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1  Neuroblastoma

Neuroblastoma (NB) is the most common extracranial tumor 
among children with an average age of 17 months. NB is a 
tumor of the autonomic nervous system originating from 
embryonic neural crest cells [1] in which the pathogenesis of 
this malignancy is characterized by a block of differentiation 
[2, 3]. Many factors converge in this heterogeneous disease, 
including age, disease stage, and genetic and molecular fea-
tures that, in turn, influence whether NB will spontaneously 
regress or metastasize and become resistant to therapy [4, 
5]. Among the genetic alterations described in NB, MYCN 
amplification is the most common genetic dysfunction and 
is also associated with poor outcome. Moreover, mutations 
affecting both the α-thalassemia/mental retardation syn-
drome X-linked (ATRX) gene [6] or anaplastic lymphoma 
receptor tyrosine kinase (ALK) [7] are also common in NB.

Current therapeutic strategies for NB are selected accord-
ing to patient stratification in four prognostic groups: low, 
intermediate, high risk, and tumor stage 4 [8]. Patients with 

low-risk disease (stage 1) and 4S0 are subjected to surgery 
alone. Patients with intermediate-risk (stages 2) first receive 
chemotherapy followed by resectioning of the tumor mass. 
Overall, in both prognostic categories, the survival is greater 
than 90%. In contrast, patients with high-risk disease (stages 
3–4) are treated with dose-intensive chemotherapy plus radi-
otherapy. In addition, these patients undergo differentiation 
therapy with isotretinoin and immunotherapy with antidis-
ialoganglioside GD2 monoclonal antibodies [9]. However, 
even with this aggressive treatment, children have the lowest 
overall survival (40–50%) and may also face a reduced qual-
ity of life. Therefore, it is urgent to develop novel therapeu-
tics for less toxic and effective therapies. At the molecular 
level, several genes have been implicated in the pathogenesis 
of the disease, including the family of p53 [10–15], and in 
particular p73 [16–18], redox regulators [19–21], or apop-
totic regulators [22]. However, MYCN amplification and 
activation of its downstream signaling is the most robust 
clinical biomarker of the poor clinical outcome and is pre-
sent in about 40% of high-risk cases [23]. Consequently, 
targeting MYCN downstream cellular processes, including 
metabolism, may be exploited as a potent strategy to over-
come the difficulties of directly targeting MYCN [24, 25].

2  Metabolic alteration in neuroblastoma

Reprogramming of cellular metabolism is a hallmark of 
cancer. Indeed, cancer cells have deregulated glucose, 
lipids, and glutamine metabolism to sustain cell prolif-
eration, control redox homeostasis, and overcome con-
ditions of low nutrient and oxygen availability [26–30]. 
Positron emission tomography of cancer patients shows 
that NB tumors have high glucose uptake [31] and a high 
rate of lactic acid production, indicating the switch from 
OXPHOS to glycolysis [32]. In addition, a possible link 
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between common genetic alterations in NB and metab-
olism has been explored. Deletion of the short arm of 
chromosome 1 (1p36) occurs in approximately 20–40% 
of primary NB [33]. Germline mutations of the succi-
nate dehydrogenase enzymes complex (SDH), which is 
involved in the tricarboxylic acid cycle, are primarily 
predisposed to paraganglioma and phaeochromocytoma 
[34]. The gene encoding for the subunit B (SDHB) maps 
to the 1p36 region, and reduced mitochondrial activity 
has been described in undifferentiated neuroblastoma 
[35]. However, mutation analysis in 46 primary NB did 
not identify any germline or somatic SDHB mutations 
[36]. Gain of chromosome 17 is an additional genetic 
alteration in NB that correlates with high-stage dis-
ease and poor prognosis [37]. The antiapoptotic pro-
tein BIRC5/survivin, which maps to 17q25, is highly 
expressed in human NB and is associated with chemo-
therapy resistance and poor prognosis [38]. The underly-
ing molecular mechanism associated with drug resistance 
is caused, in part, by a switch from oxidative phospho-
rylation to aerobic glycolysis [39].

Thus, MYCN amplification is another characteristic 
genetic alteration found in NB patients. MYCN protects 
NB cells from oxidative stress by increasing glutathione 
biosynthesis, and in vivo administration of glutathione 
biosynthesis inhibitors significantly potentiated the 
anticancer activity of cytotoxic chemotherapy against 
established tumors [40]. In addition, MYCN positively 
regulates the expression of solute carrier family 1 mem-
ber 5 (ASCT2) to maintain sufficient levels of glutamine 
essential for the TCA cycle anaplerosis. Interestingly, glu-
tamine transporter abundance correlates to poor prognosis 
in neuroblastoma patients [41]. In MYCN-amplified NB 
cells, MYCN cooperates with MondoA in regulating lev-
els of proteins involved in lipid biosynthesis, and a subset 
of these proteins correlates with poor patient outcome 
[42]. Moreover, MYCN mediates structural changes in the 
mitochondrial network by increasing fusion, resulting in 
resistance to cell death induced by cisplatin [43].

Recently, the metabolic network regulated by MYCN 
has been further extended. Indeed, several observations 
have highlighted the involvement of MYCN in regulating 
lipid metabolism in NB cancer. Inhibition of MYCN and 
the downstream signaling pathway by several means in NB 
cells results in intracellular lipid droplet accumulation as a 
consequence of mitochondrial dysfunction [44]. Further-
more, lipid accumulation was shown to be caused mainly 
by inhibition of β-oxidation, suggesting that aggressive 
NB tumors use fatty acid as an energy source. This obser-
vation was further supported by analyzing the metabolic 
features of NB tumors with MYCN amplified. MYCN 
amplification enhances oxidative phosphorylation in NB 
cells [45], and more importantly, gene expression profile 

and proteomic analysis in patients show that high levels 
of MYCN are associated with elevated expression of key 
enzymes involved in glycolysis, Krebs cycle, and electron 
transport chain proteins. Patients with high expression of 
these genes show poor overall survival.

3  Selective targeting lipid metabolism 
as therapeutic approach in neuroblastoma

Cancer cells are particularly dependent on lipid metabolism 
for energy production because they are key components 
of cellular membranes, storing precursors of biologically 
active lipid mediators [51–53]. Therefore, novel therapeutic 
strategies have been explored to inhibit lipid metabolism for 
improving clinical outcomes of cancer treatment [54]. In 
agreement with this, several clinical trials have assessed the 
possibility of inhibiting cholesterol biosynthesis by statins 
as a novel antitumor strategy [55]. However, this therapeutic 
approach has generated conflicting results [56, 57].

3.1  Inhibition of fatty acid oxidation

Several tumors use fatty acids as a source of mitochondrial 
energy production [58]. In NB, MYCN amplification cor-
relates with high expression of key genes involved in the 
regulation of fatty acid oxidation (FAO), including hydroxy-
acyl-CoA dehydrogenase (HADH), indicating that MYCN-
amplified NB tumors are more dependent on OXPHOS com-
pared to non-MYCN-amplified tumors [45]. Interestingly, 
high expression of some of these enzymes correlates with 
poor prognosis in NB patients, suggesting that fatty acids 
are a major substrate for OXPHOS-based energy metabo-
lism in NB. Carnitine palmitoyl-transferase 1a (CPT1a) is 
the β-oxidation rate-limiting enzyme, and high expression 
of the gene correlates with poor prognosis in NB patients. 
Etomoxir is a small-molecule irreversible inhibitor of CPT1a 
used widely in preclinical studies. Recently, it has been 
shown that etomoxir treatment was able to reduce in vivo 
tumor growth of MYCN-amplified NB cells. Although, in 
phase II clinical trials, etomoxir has shown hepatic toxic-
ity and has been suspended, these experiments are proof of 
concept that inhibition of FAO could be used for the devel-
opment of novel therapeutic strategies. In addition, the novel 
reversible CPT1a inhibitor, teglicar, which was recently 
developed, does not show as severe toxicity as etomoxir [59]. 
Further studies are needed to assess the possibility of using 
teglicar for cancer treatment.

3.2  Inhibition of de novo fatty acid synthesis

One common feature shared by almost all tumors is the reac-
tivation of fatty acid synthesis (FAS) to support cancer cell 
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proliferation, as cancer cells need lipids both as membrane 
components and as signaling molecules involved in cell 
homeostasis, cell death, and metastasis [54]. FAS, which 
takes place in cytoplasm, is regulated primarily by acetyl-
CoA carboxylase (ACACA) and fatty acid synthase (FASN). 
Small-molecule inhibitors of these two enzymes, including 
TOFA and Soraphen A, target ACACA, and Cerulenin, Orl-
istat, and UB006 that target FASN are available and used 
largely in preclinical experiments that have shown promising 
antitumor activity [60]. Using these five inhibitors in differ-
ent experimental approaches, including PDX-derived cell 
cultures and xenograft model of NB, it has been shown that 
inhibition of FAS resulted in decreased cell proliferation, 
reduced MYCN protein levels, and induction of neural dif-
ferentiation [61]. Of note, these antitumor effects were inde-
pendent from MYCN status. Among the inhibitors tested, 
only Orlistat has been approved by the FDA, although not 
for cancer treatment. Therefore, these observations strongly 
support the idea of developing more specific FAS inhibitors 
that can be used in the clinic.

3.3  Differentiation therapy (elovanoids)

The highest-risk group of patients is often treated with 
isotretinoin (13-cis-retinoic acid) to induce terminal dif-
ferentiation of NB cells, thus reducing the risk of relapse 
[62]. However, the benefits of using retinoids are uncertain 
[8, 63]. Therefore, it would be important to develop novel 
agents able to induce differentiation for treatments of NB. In 
this respect, elovanoids (ELVs) are a novel class of endog-
enous lipid mediators that protect against excitotoxicity and 
cell damage and modulate neuronal homeostasis [47, 50]. 
Recently, it has also been shown that ELV-N34:6 may have 
pharmacological activity against glioblastoma multiforme 
(GBM). Indeed, in the orthotopic model of GBM treatment 
with LAU-0901 (a platelet-activating factor receptor antag-
onist), ELV-N34:6, and Avastin (angiogenesis inhibitors) 
individually and with all three compounds in combination 
resulted in a reduction of tumor size [64, 65]. Therefore, 
since ELV-N34:6 has shown in vivo pharmacological activ-
ity, it is possible to hypothesize that ELV-N34:6 may be 

Fig. 1  Novel potential pharmacological approaches in neuroblastoma 
treatment. A MYCN-amplified neuroblastoma (NB) cells rely on fatty 
acid–dependent mitochondrial respiration. Inhibition of fatty acid oxi-
dation (FAO) with inhibitor targeting carnitine palmitoyl-transferase 
1a (CPT1) reduces tumor growth by inducing cell death. B Reactiva-
tion of fatty acid synthesis (FASN) in cancer cells is required for pro-
viding lipid building blocks for sustained cell proliferation. Inhibition 
of FASN by small molecules decreases cell proliferation and results 
in neural differentiation of NB cells. C Elongation of very-long-chain 

fatty acids–4 (ELOVL4) is required for the proper neural differentia-
tion of NB cells (Rugolo et al. 2021). We hypothesize that NB cells 
treated with elovanoids (ELVs) may induce differentiation of NB 
cells. NB: neuroblastoma; ACSL4: acyl-CoA synthetase long-chain 
family member 4; TCA: tricarboxylic acid cycle; ETC: electron trans-
port chain; ACACA: acetyl-CoA carboxylase alpha; FASN: fatty acid 
synthase; PUFA: polyunsaturated fatty acid; LC-PUFA: long-chain 
polyunsaturated fatty acid; VLC-PUFA: long-chain poly unsaturated 
fatty acid
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exploited for NB treatment in alternative or in combination 
with isotretinoin for inducing neural differentiation and 
improving patient outcome.

Very-long-chain polyunsaturated fatty acids (VLC-
PUFA) play an important role in the maintenance of the 
homeostasis of several tissues, including neural tissue [46]. 
Among the family of PUFA products [47], ELVs represent 
a class of recently characterized lipid mediators that sustain 
cellular integrity against hemostasis disturbances [48, 49]. 
The enzyme ELOVL4 (elongation of VLC fatty acids–4), 
which is responsible for the elongation of > C28 FAs, medi-
ates the biosynthesis of the precursors of elovanoids (ELV-
N32 and ELV-N34). The expression of ELOVL4, which is 
repressed by MYCN, increases during neuronal differen-
tiation of NB cells, and its presence is necessary for the 
progression of the differentiation. In addition, ELOVL4 
expression is required to increase the lipid droplet number 
and VLC-PUFAs in differentiated cells [50]. Interestingly, 
more differentiated tumors (low- and intermediate-risk) 
show higher expression of ELOVL4 when compared with 
those less differentiated tumors (high-risk), and high levels 
of ELOVL4 identify subsets of NB patients with a better 
prognosis. Therefore, these observations suggest that dys-
regulation of ELOVL4 expression may participate in the 
lipid alterations that occur in NB. Overall, there is compel-
ling experimental evidence that cellular metabolism, includ-
ing lipid metabolism, is deregulated in NB cells and may 
therefore provide a novel, potential therapeutic target (see 
Fig. 1). Here we discuss some possible clinical applications 
of targeting lipid metabolism in NB that may be explored 
for therapeutic purposes.
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