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Abstract

Background: Piwi-interacting RNAs (piRNAs) are a new class of small non-coding RNAs that are known to be
associated with RNA silencing. The piRNAs play an important role in protecting the genome from invasive

transposons in the germline. Recent studies have shown that piRNAs are linked to the genome stability and a variety
of human cancers. Due to their clinical importance, there is a pressing need for effective computational methods that
can be used for computational identification of piRNAs. However, piRNAs lack conserved structural motifs and show
relatively low sequence similarity across different species, which makes accurate computational prediction of piRNAs
challenging.

Results: In this paper, we propose a novel method, piRNAdetect, for reliable computational prediction of piRNAs in

genome sequences. In the proposed method, we first classify piRNA sequences in the training dataset that share
similar sequence motifs and extract effective predictive features through the use of n-gram models (NGMs). The
extracted NGM-based features are then used to construct a support vector machine that can be used for accurate

prediction of novel piRNAs.

Conclusions: We demonstrate the effectiveness of the proposed piRNAdetect algorithm through extensive
performance evaluation based on piRNAs in three different species — H. sapiens, R. norvegicus, and M. musculus —
obtained from the piRBase and show that piRNAdetect outperforms the current state-of-the-art methods in terms of

efficiency and accuracy.
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Background

The Piwi-interacting RNA (piRNA) is a new class of small
non-coding RNAs (ncRNAs) whose functions are not fully
understood. Recently, the studies have shown that piRNAs
are associated with control of transposon silencing, tran-
scriptional regulation, and mRNA deadenylation [1-3].
The piRNAs interact with Piwi proteins to form RNA-
protein complexes involved in silencing of retrotrans-
posons and other genetic elements. Furthermore, piRNAs
are found to be emerging players in cancer genomes,
and hence to have potential clinical utilities [4, 5].
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Thus, there is a prompt demand for identifying the novel
piRNAs through effective computational methods due
to their clinical prospect. However, piRNA detection is
not straightforward since piRNAs lack conserved struc-
ture motifs and sequence homology between different
species [6, 7].

The piRNAs are the largest class of small ncRNAs with
a wide variety of sequences in size about 26-31 nucleotide
bases [8, 9]. There are two major classes of approaches
developed for piRNA detection. The first class utilizes
sequence-based features to identify piRNAs [10, 11]. Betel
et al. [10] found piRNAs have the tendency to have the
nucleobase Uridine at the 5 cleavage sites and identi-
fied piRNAs by checking the Uridine positions and its 10

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-017-1896-1&domain=pdf
mailto: bjyoon@ece.tamu.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Chen et al. BMC Bioinformatics 2017, 18(Suppl 14):517

upstream and downstream bases. However, the predic-
tion based on the Uridine positions is not accurate and
the classification accuracy is 61-72% for Mouse piRNAs.
The K-mer scheme [11] can have a superior performance
by checking the frequencies of K-mer strings. All 1,364
K-mers from 1-mer strings to 5-mer strings are included
to predict piRNAs. Since most piRNAs are derived from
genomic piRNA clusters [12—14], the second class utilizes
the information on clustering locus for piRNA detection.
Among the approaches based on clustering locus of piR-
NAs, proTRAC [15] can identify piRNA clusters and piR-
NAs from a small RNA-seq dataset through a probabilistic
analysis of mapped sequence reads. Furthermore, piClust
[16] uses a density-based clustering method to identify
piRNA clusters without assuming any parametric distri-
bution model. Besides, the sequence-based approach can
further incorporate distinctive features to detect piRNAs.
For example, piRPred [17] integrates both the features
of K-mer string and clustering locus based on multiple
kernel fusion.

In this paper, we propose a novel sequence-based
piRNA detection algorithm, called piRNAdetect, which
can be used to detect novel piRNAs in genome sequences.
First, we adopt the n-gram models (NGMs) based on the
seed sequences to efficiently classify the recognized piR-
NAs into the homologous families. By integrating NGMs
into the sequence classification, it enables flexible explo-
ration of different sequence motifs and patterns in a
dataset. Based on the classified families, we can further
build the corresponding NGMs and utilize the support
vector machine (SVM) to detect the potential piRNAs.
The performance results based on the piRNAs from dis-
tinct species in the piRBase [18] database demonstrate
the efficiency and the accuracy for piRNA detection using
piRNAdetect.

Methods

The main task of piRNA detection is to identify novel piR-
NAs in genome sequences. To achieve this, we first adopt
the n-gram model (NGM) to classify a given database of
recognized piRNAs into families with similar sequence
motifs. The NGM is a class of probabilistic models,
widely applied in bioinformatics research, including pro-
tein identification [19, 20], RNA structure modeling [21],
and genome sequence analysis [22]. Based on homolo-
gous sequences, the NGM can estimate the similarity
between sequences with the tolerance for the potential
variations involved with insertions, deletions, and substi-
tutions in the nucleotide or amino acid sequences [22].
The NGM is an (# — 1)th-order Markov chain model and
each nucleotide or amino acid base in a sequence only
depends on what the preceding (# — 1) bases are. There-
fore, the homologous likelihood for a sub-sequence with
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length L in the sequence b can be efficiently estimated by
the following Eq. (1):

k+L
R(b,k) = log P(bi1p4n-1) + Y logP(bilbi—ni1i-1),
i=k+n

(1)

where k is the offset of the sub-sequence in b, and b; repre-
sents the i/ base of the sequence b while b;; represents the
sub-sequence (b;, bi11,- - ,b;) in b. Moreover, the likeli-
hood R(b, k + 1) can be efficiently updated from R(b, k)
when scanning the sequence b to search for the homology.

For the sake of piRNA detection, we can first classify
the piRNA sequences into homologous families through
NGMs based on the seed sequences in the dataset. Based
on the classified families, we can then build the corre-
sponding NGMs for detection and further extract the
features through the NGMs for an SVM to detect piRNAs.
Based on this idea, we propose a novel piRNA detection
method called piRNAdetect. The procedure for piRNA
detection using piRNAdetect is detailed in the following
subsections.

Clustering sequences that share common motifs

For a given dataset of sequences, we can classify the
sequences with similar motifs into a homologous fam-
ily through the NGM based on the seed sequence. Since
there exists a subset of piRNAs derived from repeat
regions [23, 24], some piRNAs have common motifs
with repeat sub-sequences. Hence the sequence with the
highest (n-1)-grams frequency is first taken as a seed
to collect sequences with the similar sequence motifs.
Based on the seed sequence, we can estimate the state
probability P(bj414+,—1) and the transition probability
P(bj|b;i—y+1,i—1) of the sequence b from the statistics, and a
pseudo-count is added in the statistics to model potential
mutations. Furthermore, the maximum R(b, k) for all the
sub-sequences with length L, which is set to the minimum
sequence length within the dataset, is taken as the homol-
ogous sequence similarity S(b). To normalize the bias of
the sequence content in the sequence classification, the Z-
score is adopted as the final similarity measure of the given
sequence with respect to the corresponding NGM:

S —n
o

Zb) = . (2)

where S(b) is the sequence similarity of the sequence
b, and the parameters p and o are the average and the
standard deviation of the sequence similarity over the
statistical ensemble for the dataset. Lastly, those similar
sequences with the Z-score Z(b) > Z, are collected as
a homologous family if the collected sequence number
N > Ny, where the parameters Z;, and Ny, are predefined
threshold values. The classified family is then extracted
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from the dataset, and the process to classify sequences
into the homologous family is repeated until all sequences
in the dataset are checked to be the potential seeds.

Predicting piRNAs using NGM-based features

For the purpose of piRNA detection, we first update the
NGMs based on the classified sequences with the sim-
ilar process as in the sequence classification. For each
classified family, the state probability and the transition
probability with pseudo-counts are estimated for the cor-
responding NGM. Since we utilize the Z-score of the
sequence similarity S(b) to normalize the bias of sequence
length and family sequence content, the statistical average
and the standard deviation of the sequence similarity are
computed based on 18,000 randomly generated sequences
obtained from Monte Carlo shuffling simulation [25].
Moreover, the lengths of the test sequences in the statisti-
cal evaluation are ranged from 21 to 36 nucleotides with
a step size of 5, and the Z-score of the sequence similar-
ity can be further estimated by SVM regression analysis
based on the statistical averages and the standard devi-
ations. The LIBSVM package [26] is employed for SVM
regression based on the e-support vector regression mod-
els using the radial basis function (RBF) kernel. With the
Z-scores of the sequence similarities from the NGMs with
respect to the classified families, piRNAdetect incorpo-
rates those features to detect piRNAs based on the SVM
classifier.

In order to train the SVM classifier for piRNA detec-
tion, the sequences are drawn from the piRBase [18] and
Rfam database 12.1 [27, 28] to construct the datasets with
positive samples and negative samples for training and
assessment. For each sequence in the positive samples,
the sub-sequence with the same length is randomly drawn
from the Rfam database and is shuffled to be consid-
ered as the negative control sample. Based on the dataset,
we can train a c-support vector classification (c-SVC)
model using the RBF kernel through the LIBSVM package
[26] to detect potential piRNAs and compute the confi-
dence probability for piRNA detection in a given genome
sequence.

Results and discussion

To test piRNAdetect, the piRNAs from the piRBase
database with length from 26 to 36 are randomly taken
to test the performance using 5-fold cross-validation (CV)
approach. In the 5-fold CV, the test samples are ran-
domly partitioned into 5 equal sized folds, and each
fold is in turn retained as the test data for the val-
idation while the remaining 4 folds are taken as the
training data. The piRNA detection performance is eval-

uated in terms of the accuracy (ACC):%,

the true positive rate (TPR)= TPEPFN, and the false positive
rate (FPR)= TN +FP TP denotes the number of correctly
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identified piRNAs, and TN denotes the number of cor-
rectly identified negative samples. FP denotes the number
of negative samples incorrectly identified as piRNAs, and
FN denotes the number of piRNAs that are missed in the
detection.

In order to apply the n-gram model to piRNA detec-
tion, the size of 1 needs to be less or equal to the length
of the target string. Besides, the larger size of # is suit-
able for the sequences with longer common motifs while
the smaller size of n is proper for the sequences with
intensive variations. Since piRNAs are divergent in both
their structure and sequence, the tetragram is used to have
superior performance in piRNA detection with reasonable
computational complexity. In the following discussion, the
parameters in the clustering sequences are first tested to
better realize the NGM for piRNA detection and then the
performance of piRNAdetect is compared with the K-mer
scheme [11] as well as piRPred [17] based on the piRNAs
from various species. To simulate piRPred, the locus infor-
mation for the positive sample is referenced from piRBase
database while random loci are assigned to the negative
samples.

Evaluating the effectiveness of NGMs for detecting piRNAs
The piRNAs from H. sapiens with a total number of 32,826
sequences in the piRBase database are first tested for the
parameters in NGMs. In order to test the effect of the
parameters Z;, and Ny, in the NGM:s for piRNA detection
with the different size of the test datasets, one parame-
ter is taken as a control variable and the other parameter
is varied to check the corresponding accuracy of piRNA
detection. Besides, the sizes of the test dataset used for 5-
fold CV are ranged from 2000 to 32,000 with a step size
2000.

For the case with the fixed parameter Zy, = 1.5, Fig. 1
illustrates the accuracy and the average number of classi-
fied family with respect to the variable parameter Ny, and
the sizes of the dataset. The sequence classification needs
the size of the dataset large enough to build the NGMs,
and hence the classification with smaller Ny, can build
the NGMs easier and detect piRNAs in a smaller dataset.
Moreover, when the size of the dataset increases, it can
build more NGMs with the corresponding classified fami-
lies and become more accurate in the detection since more
motif patterns are recognized. In this case with piRNAs
from H. sapiens, the piRNA detection with the parameter
Ny, = 50 has the highest possible accuracy. However, it
also builds the maximum amount of the NGMs with the
parameter Ny, = 50 and the computational complexity is
proportional to the amount of NGMs in both training and
detection.

For the case with fixed parameter Ny, = 200, Fig. 2
illustrates the accuracy and the average number of the
classified family with respect to the variable parameter
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Fig. 1 The piRNA detection accuracy and the average number of
classified families for Zy, = 1.5. @ The prediction accuracy is shown on
the y-axis and the dataset size is shown on the x-axis. Lines in
different colors correspond to different values of Ny,. b The average
number of classified families for different Ny, and dataset size

Zy, and the sizes of datasets. The sequence classification
with a higher threshold Z;, needs a larger dataset to build
NGMs. With the size of the dataset large enough, the
detection with a higher threshold Z;, can build more elab-
orate NGMs to characterize piRNAs and better improve
the detection accuracy. However, the extremely high
threshold Z;, can degrade the accuracy, and the piRNA
detection with the parameter Z,;, = 2.0 has the highest
possible accuracy in this test case.

Performance evaluation of piRNAdetect

To assess the piRNA detection performance of the pro-
posed piRNAdetect algorithm, we perform 5-fold CV on
the piRNAs from the species H. sapiens, R. norvegicus,
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Fig. 2 The piRNA detection accuracy and the average number of
classified families for Ny, = 200. a The prediction accuracy is shown
on the y-axis and the dataset size is shown on the x-axis. Lines in
different colors correspond to different values of Zy,. b The average
number of classified families for different Zy, and dataset size

and M. musculus. Moreover, the numbers of sequences
for each species are listed in Table 1. We randomly drew
30,000 sequences from each species as the positive sam-
ples for the test datasets.

In the following analysis, piRNAdetect utilizes the
threshold parameters (Ny,, Zy)= (200, 1.5) to balance
the performance and computational complexity. For

Table 1 Dataset size for each species

Species Size

H. sapiens 32,826

R. norvegicus 63,182

M. musculus 51,664,769
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Table 2 Prediction accuracy of piRNAdetect compared against the K-mer scheme and piRPred
Method H. sapiens R. norvegicus M. musculus

TPR FPR ACC (%) TPR FPR ACC (%) TPR FPR ACC (%)
piRNAdetect 0.848 0.160 84.40 0.837 0.195 82.11 0.806 0213 79.65
K-mer scheme 0.821 0.226 79.76 0.781 0.222 77.95 0.698 0.259 7195
piRPred 0375 0.098 63.85 0.290 0.201 5442 0.208 0.020 59.39

performance comparison, the K-mer scheme [11] and piR-
Pred [17] are also evaluated on the same test datasets.
Table 2 summarizes the performance of piRNA detec-
tion by piRNAdetect, piRPred with default settings, and
K-mer scheme with the cutoff parameter ¢ 1.2 [11].

The accuracy of piRNAdetect for piRNA detection out-
performs K-mer scheme and piRPred in all three distinct
species. The piRPred algorithm uses loci information for
piRNA detection and it may need a large dataset to
make accurate predictions, as prediction schemes that
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Fig. 3 ROC curves showing the prediction performance of piRNAdetect and the performance of the K-mer scheme. a The performance for
predicting piRNAs in H. sapiens. The false positive rate (FPR) is shown on the x-axis and the true positive rate (TPR) is shown on the y-axis. b The
prediction performance for piRNAs in R. norvegicus. € The prediction performance for piRNAs in M. musculus




Chen et al. BMC Bioinformatics 2017, 18(Suppl 14):517

utilize clustering locus typically require a large number of
sequence reads to identify clusters.

Since the cutoff parameter is introduced in the K-mer
scheme to adjust the threshold in the decision, the receiver
operating characteristic (ROC) curves for three species
are also demonstrated in Fig. 3. Please note that the ROC
curve for piRPred is not shown in the figure, as piRPred
does not assign confidence probabilities to the predic-
tions it makes. For comparisons based on ROC curves, the
area under curve (AUC) can be used as a useful overall
performance measure [29, 30], where a larger AUC indi-
cates superior prediction performance. As summarized
in Table 3, piRNAdetect clearly outperforms the K-mer
scheme based on AUC.

In general, the performance of piRNA detection
depends on the characteristics of the training dataset and
the prediction model that is constructed. For a sequence-
based approach, the prediction method can achieve good
performance if the sequences are regular and the dataset
is large enough to be representative for all sequences.
The K-mer scheme checks all possible sub-sequences
with length L < 5 and extracts a total of 1364 fea-
tures to detect piRNAs. In comparison, piRNAdetect can
practically check longer sub-sequences while extracting
a smaller number of useful features by utilizing NGMs.
However, NGMs rely on the shared sequence motifs in
the training dataset, hence their effectiveness will degrade
if significant sequence motifs are absent or the dataset is
not large enough to extract the representative sequence
motifs. In this work, piRNAdetect extracts and utilizes less
than 50 features based on NGM:s for predicting piRNAs in
H. sapiens, R. norvegicus, and M. musculus.

Conclusions

The piRNAs lack conserved characteristics and promi-
nent features that could be used for recognizing them,
which makes accurate prediction of piRNAs challeng-
ing. In this paper, we proposed piRNAdetect, a novel
algorithm for computational prediction of piRNAs. The
proposed algorithm uses n-gram models (NGMs) to
extract predictive sequence features for effective pre-
diction of piRNAs. Besides, unlike piRPred, which is
specifically designed for Drosophila and human data,
our approach can be applied to identify sequences with
shared sequence motifs for any given species. Compre-
hensive performance evaluation based on piRNAs in the

Table 3 Prediction performance based on average AUC

Average AUC
species H. sapiens R. norvegicus M. musculus
piRNAdetect 90.28 88.15 85.97
K-mer scheme 87.84 86.06 79.36
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piRBase database showed that piRNAdetect clearly out-
performs the K-mer scheme, which is also a sequence-
based scheme. Furthermore, despite the improved predic-
tion accuracy, piRNAdetect utilizes a significantly smaller
number of features compared to the K-mer scheme, which
makes piRNAdetect more efficient and less prone to
overtraining.
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