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Abstract: Young children are susceptible to respiratory diseases. Inequalities exist across socioeconomic
groups for paediatric respiratory health services utilization in Alberta. However, the geographic
distribution of those inequalities has not been fully explored. The aim of this study was to identify
geographic inequalities in respiratory health services utilization in early childhood in Calgary and
Edmonton, two major urban centres in Western Canada. We conducted a geographic analysis of data
from a retrospective cohort of all singleton live births occurred between 2005 and 2010. We aggregated
at area-level the total number of episodes of respiratory care (hospitalizations and emergency
department visits) that occurred during the first five years of life for bronchiolitis, pneumonia,
lower/upper respiratory tract infections, influenza, and asthma-wheezing. We used spatial filters
to identify geographic inequalities in the prevalence of acute paediatric respiratory health services
utilization in Calgary and Edmonton. The average health gap between areas with the highest and
the lowest prevalence of respiratory health services utilization was 1.5-fold in Calgary and 1.4-fold
in Edmonton. Geographic inequalities were not completely explained by the spatial distribution of
socioeconomic status, suggesting that other unmeasured factors at the neighbourhood level may
explain local variability in the use of acute respiratory health services in early childhood.

Keywords: health inequalities; spatial filters; early childhood; respiratory diseases

1. Introduction

Paediatric respiratory diseases are a leading cause of morbidity in childhood, particularly among
children of preschool age [1]. Early-childhood respiratory diseases have long-term negative consequences
on adult health with major economic consequences for health systems [1]. Pneumonia, bronchiolitis,
tuberculosis, and asthma are among the most common respiratory diseases affecting young children [2].
Individual factors such as preterm birth, maternal smoking, and maternal asthma, among others,
have been related to lung function impairment in early life [3].

Socioeconomic factors have been identified as major drivers of respiratory diseases [4].
Respiratory diseases are generally more frequent among children from lower socioeconomic status
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(SES) compared to those born in high-SES families [5–7]. The relationship between SES and respiratory
health has been partially attributed to individual factors associated with poverty (e.g., undernutrition
and adverse living conditions) and other structural determinants of health [7–9].

In Canada, respiratory health inequalities across socioeconomic groups have been identified for a
variety of respiratory outcomes in adult populations, including smoking [10] and chronic obstructive
pulmonary disease [11–13]. Inequalities in paediatric respiratory health have been described for
asthma hospitalizations across the urban/rural divide [14], asthma emergency department visits
across (large) health zones in Alberta [15], respiratory infections among First Nations and Inuit
children [16], and differences in influenza hospitalizations between First Nations populations living
on and off reserves [17]. Recently, Belon et al. [18] described paediatric respiratory inequalities
across socioeconomic groups for a variety of respiratory diseases in Alberta, calling for more research
examining variations at small-scale levels, for example, within urban areas and among rural/remote
areas. Both urban and rural areas have experienced different levels of population growth during the
last decade in Alberta [19], likely impacting the development and access to health care facilities.

The geography of health inequalities looks over the role of place of residence in shaping health
gaps among populations [20,21]. It determines the spatial extension of health inequalities while linking
contextual factors (i.e., social and environmental features embedded into a place), and promoting
further investigation of relevant social, environmental, and political questions [22]. To our knowledge,
there is no evidence on geographic differences in the utilization of paediatric respiratory health services
in urban centres in Alberta. This study aimed to identify geographic inequalities in the prevalence of
respiratory health services utilization in early childhood in two major urban centres in Alberta and
quantify the magnitude of spatial gaps in respiratory health services use. The study is exploratory
in nature given the lack of past evidence on geographic inequalities in the utilization of paediatric
respiratory health services in both cities. Results from this study can guide future research on the
contextual factors that may produce intraurban inequalities and provide a basis to support local actions
aimed at reducing them.

2. Materials and Methods

2.1. Study Design and Setting

This study analyses data on events of hospitalizations and emergency department visits due to
respiratory outcomes from a retrospective cohort of all singleton live births (≥22 weeks of gestation)
that occurred in Alberta between 1 April 2005 and 31 March 2010. Ethics approval for the study was
obtained from the University of Alberta’s Health Research Ethics Board (Pro00088569). The study is
reported as per the STrengthening the Reporting of OBservational studies in Epidemiology (STROBE)
guidelines [23].

Located in Western Canada, Alberta is one of the most populous provinces in Canada,
with approximately 4.4 million people [24]. Approximately 81% of the Alberta population lives in
urban centres: 1.2 million people in Calgary [25] and 972,000 in Edmonton [26]. From 2006 to 2011,
Calgary and Edmonton have been the fastest growing urban areas [19].

2.2. Study Population

The study included all children born in Calgary and Edmonton between 1 April 2005 and 31 March
2010 identified in the Alberta Perinatal Health Program (APHP); a validated clinical perinatal registry
of all Alberta births at hospitals or attended by registered midwives at home. The 6-character postal
codes of maternal place of residence at delivery reported in the APHP were used to identify children
born within the Calgary and Edmonton city limits.

The study methods and population flow diagram of the original retrospective cohort study
have been published elsewhere [18]. Briefly, birth cohort data were linked to deidentified,
individual-level administrative health data on acute health services (hospitalizations and emergency
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department [ED] visits) from the Discharge Abstracts Database and the National Ambulatory Care
Reporting System. These administrative health datasets register diagnostic information for every
episode of acute care using International Classification of Diseases, 10th Revision, enhanced Canadian
version (ICD-10-CA) diagnostic codes [27]. For each infant in the birth cohort, we extracted
data on all events of acute health services utilization between birth and five years of age—a
susceptible time-window for respiratory problems [2]—that had an ICD-10-CA primary diagnostic code
indicative of any of the following respiratory conditions: acute bronchiolitis (bronchiolitis/bronchitis)
(J20–J21); asthma (J45); croup (J05); influenza (J09–J11); pneumonia (J12–J18); other acute lower
respiratory tract infections (J22); and other acute upper respiratory tract infections (J00–J06, except
J05). Recurrent wheezing (R06.2) events were merged with asthma or bronchiolitis based on the
most prevalent condition after the first wheezing episode. The follow-up period to extract data on
respiratory acute care services occurred from 2005 to 2015, with data being censored at date of death or
end of follow-up period (i.e., 5 years of age).

2.3. Definition of Geographic Areas

We used dissemination areas (DA) as geographic units of analysis to aggregate all respiratory
hospitalizations and ED visits occurring between ages 0 to 5 among children born in Calgary and
Edmonton. The DA is the smallest (population of ~400 to 700 people) and relatively spatial- and
time-stable standard geographic area used by Statistics Canada to disseminate census data [28].
They are larger than postal codes and include approximately 250 households in urban settings.
We linked the 6-character postal code of the maternal residence at delivery to the longitude and latitude
coordinates from Digital Mapping Technology Inc. (DMTI) Spatial’s Postal Code Suite [29], and to
the corresponding DA (n = 5357) using the 2006 census geography framework [30]. We performed
a vector overlay of 2006-2010 postal code locations [31] with the 2006 DA boundary file to associate
postal codes created after 2006 within the 2006 geographic framework.

2.4. Explanatory Variable: Spatial Filters

Eigenvector spatial filters (ESF) were used to identify areas in Edmonton and Calgary where a
gradient in the prevalence of respiratory services utilization might exist. ESF capture spatial components
(i.e., contextual factors operating at different scales) that can be related to a specific health outcome.
Briefly, eigenvector spatial filtering is a statistical method to identify spatial patterns in the distribution
of a study outcome across a geographical space [32–34]. The method is based on eigenvector
decomposition of a N × N geographical connectivity matrix to extract orthogonal (uncorrelated)
numerical components (eigenvectors). Each eigenvector represents an independent map pattern that
captures the latent spatial autocorrelation of a georeferenced variable. Candidate eigenvectors (a subset
of the ones related to the health outcome) are linearly combined into a spatial filter. The scores of the
spatial filter can then be used as explanatory variable in a regression model.

The ESF solution depends on technical specifications at each step [33–35]. We defined a connectivity
matrix for the DAs according to the “queen” rule, in which a DA would include neighbourhoods that
share boundaries based on a single point (node) or a segment of border limits. Candidate eigenvectors
were chosen based on positive spatial correlations using a minimum threshold of 0.25 in the Moran’s
index (Moran’s-I) [35]. The Moran’s-I is a dimensionless measure of spatial autocorrelation of the
data with values ranging from −1 (usually between −1 and −0.5) to 1 (often slightly larger than 1).
Positive values in the Moran’s-I indicate that similar values cluster together in a map, while negative
values indicate that dissimilar values are clustered together [36]. A Moran’s-I equal to zero suggests
no spatial autocorrelation; whereas values close to one indicate strong spatial autocorrelation. There is
no consensus on specific thresholds for the interpretation of categories of weak, moderate, or strong
spatial autocorrelation for the Moran’s-I [37]. A subset of eigenvectors statistically related to the study
outcome was chosen to form the spatial filter based on a coefficient of determination (R2) criterion
(see point 2.7). We used the Moran eigenvector spatial filtering software ESF-tool, described by
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Griffith et al. [34], for extracting the eigenvector’s solution. Additionally, we compared the final results
versus the ones obtained from a connectivity matrix based on the “rook” rule; in which polygons are
neighbours if they share a segment of border [32]. Results were included in Supplementary Materials.

2.5. Study Outcome

Geographic inequalities were defined as spatial differences in the prevalence of respiratory health
services utilization among areas defined by the spatial filters. We used smoothed standardized
prevalence ratios (smoothed SPR) at the DA level as the primary outcome.

Smoothed Standardized Prevalence Ratios (SPR) of Respiratory Health Services Utilization

We calculated the total number of respiratory health services per individual that occurred from
birth to 5 years of age as the sum of all ED visits and hospitalizations. The totals were aggregated
at postal code level and then at DA level. For each DA, the SPR was calculated using the following
formula: SPR = total number of respiratory health services ÷ expected total number of respiratory
health services; where the expected total number of respiratory health services = number of singleton
live births × overall provincial prevalence of respiratory health services. The SPR was smoothed
(smoothed SPR) using empirical Bayes estimators [38], which are based on a Poisson random intercept
regression model. Bayes estimators account for unstable prevalence numbers in DAs with low numbers
of births and respiratory episodes of care [39]. Briefly, a smoothed SPR equal to 1 indicates that
the prevalence of respiratory health services utilization in a particular DA is equal to the expected
provincial prevalence; whereas a smoothed SPR > 1 or <1 indicates that the prevalence of respiratory
health services utilization in a particular DA is higher or lower, respectively, than the expected
provincial prevalence of respiratory health services utilization. We used the programs developed by
Rabe-Hesketh and Skrondal [39] for Stata software (version 15.1 [40]) to obtain the smoothed SPR
(details for calculations of the smoothed SPR are presented in Supplementary Materials, Section S1).

2.6. Covariates

The relationship between the smoothed SPR and the spatial filter scores was tested in a regression
model (multivariable linear) adjusting for other potential covariates operating at spatial level. The idea
was to evaluate whether the spatial filter captures a spatial component related to the outcome but
independent from the covariates. Area-level socioeconomic status and concentrations of nitrogen
dioxide (NO2) and fine particulate matter (PM2.5) were incorporated as covariates.

We used the 2006-Pampalon material and social deprivation indices as proxy measures of area-level
socioeconomic status (SES) [41,42]. The Pampalon indices are area-level composite measures of SES
which integrate individual Canadian census data for the population aged 15 and over, excluding First
Nations groups. The 2006-Pampalon material and social deprivation indices were derived from
mandatory census data. For this reason, the 2006 Pampalon index was used in this research over the
2011-Pampalon index as the latter was built upon a voluntary survey that resulted in a high global
nonresponse rate [43]. The material deprivation index is a small-area composite index that integrates
data by DA on income, education, and employment; whereas the social deprivation index is composed
of marital status, one-person household, and single-parent family’s information. Material and social
deprivation indices are reported in quintiles, where Q1 and Q5 correspond to the least and most
deprived groups, respectively.

Area-level concentrations of NO2 and PM2.5 were derived by Hystad et al. [44] from a national
land-use regression model that considered variation in regional and local-scale sources of pollution and
incorporated satellite-based estimates, fixed-site monitoring measurements, and geographic predictor
variables for the year 2006. This is the only validated land-use regression model of area-level air
pollution available for Alberta. We used vector overlay in ArcGIS 10.5 [45] to assign both DA-level
Pampalon indices and DA-level NO2 and PM2.5 concentrations to maternal postal codes at delivery for
the study population.
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2.7. Data Analysis

We used frequencies and percentages to describe baseline demographic characteristics of the
study population, their distribution across the material and social deprivation quintiles, and the total
number of respiratory health services utilization for each city. We described the DA-level geographic
distribution of both material and social deprivation quintiles and the distribution of smoothed SPR in
each city using choropleth descriptive maps. Spatial autocorrelation of these variables was reported by
the Moran’s-I obtained from the ESF-tool software [34]. Choropleth maps were created using QGIS
v3.4.14 software [46].

For the evaluation of geographic inequalities in the prevalence of respiratory services utilization
in Edmonton and Calgary, we applied the following analytical steps (Figure 1). First, we evaluated the
association between the smoothed SPR and the material and social deprivation quintiles (using Q1 as
reference), adjusting for PM2.5 and NO2 in a multivariable linear regression model. From this first
model without spatial filters, we verified the presence of spatial autocorrelation in the residuals based
on the contiguity of the DAs. Second, we extracted the eigenvectors and selected a set of eigenvectors
statistically related to the smoothed SPR. We selected the first eigenvectors that most rapidly increased
the R2 square of the regression model to achieve a parsimonious model. The set of eigenvectors were
linearly combined to form a spatial filter. Third, we evaluated the association between the smoothed
SPR and the spatial filter scores adjusting for the material and social deprivation quintiles (using
Q1 as reference) and area-level concentrations of PM2.5 and NO2 in a multivariable linear regression
model. From this second model with spatial filters, we verified the absence of spatial autocorrelation
in the residuals based on the contiguity of the DAs. These three steps were performed using the
ESF tool [34]. In the last step, we categorized the spatial filter scores into quintiles to define areas of
low (Quintile 1) to high (Quintile 5) respiratory health services utilization. Finally, we recalculated
smoothed SPR averages (with 95% confidence intervals [CI]) by geographic areas defined with the
spatial filter quintiles to quantify the geographic inequalities using Stata software version 15.1 [40].
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3. Results

3.1. Descriptive Statistics

A total of 111,056 respiratory health services were registered by the 119,909 children of the study
population during the follow-up period. Sixty percent (n = 66,961) of these episodes of health services
use occurred in Calgary and the remaining 40% (n = 44,095) in Edmonton. In both Calgary and
Edmonton, more than 50% of the respiratory health services occurred during the first two years of age
(52% for Calgary, and 55% for Edmonton). Of all children in the study, 5.35% (n = 6415) moved from
the residential postal code at birth.

The distribution of demographic data across the maternal and social deprivation quintiles and the
number of DA for each city are presented in Table 1. In Calgary, 31% of live births occurred in the two
most materially deprived quintiles (Q4 and Q5) while 45% occurred in the corresponding Q4 and Q5

groups in Edmonton. There was significant heterogeneity in the proportional distribution of live births
across maternal and social deprivation quintiles in Calgary and Edmonton (chi-square = 6.9 × 103,
p-value < 0.01 for the material index; chi-square = 2.1 × 103, p-value < 0.01 for the social index).

Table 1. Distribution of singleton live births across material and social deprivation quintiles and
number of geographic areas (Dissemination Areas: DA) for Edmonton and Calgary.

Calgary Edmonton

N % N %

Births 70,862 100 49,047 100

Material
deprivation

quintiles
Q1 (least deprived) 24,313 34 8908 18

Q2 13,256 19 6681 14
Q3 10,675 15 9667 20
Q4 7619 11 11,347 23

Q5 (most deprived) 14,110 20 10,945 22
missing 889 1 1499 3

Social deprivation
quintiles

Q1 (least deprived) 9682 14 4107 8
Q2 16,569 23 9257 19
Q3 15,266 22 10,243 21
Q4 13,094 18 9865 20

Q5 (most deprived) 15,362 22 14,076 29
missing 889 1 1499 3

Number of
Dissemination

Areas (DA)
1431 1090

Q = Quintiles.

3.2. Calgary

3.2.1. Exploratory Maps

The geographic distribution of material and social deprivation quintiles in Calgary is shown in
Figure 2A,B. A high spatial autocorrelation was observed for both indices. The observed Moran’s-I
was 0.63 (p-value < 0.01) for the material deprivation quintiles and 0.47 (p-value < 0.01) for the social
deprivation quintiles. The most materially deprived areas were located in the northeast of the city,
whereas the most socially deprived areas were located in the central part of the city and along a
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north-south divide. The geographic distribution of smoothed SPR is shown in Figure 2C. Areas of
smoothed SPR > 1 consisted of small local clusters geographically separated among them and scattered
across the north-south divide. A low, but significant, spatial autocorrelation index for the smoothed SPR
was observed (Moran’s-I = 0.06; p-value < 0.01) (Moran’s I scatter plots are shown in Supplementary
Materials, Section S1, Figures S1–S3).

Figure 2. Calgary maps. Geographic distribution of material (A) and social deprivation (B) quintiles,
smoothed SPR (C), and spatial filter (D). Quintiles were split according to rank values for (C,D).

3.2.2. Regression Models for Smoothed-SPR without and with Spatial Filter

The multivariable linear regression model without spatial filter (Model A in Table 2) showed that,
compared to the least deprived quintile Q1, the smoothed SPR was higher in material deprivation
quintiles Q2, Q3 and Q5 and in those in the most socially deprived quintile Q5, after adjusting for PM2.5

and NO2. The model explained 2.4% of the total variance (adjusted-R2 = 0.02) but had a significant
spatial autocorrelation in the residuals (Moran’s-I of residuals = 0.05, p-value < 0.01).

The regression model with a spatial component (Model B in Table 2) incorporated a spatial filter
(Figure 2D) based on 14 eigenvectors from a total of 263 eigenvectors describing different patterns
of positive spatial autocorrelation. This model was similar to model A in terms of the significance of
the independent variables except for Q4 in the social deprivation index (which was now statistically
significant). The model explained 17% of the total variance (adjusted-R2 of 0.17), meaning a 15%
improvement in relation to Model A. Additionally, the spatial autocorrelation in residuals was removed
(Moran’s-I of residuals = −0.03, p-value = 0.60). The inclusion of the spatial filter did not add
collinearity to the regression model (variance inflation factor = 1.06), meaning that the spatial filter can
be interpreted as an unmeasured spatial explanatory variable independently related to the smoothed
SPR (summary statistics and graphs of R2 for selected eigenvectors are presented in Supplementary
Materials, Section S3, Figure S7).
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Table 2. Multivariable linear regression models (without and with spatial filter) on the association
between smoothed-SPR and independent variables for Calgary.

Model A (without Spatial Filter) Model B (with Spatial Filter)

Independent
Variables Coefficient p-Value 95% CI Coefficient p-Value 95% CI

Spatial filter NA 0.99 0.000 [0.87, 1.12]

Material quintiles
Q1 (least deprived) Reference Reference

Q2 0.06 0.009 [0.01, 0.10] 0.04 0.033 [0.00, 0.08]
Q3 0.05 0.039 [0.00, 0.09] 0.05 0.023 [0.01, 0.09]
Q4 0.01 0.723 [−0.04, 0.05] 0.01 0.700 [−0.03, 0.05]

Q5 (most deprived) 0.05 0.016 [0.01, 0.09] 0.07 0.000 [0.04, 0.11]

Social quintiles
Q1 (least deprived) Reference Reference

Q2 0.02 0.519 [−0.03, 0.07] 0.02 0.414 [−0.03, 0.06]
Q3 0.02 0.502 [−0.03, 0.06] 0.03 0.173 [−0.01, 0.07]
Q4 0.02 0.336 [−0.02, 0.07] 0.04 0.047 [0.00, 0.09]

Q5 (most deprived) 0.09 0.000 [0.05, 0.14] 0.09 0.000 [0.05, 0.13]

PM2.5 0.09 0.002 [0.03, 0.14] 0.01 0.599 [−0.04, 0.07]
NO2 0.00 0.079 [−0.01, 0.00] 0.00 0.891 [0.00, 0.01]

constant 0.13 0.506 [−0.24, 0.50] 0.53 0.002 [0.19, 0.88]

Adjusted R-squared = 0.02 Adjusted R-squared = 0.17
AIC = 333.36 AIC = 103.04
BIC = 391.07 BIC = 166.00

Moran’s-I of residuals: 0.048,
p-value < 0.01

Moran’s-I of residuals: −0.033,
p-value = 0.63

AIC = Akaike Information Criterion. BIC = Bayesian Information. CI = Confidence Interval. NA = Not Applicable.
Q = Quintiles.

3.2.3. Geographic Inequality

The spatial filter quintiles (Figure 2D) were significantly related to the smoothed SPR and
suggested a spatial gradient in the prevalence of respiratory health services utilization in early
childhood. Overall, the southeast of Calgary had the lowest smoothed SPR, while the highest SPRs
were scattered across other city areas. There was an incremental gradient of the smoothed SPR across
the zones defined by the spatial filter quintiles (Figure 3A). There was a 1.5-fold increase (or 50% more)
in the predicted SPR average between quintile 1 and quintile 5 (SPR = 0.57, CI 0.55 to 0.61 for quintile
1; and SPR = 0.87, CI 0.83 to 0.90 for quintile 5) (Figure 3B).
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3.3. Edmonton

3.3.1. Exploratory Maps

The geographic distribution of both material and social deprivation quintiles in Edmonton
are shown in Figure 4A,B. Spatial autocorrelations were observed for material and social
deprivation quintiles. The observed Moran’s-I was 0.56 (p-value < 0.01) for the material deprivation
index and 0.46 (p-value < 0.01) for the social deprivation index. The most materially deprived areas
were located in the north and southeast areas of Edmonton, while the most socially deprived areas (Q4

and Q5) extended across the city. The geographic distribution of smoothed SPR is shown in Figure 4C.
Areas of smoothed SPR > 1 were mainly north-central (northeast to west-central); the Moran’s-I
autocorrelation was 0.18 (p-value < 0.01) (Moran’s I scatter plots are shown in the Supplementary
Materials, Section S2, Figures S4–S6).

Figure 4. Edmonton maps. Geographic distribution of material (A) and social deprivation (B) quintiles,
smoothed SPR (C), and spatial filter (D). Quartiles and quintiles split according to rank values for
(C,D), respectively.

3.3.2. Regression Models for Smoothed-SPR without and with Spatial Filter

The multivariable linear regression model without spatial filter (Model A in Table 3) showed that,
compared to Q1, the smoothed SPR were higher for Q2, to Q5 for the material deprivation quintiles,
and for Q4 and Q5 for the social deprivation quintiles. The model explained 14% of the total variance
(adjusted-R2 of 0.14) but had significant spatial autocorrelation in residuals (Moran’s-I of residuals: 0.05,
p-value < 0.01). The regression model with a spatial component (Model B in Table 3) incorporated a
spatial filter (Figure 4D) based on 8 selected eigenvectors from a total of 214. All explanatory variables in
this model were statistically significant. The model explained 23% of the total variance (adjusted-R2 of
0.23), which meant a 9% improvement in relation to Model A. Additionally, the spatial autocorrelation
in residuals was removed (Moran’s-I of residuals: −0.02, p-value = 0.67). The inclusion of the spatial
filter did not add collinearity (variance inflation factor = 1.1) to the regression model, meaning that the
spatial filter can be interpreted as unmeasured spatial explanatory variables independently related
to the smoothed SPR (summary statistics and graphs of R2 for selected eigenvectors are presented in
Supplementary Materials, Section S3, Figure S8).
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Table 3. Multivariable linear regression models (without and with spatial filter) on the association
between smoothed-SPR and independent variables without and with spatial filter for Edmonton.

Model A (without Spatial Filter) Model B (with Spatial Filter)

Independent
Variables Coefficient p-Value 95% CI Coefficient p-Value 95% CI

Spatial filter NA 0.98 0.000 [0.81, 1.15]

Material
Q1 (least deprived) Reference Reference

Q2 0.09 0.001 [0.04, 0.15] 0.06 0.024 [0.01, 0.11]
Q3 0.10 0.000 [0.05, 0.15] 0.06 0.021 [0.01, 0.11]
Q4 0.19 0.000 [0.14, 0.24] 0.12 0.000 [0.07, 0.17]

Q5 (most deprived) 0.22 0.000 [0.18, 0.27] 0.15 0.000 [0.10, 0.20]

Social
Q1 (least deprived) Reference Reference

Q2 0.04 0.157 [−0.02, 0.10] 0.05 0.063 [−0.01, 0.11]
Q3 0.05 0.080 [−0.01, 0.11] 0.05 0.133 [−0.01, 0.10]
Q4 0.09 0.001 [0.04, 0.15] 0.10 0.000 [0.05, 0.15]

Q5 (most deprived) 0.18 0.000 [0.13, 0.23] 0.18 0.000 [0.13, 0.23]

PM2.5 0.01 0.458 [−0.01, 0.03] 0.01 0.905 [−0.02, 0.02]
NO2 0.00 0.113 [−0.01, 0.00] 0.00 0.168 [−0.01, 0.00]

Constant 0.47 0.000 [0.30, 0.64] 0.55 0.000 [0.38, 0.71]

Adjusted R-squared = 0.14 Adjusted R-squared = 0.23
AIC = 74.70 AIC = -46.64
BIC = 129.08 BIC = 12.68

Moran’s-I of residuals: 0.046,
p-value < 0.01

Moran’s-I of residuals: −0.017,
p-value = 0.67

AIC = Akaike Information Criterion. BIC = Bayesian Information. CI = Confidence Interval. NA = Not Applicable.
Q = Quintiles.

3.3.3. Geographic Inequality

The spatial filter quintiles (Figure 4D) were significantly related to the smoothed SPR suggesting
a geographic gradient in the prevalence of respiratory health services utilization in early childhood.
There was an incremental gradient of the smoothed SPR across zones defined by the spatial filter
quintiles (Figure 5A). There was a 1.4-fold increase (or 40% more) in the predicted SPR average between
quintiles 1 and 5 (SPR = 0.57, CI 0.54 to 0.61 for quintile 1; and SPR = 0.79, CI 0.76 to 0.82 for quintile 5)
(Figure 5B).
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4. Discussion

This study evaluated geographic inequalities of paediatric respiratory health services utilization
(hospitalizations and ED visits) in Calgary and Edmonton, two urban centres with the highest
population density in Alberta. We identified a geographic gradient in the distribution of respiratory
health inequalities in these two cities. There was a 1.5-fold gap in respiratory health services utilization
in Calgary between the areas with the highest and the lowest smoothed SPR, whereas the gap in
Edmonton was 1.4-fold. This means that there was 40% to 50% more respiratory health services
utilization during early childhood in city areas spatially associated with the highest smoothed SPR
compared to zones spatially associated with the lowest smoothed SPR. In Calgary, several small
conglomerates of areas scattered across the city had a high demand of respiratory health services,
while areas with high demand of respiratory health services in Edmonton followed a regional-cluster
spatial distribution.

Results from the regression models indicated that geographic patterns of respiratory health
services utilization were only partially explained by the geographic distribution of socioeconomic
status in both cities. A nonspatial socioeconomic gradient in health services utilization in Alberta
for the respiratory outcomes included in this study has been recently described [18]. That study
showed a concentration of paediatric ED visits and hospitalizations for almost all respiratory diseases
in the most deprived groups, regardless of the geographic location. The gradient patterns of health
inequalities were clearer in the material compared to the social deprivation indices. The substantial
increments of the R2 values in the models that incorporated the spatial filters indicate that the local
geographic patterns of respiratory health inequalities cannot be totally explained by a socioeconomic
spatial gradient and that other unmeasured variables act independently of socioeconomic factors.
Thereby, the spatial components (spatial filters) that were highly related (statistically) to the geographic
distribution of paediatric respiratory health services utilization in both cities, have implications in at
least three different aspects of the study.

First, it indicates that unmeasured variables at the neighbourhood level, apart from the material
and social status, are associated with children’s respiratory health service utilization. This means that
independent missing effects of unobserved neighbourhood contextual characteristics (e.g., access to
healthcare facilities, school environments, ethnic disparities, cultural practices, or aeroallergens) should
be incorporated to explain geographic inequalities in both cities studied. Unfortunately, we did
not have information to identify other contextual factors. A study on socio-spatial polarization
in Calgary [47] reported that low income areas in the northeast sector of the city (as shown in
our map for material deprivation index) have high concentrations of visible minority immigrants,
who may experience difficulties in accessing health care facilities due to limited English language skills.
In Edmonton, hotspot areas demanding services for attending mental health, addictions, homelessness,
and basic needs [48] are embedded beyond the most socially deprived areas identified in our study (for
example, homeless living in wealthy areas). Although additional research is needed to identify other
neighbourhood-contextual factors affecting health service utilization of paediatric respiratory conditions,
our results support the conclusions from other studies exploring neighbourhood-level factors on health
inequalities affecting directly (e.g., housing conditions, aeroallergens [49,50]) or indirectly (e.g., adverse
birth outcomes [51]) children’s respiratory outcomes. Interestingly, area-level concentrations of the
air pollutants included in this study were not related to the geographic patterns of respiratory health
services utilization (in Calgary only after the inclusion of the spatial filter). This is a contrasting result
from evidence relating environmental pollutants with respiratory child health [1]. The low spatial
variability in NO2 and PM2.5 concentrations captured from the land use regression models can be a
potential explanation for these results (see Figures S9 and S10 in Supplementary Materials, Section S5)

Second, the geographic pattern delineated by spatial filter quintiles help to identify the geographic
extension of neighbourhood-level factors that could potentially be further investigated. Part of those
neighbourhood-level factors can be external factors surrounding areas of high rate in the use of
paediatric respiratory healthcare services, for example: allergens (pollen, fungal) or air pollutants
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that have been identified as cofactors of respiratory diseases [50,52,53]; or social-structural factors
limiting the access to health care services including heterogenous geographic distribution of healthcare
facilities [54]. In this way, the identification of the spatial extensions related to health outcomes help to
empirically conceptualize “neighbourhoods” as social-ecological units beyond the use of administrative
boundaries [55] and be of interest for local healthcare authorities.

Finally, the inclusion of spatial filters in the regression models substantially improved model-fitting
(i.e., increased adjusted R2 in relation to nonspatial models, equally for both Calgary and Edmonton) by
removing spatial autocorrelation in residuals. These results improve our understanding of the spatial
factors that shape health inequalities [51]. These three characteristics: (1) uncovering missing effects
of potential contextual variables; (2) helping to conceptualize the extension of neighbourhood-level
factors related to paediatric respiratory outcomes, and; (3) improving statistical inferences, made spatial
eigenvector-based analysis a useful technique to incorporate in studies exploring geographic inequalities
in health.

Strengths and Limitations

The strength of the study relies on the use of high-quality administrative databases and
a semiparametric spatial technique that captures the relevant spatial configuration of areas
(eigenvector-based spatial filter), thereby explaining the geographic distribution of the (smoothed)
standardized prevalence ratios. Various modelling approaches have been used by epidemiologists to
assess geographic health inequalities: for example, contrasting health indicators among predefined
administrative areas [21,56,57], identifying spatial clusters or hotspots as areas of high risk within
a particular place [58,59], or the use of multilevel models to analyse small area variation of health
outcomes [20,60]. When the spatial patterns of the outcome are complex (e.g., depend on the spatial
scale), the characteristics of spatial eigenvector analysis allows us to explore and detect spatial
configuration patterns relevant to a specific (health) outcome. This methodology has been successfully
used in other research areas to discover spatial/geographic patterns related to human migration [61],
species biodiversity [62], and health disparities [51] among other themes. Although its use in geographic
health inequalities is, to our knowledge, still limited, it is promising especially when identification of
spatial patterns as potential predictors of an outcome is a target [63].

A main limitation in our study relates to the interpretation of the spatial patterns. The spatial
patterns result from technical aspects of capturing spatial autocorrelation in spatial analysis.
Spatial autocorrelation influences the interpretation of statistical models and is a topic of continuous
research in spatial analysis [63]. The ESF approach is one among several techniques that can be used in
spatial analysis. We chose ESF because its efficiency in capturing latent spatial autocorrelation at several
spatial scales [63]. Spatial models, in general, use different ways to formalize spatial dependence.
The definition of a connectivity matrix, either using neighbourhoods sharing administrative boundaries
or using distance matrices, will affect spatial dependence [64]. In our study, we defined the connectivity
matrix based on areas that were spatially connected based on shared boundaries instead of distances.
The use of distance matrices (e.g., Euclidean distances) requires prior information about the spatial
processes in question [64]: for example, distances to health facilities, which were unavailable for
our study. We used the queen matrix rule to extract our solution and compared to the solution from a
rook matrix rule definition in a sensitivity analysis. Under queen connectivity, polygons are neighbours
if they share a segment of border or a single node; by contrast, in the rook connectivity, polygons are
neighbours if they share a segment of border [32]. The solution from both connectivity definitions
was practically the same (detailed results of the sensitivity analysis are included in Supplementary
Materials, Section S4).

Another issue is the selection of eigenvectors for constructing the spatial filter. Several methods
have been proposed such as maximization of the multiple regression correlation coefficient,
minimization of residual spatial autocorrelation, stepwise selection, among others [62]. Our spatial
filter is based, firstly, on positive spatial autocorrelation because we were looking for strongly positively
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autocorrelated patterns and, secondly, on the set of the first eigenvectors that most rapidly increase
the regression multiple correlation coefficient to achieve a parsimonious model. Selecting too many
eigenvectors might overcorrect for spatial autocorrelation [62]. For these reasons, interpretation of
results could be generalized to the use of a neighbouring connectivity matrix and positive spatial
autocorrelation. We acknowledge that the use of distance matrices and/or different eigenvector selection
may partially modify the results.

Other study limitations revolve around location, mobility, and model specification. Within urban
areas of Canada, the six-character postal codes correspond to an address (e.g., a single building) or
group of addresses (e.g., a city block as one side of a street between two intersecting streets) in an urban
area [65]. However, residences within newer subdivisions may be less spatially accurate. Mobility
of families to other postal codes during the study period introduces misclassification bias. In this
regard, we estimated that 5.35% of children reported more than one postal code in hospitalization
data. The high percentage (~95%) of children living at the same location from birth to five years of
age reduces misclassification bias of location. Other studies in comparable urban centres have found
that families change residences around 10–11% during pregnancy [66,67]. Model underspecification is
another potential limitation of our regression model as no data were available for indoor air pollution
and/or house conditions, which are important predictors of child respiratory health [1]. However,
the spatial filters capture unmeasured factors related to the outcomes in a robust way (statistically
speaking) by incorporating the spatial dependency into models. The five areas delimited by the spatial
filter we used may be related to environmental factors (neighbourhoods with very old houses, or
close to air pollution sources), but more research is necessary to identify the factors producing the
inequalities we found.

5. Conclusions

Geographic inequalities of respiratory health services utilization were identified in Calgary
and Edmonton. In Calgary, several small conglomerates of areas dispersed along the city presented
high demand of health services, whereas in Edmonton areas with high demand of health services
were more in a regional-cluster spatial form. Our results confirmed that other unmeasured factors,
beyond socioeconomic status, are key drivers of those inequalities. More research is needed to
understand the hidden contextual variables embedded within high-demand areas of paediatric
respiratory health services.
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