, by using l to measure and reward similar
compositional bias, SU-BLAST recaptures the retrieval
accuracy forfeited by S-BLAST. SU-BLAST and B-BLAST
have very similar ROC curves and ROC5000 scores. For the
data set used, B-BLAST is slightly better at false positive
rates < 0.3/query, and SU-BLAST is slightly better at false
positive rates > 0.3/query. The major difference between
SU-BLAST’s and B-BLAST’s performance is found in the
far greater accuracy of SU-BLAST’s statistics.

C-BLAST AND CU-BLAST

It has been argued that standard substitution matrices such as
BLOSUM-62 are not ideal for comparing sequences with
non-standard compositions, and an efficient method has
been proposed for adjusting standard matrices for use in
arbitrary compositional contexts (15–17).

For protein database searching, Altschul et al. (15) have
shown that conditional compositional substitution matrix
adjustment yields better retrieval accuracy than does the
substitution matrix scaling (2) embodied in S-BLAST. Like
matrix scaling, compositional adjustment produces alignment
statistics conditioned on the compositions of the sequences
compared. Therefore, it is appropriate to replace the matrix
scaling of S-BLAST and SU-BLAST with conditional
compositional adjustment (15) to produce the programs
C-BLAST and CU-BLAST. An analysis of the independence
of Pa and Pc similar to that shown in Figure 4, but with
S-BLAST replaced by C-BLAST, produces results nearly
equivalent to those discussed above, and is omitted here.

The reliability of C-BLAST’s and CU-BLAST’s statistics
is evaluated in Figure 1. As can be seen, the replacement
of scaled by compositionally adjusted substitution matrices
yields a somewhat improved agreement of statistical theory
with experiment. Also, as shown in Figure 2, CU-BLAST
outperforms both B-BLAST and SU-BLAST in retrieval
accuracy. In summary, evaluated from the baseline provided
by B-BLAST, the integration of compositionally adjusted
substitution matrices with a measure of similar compositional
bias yields a program that is substantially improved from the
standpoints of both statistical and retrieval accuracy.

DISCUSSION AND CONCLUSION

It has been recognized for some time that a failure to account
for biased amino acid compositions can lead to exaggerated

0.2
0.4

0.6
0.8

Pa

0.2

0.4

0.6

0.8

P
c

 0
1

2
3

4
5

6
P

ro
ba

bi
lit

y 
de

ns
ity

Figure 4. The empirical probability density of alignment and compositional
P-values from shuffled sequences. 10 000 shuffled mouse query sequences
were compared using S-BLAST to shuffled human RefSeq (20) sequences
from Build 35 of the human genome. For each query, the alignment P-value
Pa of the best match to the database was found, and the compositional
P-value Pc was then calculated for the database sequence involved.
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claims of protein alignment statistical significance (2,10,11).
It has not been widely recognized, however, that basing
alignment statistics upon sequence composition can erode
retrieval accuracy. We have argued that such erosion may
stem from the fact that similarly biased compositions, in
themselves, constitute evidence of protein relatedness. To
improve alignment statistics, earlier methods have teased
apart alignment and compositional similarity, but have then
discarded the latter. We have proposed rejoining these two
threads of evidence in a mathematically valid manner.
Some studies may involve comparing related proteins that
have amino acid compositions known or suspected to be
discordant. In such cases, adding to alignment similarity the
compositional similarity discussed here may well be
counterproductive.

We have derived an empirical distribution of ungapped l
values for unrelated sequence pairs from the astral40 data
set (18,19). This set is biased towards globular proteins,
and therefore our l distribution may not be valid for more
comprehensive protein sets. Unfortunately, accurate classifi-
cations of proteins into related and unrelated classes are not
currently available for such larger sets, and the l distribution
may bear refinement as protein relationships become more
fully understood. However, proteins with highly biased or
repetitive sequences generally are heavily filtered by the
SEG program, and are probably not best studied using
traditional alignment methods.

Different versions of the command line executable
program ‘blastpgp’ implementing the five BLAST versions
described above and compiled for Linux are available at:
ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/blast_unified_statistics.
Also available in this directory are a table of empirical values
for Pc(l), the shuffled human and mouse sequences used in
the statistical tests above, as well as the unshuffled sequences
from which they are derived.

In this paper we have been concerned primarily with
comparing the newly proposed measure of sequence similar-
ity to earlier ones, and have sought to minimize confounding
factors introduced by various BLAST heuristics. Accord-
ingly, we have used the Smith-Waterman option in the final
alignment phase (2), and we have used a high preliminary
E-value threshold of 100 for re-evaluating alignments. How-
ever, the modest improvements in search sensitivity yielded
by these options come at a significant cost in execution
time, and different options may be chosen as defaults for
NCBI’s BLAST web servers. We have no reason to believe
that our results would be qualitatively different using either
faster BLAST parameter settings, or using the Smith-
Waterman algorithm on every database sequence instead of
on only those selected by the BLAST heuristics.

The use of compositional similarity, as well as its inte-
gration with compositional matrix adjustment, will be avail-
able as an option for the protein-query, protein-database
BLAST search program on the NCBI web site. The current
command line blastpgp offers unified P-values as part of
the composition option (-t). Also, the use of compositional
similarity may be specified for PSI-BLAST’s initial BLAST
round of database search, but thereafter PSI-BLAST uses
only alignment similarity to assess results.

Compositional sequence relatedness has been used in other
ways for protein sequence analysis before. For example, the

PHD program for predicting protein secondary structure
(32) employs global amino acid composition as one input
to a neural network. Also, a somewhat ad hoc approach has
been described for adjusting the reported E-values of align-
ments involving low complexity regions by post-processing
BLAST outputs (33). Some database search programs, such
as FASTA (34), correct for the composition of query
sequences by estimating statistical parameters from database
searches. This procedure, however, takes no account of
the compositions of individual database sequences, and so
can at most partially correct for the manner in which
compositional biases skew pairwise alignment scores.

It may be possible to improve in several ways on this
paper’s approach. For example, the statistical corrections
for compositional bias employed by S-BLAST and
C-BLAST, while quite accurate for random sequences, are
compromised to varying degrees by periodicity and non-
uniformity within real sequences. SEG (7), applied to data-
base sequences in this paper, removes many low-complexity
segments from consideration, but certain periodic patterns
remain. These may be dealt with by additional special-
purpose filters, e.g. for coiled coils (35–38), or by calculating
alignment statistics based on a reversed-sequence model of
randomness (10,39).

SCOP-based test sets such as astral40 are widely used
for the evaluation and comparison of protein sequence
database search methods, but they have potential disad-
vantages. SCOP is a classification of protein domains, but
most comparisons performed in database searches involve
complete proteins. As a result, SCOP-based evaluations may
tend unduly to favor alignment scoring systems that have
more of a global than a local flavor, such as the compositional
bias similarity studied here. A test set we have previously
employed (2), and which compares queries to full-length
yeast sequences, is too small to yield statistically significant
results in this study. Certainly the utility of the methods we
have discussed is a function of the degree to which the
compositional properties of complete proteins reflect those
of the proteins’ domains. Progress on the automatic parsing
of protein sequences into domains should therefore be able
to improve both statistical and retrieval accuracy.

Here we have studied one measure, the ungapped l implied
by a fixed substitution matrix, of two sequences’ composi-
tional similarity. Many other measures are possible, and we
did investigate one, a compositional distance metric recently
described by Endres and Schindelin (40). The distance distri-
butions for related and unrelated sequence pairs showed a
marked separation, similar to that of Figure 3. However, the
improvement in retrieval accuracy yielded by this measure
was distinctly inferior to that yielded by l (data not shown).
Nevertheless, it remains possible that theoretical considera-
tions or further experimentation will yield a compositional
similarity measure more effective than l for our purposes.

An alternative approach to measuring global compositional
similarity is by log–odds scores, analogous to those for
alignment similarity, which make use of information derived
from related as well as unrelated sequence pairs (John
Spouge, personal communication). One may imagine other
methods for taking advantage of the different behaviors of
these two sets, and it is likely that a more sensitive measure
than those we have so far studied will be found.
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The idea of combining alignment similarity with indepen-
dent measures of sequence relatedness, such as compositional
similarity, may be applied fruitfully to database search
programs other than BLAST (34). It may also be possible
to graft compositional or other similarity measures onto the
alignment similarity measures used by protein profile pro-
grams such as HMMER (41), PSI-BLAST (3), SAM (10),
IMPALA (42) or SALTO (43). To what extent this can
improve the statistics or retrieval accuracy of these programs
awaits further investigation.
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