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Abstract

Background: High throughput RNA sequencing (RNA-Seq) can generate whole transcriptome information at the
single transcript level providing a powerful tool with multiple interrelated applications including transcriptome
reconstruction and quantification. The sequences of novel transcripts can be reconstructed from deep RNA-Seq
data, but this is computationally challenging due to sequencing errors, uneven coverage of expressed transcripts,
and the need to distinguish between highly similar transcripts produced by alternative splicing. Another challenge
in transcriptomic analysis comes from the ambiguities in mapping reads to transcripts.

Results: We present MaLTA, a method for simultaneous transcriptome assembly and quantification from Ion
Torrent RNA-Seq data. Our approach explores transcriptome structure and incorporates a maximum likelihood
model into the assembly and quantification procedure. A new version of the IsoEM algorithm suitable for Ion
Torrent RNA-Seq reads is used to accurately estimate transcript expression levels. The MaLTA-IsoEM tool is publicly
available at: http://alan.cs.gsu.edu/NGS/?q=malta

Conclusions: Experimental results on both synthetic and real datasets show that Ion Torrent RNA-Seq data can be
successfully used for transcriptome analyses. Experimental results suggest increased transcriptome assembly and
quantification accuracy of MaLTA-IsoEM solution compared to existing state-of-the-art approaches.

Background
Massively parallel whole transcriptome sequencing,
commonly referred to as RNA-Seq, and its ability to
generate full transcriptome data at the single transcript
level, provides a powerful tool with multiple interrelated
applications, including transcriptome assembly [1-4],
gene and transcript expression level estimation [5-8],
also known as transcriptome quantification, studying
trans- and cis-regulatory effects [9], studying parent-of-
origin effects [9-11], and calling expressed variants [12].
RNA-Seq has become the technology of choice for

performing transcriptome analysis, rapidly replacing

array-based technologies [13]. The Ion Torrent technol-
ogy offers the fastest sequencing protocol for RNA-Seq
experiments able to sequence whole transcriptome in few
hours [14]. Most current research using RNA-Seq
employs methods that depend on existing transcriptome
annotations. Unfortunately, as shown by recent targeted
RNA-Seq studies [15], existing transcript libraries still
miss large numbers of transcripts. The incompleteness of
annotation libraries poses a serious limitation to using
this powerful technology since accurate normalization of
RNA-Seq data critically requires knowledge of expressed
transcript sequences [5-8]. Another challenge in tran-
scriptomic analysis comes from the ambiguities in read/
tag mapping to transcripts. Ubiquitous regulatory
mechanisms such as the use of alternative transcription
start and polyadenylation sites, alternative splicing, and
RNA editing result in multiple messenger RNA (mRNA)
isoforms being generated from a single genomic locus.
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Most prevalently, alternative splicing is estimated to take
place for over 90% of the multi-exon human genes across
diverse cell types [8], with as much as 68% of multi-exon
genes expressing multiple isoforms in a clonal cell line of
colorectal cancer origin [16]. The ability to reconstruct
full length transcript sequences and accurately estimate
their expression levels is widely believed to be critical for
unraveling gene functions and transcription regulation
mechanisms [17].
Here, we focus on two main problems in transcriptome

analysis, namely, transcriptome assembly and quantifica-
tion. Transcriptome assembly, also known as novel tran-
script discovery or reconstruction, is the problem of
assembling the full length transcript sequences from the
RNA sequencing data. Assembly can be done de novo or it
can be assisted by existing genome and transcriptome
annotations. Transcriptome quantification is the problem
of estimating the expression level of each transcript. In the
remainder of this section we give a brief description of the
common protocols used for mRNA sequencing.

RNA-Seq protocol
RNA-Seq uses next generation sequencing technologies,
such as SOLiD [18], 454 [19], Illumina [20], or Ion Tor-
rent [21]. Figure 1 depicts the main steps in an RNA-Seq
experiment, ending with the first step of analysis which is
typically mapping the data to a reference. The mRNA
extracted from a sample is converted to cDNA using
reverse transcription and sheared into fragments. Frag-
ments with lengths within a certain range are selected,
and ligated with sequencing adapters. This is usually fol-
lowed by an amplification step after which one or both
ends of the cDNA fragments are sequenced to produce
either single or paired-end reads. cDNA synthesis and
adapter ligation can be done in a strand-specific manner,
in which case the strand of each read is known; this is
commonly referred to as directional sequencing. In the

more common non-directional RNA-Seq protocols
strand specificity is not maintained. The specifics of the
sequencing protocols vary from one technology to the
other. In particular, the length of produced reads varies
depending on the technology, with newer high-through-
put technologies typically producing longer reads.

Related work
Transcriptome assembly and quantification from RNA-
Seq data has been the focus of much research in recent
years. The sequences of novel transcripts together with
their expression levels can be inferred from deep RNA-
Seq data, but this is computationally challenging due to
the short length of the reads, high percentage of sequen-
cing errors, uneven coverage of expressed transcripts,
and the need to distinguish between highly similar tran-
scripts produced by alternative splicing. A number of
methods address the problem of transcriptome assembly
and quantification from RNA sequencing data. Methods
for transcriptome assembly fall into three categories:
“genome-guided”, “genome-independent” and “annota-
tion-guided” methods [22]. Genome-independent meth-
ods such as Trinity [23] or transAbyss [24] directly
assemble reads into transcripts. A commonly used
approach for such methods is the de Brujin graph [25]
utilizing “k-mers”. The use of genome-independent
methods becomes essential when there is no trusted gen-
ome reference that can be used to guide assembly. On
the other end of the spectrum, annotation guided meth-
ods [26-28] make use of available information in existing
transcript annotations to aid in the discovery of novel
transcripts. RNA-Seq reads can be mapped onto the
reference genome, reference annotations, exon-exon
junction libraries, or combinations thereof, and the
resulting alignments are used to assemble transcripts.
Many transcriptome reconstruction methods fall in the

genome-guided category. They typically start by mapping

Figure 1 A schematic representation of the RNA sequencing protocol.
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sequencing reads onto the reference genome, using spliced
alignment tools, such as TopHat [29] or SpliceMap [30].
The spliced alignments are used to identify putative exons,
splice junctions and transcripts that explain the align-
ments. While some methods aim to achieve the highest
sensitivity, others work to predict the smallest set of tran-
scripts explaining the given input reads. Furthermore,
some methods aim to reconstruct the set of transcripts
that would insure the highest quantification accuracy.
Scripture [1] construct a splice graph from the mapped
reads and reconstructs transcripts corresponding to all
possible paths in this graph. It then uses paired-end infor-
mation to filter out some transcripts. Although Scripture
achieves very high sensitivity, it may predict a lot of incor-
rect isoforms. The method of Trapnell et al. [4,31],
referred to as Cufflinks, constructs a read overlap graph
and reconstructs transcripts using a minimal size path
cover via a reduction to maximum matching in a weighted
bipartite graph. TRIP [3] uses an integer programming
model where the objective is to select the smallest set of
putative transcripts that yields a good statistical fit
between the fragment length distribution empirically
determined during library preparation and fragment
lengths implied by mapping read pairs to selected tran-
scripts. IsoLasso [32] uses the LASSO [33] algorithm, and
it aims to achieve a balance between quantification accu-
racy and predicting the minimum number of transcripts.
It formulates the problem as a quadratic program, with
additional constraints to ensure that all exons and junc-
tions supported by the reads are included in the predicted
isoforms. CLIIQ [34] uses an integer linear programming
solution that minimizes the number of predicted isoforms
explaining the RNA-Seq reads while minimizing the differ-
ence between estimated and observed expression levels of
exons and junctions within the predicted isoforms. Traph
[35] proposed a method based on network flows for a
multiassembly problem arising from transcript identifica-
tion and quantification with RNA-Seq. Another method,
CLASS [36] uses local read coverage patterns of RNA-seq
reads and contiguity constraints from read pairs and
spliced reads to predict transcripts from RNA-Seq data.
iReckon [37] is a method for simultaneous determination
of the transcripts and estimation of their abundances. This
probabilistic approach incorporates multiple biological
and technical phenomena, including novel isoforms,
intron retention, unspliced pre-mRNA, PCR amplification
biases, and multi-mapped reads. iReckon utilizes regular-
ized Expectation-Maximization to accurately estimate the
abundances of known and novel transcripts.

Methods
Spliced alignment
Alignment of RNA-Seq reads onto the reference gen-
ome, reference annotations, exon-exon junction

libraries, or combinations thereof is the first step of
RNA-Seq analyses, unless none of these are available in
which case it is recommended to use de novo assembly
methods [23,24]. The best mapping strategy depends on
the purpose of RNA-Seq analysis. If the focus of the
study is to estimate transcripts and gene expression
levels rather then discover new transcripts then it is
recommended to map reads directly onto the set of
annotated transcripts using a fast tool for ungapped
read alignment. To be able to discover new transcrip-
tional variants one should map the reads onto the refer-
ence genome. Recently, many bioinformatics tools,
called spliced read aligners, have been developed to map
RNA-Seq reads onto a reference genome [29,30]. Alter-
natively, RNA-Seq reads can be mapped onto the gen-
ome using a local alignment tool such as the Ion
Torrent mapper, TMAP. Both spliced alignments and
local alignments can be used to detect novel transcrip-
tional and splicing events including exon boundaries,
exon-exon junctions, gene boundaries, transcriptional
start (TSS) and transcription end sites (TES).
In our experiments we used TopHat [29] with default

parameters. For assessing transcriptome quantification
accuracy Ion Torrent reads from cancer datasets were
mapped on the External RNA Controls Consortium
(ERCC) RNA spike-in controls reference [38] with added
polyA tails of 200 bp using TMAP. Reads for the MAQC
datasets were mapped onto Ensembl known transcripts
with added polyA tails of 200 bp, also using TMAP.

Splice graph and putative transcripts
Typically, a gene can express multiple mRNA transcripts
due to alternative transcriptional or splicing events
including alternative first exon, alternative last exon,
exon skipping, intron retention, alternative 5’ splice site
(A5SS), and alternative 3’ splice site (A3SS) [39]. To
represent such alternative transcripts, a gene is processed
as a set of so called ‘pseudo-exons’ based on alternative
variants obtained from aligned RNA-Seq reads. A
pseudo-exon is a region of a gene between consecutive
transcriptional or splicing events, i.e., starting or ending
of an exon, as shown in Figure 2. Hence, every gene con-
sists of a set of non-overlapping pseudo-exons. This gene
representation lets us easily enumerate all possible tran-
scripts of a gene. To generate the set of putative tran-
scripts, we first create a splice graph based on pseudo-
exon boundaries and splice junctions.
The splice graph is a directed acyclic graph (Figure 3)

whose vertices represent pseudo-exons and edges repre-
sent pairs of pseudo-exons immediately following one
another in at least one transcript (which is witnessed by
at least one spliced read). Both splice junctions and
pseudo-exon boundaries are inferred from read align-
ments. To construct the splice graph, MaLTA infers
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splice junctions from gapped alignments of RNA-seq
reads. Next, inferred splice junctions are used to parti-
tion the reference genome into a set of non-overlapping
segments, which are classified as (a) intron, (b) pseudo-
exon, or (c) combination of both. It is easy to classify a
segment as pseudo-exon if it is entirely covered, and as
intron in case it is entirely uncovered. In case of partial
coverage we require 80% of the segment to be covered
to be classified as pseudo-exon, otherwise it is classified
as (a) or (c). Segments containing a combination of
introns and exons most likely contain gene boundaries.
In this case we identify islands of coverage inside the

segment. A segment may contain several coverage
islands which correspond to single exon genes.
After constructing the splice graph, MaLTA enumer-

ates all maximal paths using a depth-first-search algo-
rithm. These paths correspond to putative transcripts.
Note that a gene with n pseudo-exons may have as
many as 2n − 1 possible candidate transcripts, each
composed of a subset of the n pseudo-exons. The next
subsection presents a maximum likehood transcriptome
assembly and quantification algorithm that selects a
minimal subset of candidate transcripts that best fits the
observed RNA-Seq reads. The key ingredient is an

Figure 2 Pseudo-exons. An example of three transcripts, Tr1, Tr2 and Tr3. Each transcript is represented as a set of exons. Pseudo-exons are
regions of a gene between consecutive transcriptional or splicing events. Spsej and Epsej represent the starting and ending position of pseudo-
exon j, respectively.

Figure 3 Splice graph. The red horizontal lines represent single reads. Reads interrupted by dashed lines are spliced reads. Each vertex of the
splice graph corresponds to a pseudo-exon and each directed edge corresponds to a (splice) junction between two pseudo-exons. Red vertices
of the slice graph serve as transcription start sites (TSS). Blue vertices - transcription end sites (TES).
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expectation-maximization algorithm for estimating
expression levels of candidate transcripts.

Maximum likehood transcriptome assembly
Existing transcriptome assembly methods [3,4] use read
pairing information and fragment length distribution to
accurately assemble the set of transcripts expressed in a
sample. This information is not available for current Ion
Torrent technology, which can make it challenging to
assemble transcripts. The Ion Torrent PGM platform is
able to produce single reads with read length in 50-300
bp range. Our approach is to simultaneously explore the
transcriptome structure and perform transcriptome
quantification using a maximum likelihood model.
MaLTA starts from the set of putative transcripts and
selects the subset of this transcripts with the highest sup-
port from the RNA-Seq data. Maximum likelihood esti-
mates of putative transcripts are computed using an
Expectation Maximization (EM) algorithm which takes
into account alternative splicing and read mapping ambi-
guities. EM algorithms are currently the state-of-the-art
approach to transcriptome quantification from RNA-Seq
read, and have been proven to outperform count-based
approaches. Several independent implementations of EM
algorithm exist in the literature [7,40].
We developed a new version of IsoEM [7] suitable for

Ion Torrent RNA-Seq reads. IsoEM is an expectation-
maximization algorithm for transcript frequency estima-
tion. It overcomes the problem of reads mapping to
multiple transcripts using iterative framework which
simultaneously estimates transcript frequencies and
imputes the missing origin of the reads. A key feature of
IsoEM, is that it exploits information provided by the
distribution of insert sizes, which is tightly controlled
during sequencing library preparation under current
RNA-Seq protocols. In [7], we showed that modeling
insert sizes is highly beneficial for transcript expression
level estimation even for RNA-Seq data consisting of
single reads, as in the case of Ion Torrent. Modeling
insert sizes contributes to increased estimation accuracy
by disambiguating the transcript of origin for the reads.
In IsoEM, insert lengths are combined with base quality
scores, and, if available, strand information to probabil-
istically allocate reads to transcripts during the expecta-
tion step of the algorithm. Since most Ion Torrent
sequencing errors are insertions and deletions, we devel-
oped a version of IsoEM capable of handling insertions
and deletions in read alignments.
The main idea of the MaLTA approach is to cover all

trancriptional and splicing variants presented in the
sample with the minimum set of putative transcripts. We
use the new version of the IsoEM algorithm described
above to estimate expression levels of putative transcripts.

Since IsoEM is run with all possible candidate transcripts,
the number of transcripts that are predicted to have non-
zero frequency can still be very large. Instead of selecting
all transcripts with non zero frequency, we would like to
select a small set of transcripts that explain all observed
splicing events and have highest support from the sequen-
cing data. To realize this idea we use a greedy algorithm
which traverses the list of candidate transcripts sorted in
descending order by expression level, and selects a candi-
date transcript only if it contains a transcriptional or spli-
cing event not explained by the previously selected
transcripts.

Results and discussions
We evaluated the accuracy of the MaLTA-IsoEM
approach on both simulated and real human RNA-Seq
data. The human genome sequence (hg18, NCBI build 36)
was downloaded from UCSC together with the Known-
Genes transcripts annotation table. Genes were defined as
clusters of known transcripts defined by the GNFAtlas2
table. In our simulation experiments, we simulate reads
together with spliced alignments to the genome; these
alignments are provided to all compared methods. We
varied the length of single-end reads, which were ran-
domly generated per gene by sampling fragments from
known transcripts. All the methods were compared on
datasets with various read length, i.e., 50 bp, 100 bp, 200
bp, and 400 bp. Expression levels of transcripts inside each
gene cluster followed uniform and geometric distributions.
To address library preparation process of RNA-Seq experi-
ment we simulated fragment lengths from a normal prob-
ability distribution with different means and 10% standard
deviation.
All reconstructed transcripts were matched against

annotated transcripts. As in [4] and [32], two transcripts
were assumed to match if and only if internal exon
boundaries coordinates (i.e. all exons coordinates except
the beginning of the first exon and the end of the last
exon) were identical. We use sensitivity and positive pre-
dictive value (PPV) to evaluate the performance of differ-
ent assembly methods. Sensitivity is defined as the
proportion of assembled transcripts that match anno-
tated transcripts, i.e., sensitivity = TP/(TP + FN). Positive
predictive value (PPV) is defined as the proportion of
annotated transcript sequences among assembled
sequences, i.e., PPV = TP/(TP + FP).
Transcriptome quantification accuracy was evaluated by

comparing RNA-Seq estimates with TaqMan qRT-PCR
measurements [41] or External RNA Controls Consortium
(ERCC) RNA spike-in controls [38]. The coefficient of
determination (R2) between the (qRT-PCR/ERCC) and
Fragment Per Kilobase of exon length per Million reads
(FPKM) estimates was used as accuracy measure.
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Comparison on simulated RNA-Seq data
In this section, we use sensitivity and PPV defined above
to compare the MaLTA to other transcriptome assembly
tools. The most recent versions of Cufflinks (version
2.1.1) [4] and IsoLasso (v 2.6.0) [2] with the default
parameters are used for performance comparison. We
explore the influence of read and fragment length on
performance of assembly methods.
Table 1 reports sensitivity and PPV of transcriptome

assembly for reads of length 400 bp, simulated assuming
both uniform and geometric expression of transcripts.
MaLTA significantly outperforms the other methods,
achieving both sensitivity and PPV of over 75% for all
datasets. For all methods the difference in accuracy
between datasets generated assuming uniform and geo-
metric distribution is small, with the latter one typically
having a slightly worse accuracy. Thus, in the interest of

space we present remaining results for datasets gener-
ated using uniform distribution.
There is a strong correlation between the number of

splicing events within the gene and the number of anno-
tated transcripts. A high number of splicing events leads
to increased number of candidate transcripts, which
makes the selection process more difficult. To explore
the behavior of the methods depending on number of
transcripts per gene we divided all genes into categories
according to the number of annotated transcripts and
calculated the sensitivity and PPV within each such
category.
Figures 4(a)-4(b) compare the performance of three

methods (Cufflinks, IsoLasso, MaLTA) on simulated
data with respect to the number of transcripts per gene.
Note that sensitivity and PPV (Figure 4) for single-tran-
script genes is 100% for all methods and is excluded

Table 1 Sensitivity and PPV comparison between methods on datasets simulated assuming uniform, respectively
geometric expression of transcripts, with reads length 400 bp, mean fragment length 450 bp and 10% standard
deviation.

Transcript expression Methods # assembled transcripts # confirmed annotated transcripts Sensitivity (%) PPV (%)

Uniform Cufflinks 18,582 12,909 51.06 69.47

MaLTA 23,706 18,698 76.69 78.87

IsoLasso 21,441 15,693 63.52 73.19

Geometric Cufflinks 17,377 12,449 50.21 71.64

MaLTA 22,931 18,293 76.05 79.77

IsoLasso 20,816 15,308 62.83 73.54

Figure 4 Sensitivity and PPV comparison between methods for groups of genes with n transcripts on simulated datasets with mean
fragment length 250 bp, 10% standard deviation, and read length of 100 bp.
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from consideration. MaLTA achieves equivalent or bet-
ter results in both sensitivity and PPV for all categories.
Table 2 compares assembly accuracy of Cufflinks, Iso-

Lasso, and MaLTA for different combinations of read
and fragment lengths: (50 bp,250 bp), (100 bp,250 bp),
(100 bp,500 bp), (200 bp,250 bp), (400 bp,450 bp). The
results show that MaLTA provide 5-15% improvement
in sensitivity and 1-10% improvement in PPV.

Comparison on Ion Torrent cancer and MAQC RNA-Seq
datasets
For this study, we compared MaLTA and Cufflinks on 3
cancer datasets downloaded from the Ion Community
website: GOG-382 (HepG2 - hepatocellular carcinoma),
DID-416 (K562 - myelogenous leukemia) and DID-413

(MCF-7 - breast ductal carcinoma). Comparison with
IsoLasso on the real datasets is omitted due to technical
problems (IsoLasso results were consistently incompar-
able to other methods). Reads were mapped to the hg18
reference genome using TopHat2 (with default para-
meters) which is able to produce spliced alignment used
by transcriptome assembly tools (Table 3).
Although UCSC annotations are known to be incom-

plete, we expect a significant proportion of assembled
transcripts to be consistent with these annotations.
Thus, the performance of transcriptome assembly meth-
ods was evaluated by the total number of assembled
transcripts matching UCSC annotations. Table 4 gives
the results obtained by MaLTA and Cufflinks on DID-
413, DID-416 and GOG-382 datasets. Both methods

Table 2 Sensitivity and PPV comparison between methods for different combinations of read and fragment lengths:
(50 bp, 250 bp), (100 bp, 250 bp), (100 bp, 500 bp), (200 bp, 250 bp), (400 bp, 450 bp).

Read Fragment length Methods # assembled transcripts # confirmed annotated transcripts Sensitivity (%) PPV (%)

50 250 Cufflinks 18,483 14,179 67.36 76.71

MaLTA 20,036 15,894 75.53 79.33

IsoLasso 19,422 15,287 70.66 78.71

100 250 Cufflinks 17,981 14,073 69.30 78.27

MaLTA 19,405 15,539 76.72 80.08

IsoLasso 16,864 12,802 62.60 75.91

500 Cufflinks 18,958 14,757 67.19 77.84

MaLTA 20,481 16,326 74.73 79.71

IsoLasso 17,979 13,428 60.29 74.69

200 250 Cufflinks 20,435 15,637 66.57 76.52

MaLTA 21,823 17,265 74.89 79.11

IsoLasso 19,422 15,287 70.66 78.71

400 450 Cufflinks 18,483 14,179 67.36 76.71

MaLTA 20,036 15,894 75.53 79.33

IsoLasso 19,422 15,287 70.66 78.71

Table 3 Read mapping statistics and read length for Ion Torrent HeLa datasets.

Dataset Type of cancer # reads # mapped reads Mean read length (bp)

GOG-382 hepatocellular carcinoma 4,964,525 1,284,796 94

DID-416 myelogenous leukemia 5,024,097 1,115,392 89

DID-413 breast ductal carcinoma 3,134,849 690,870 108

Reads are mapped to hg18 reference genome using TopHat2 with default parameters.

Table 4 Performance comparison of transcriptome assembly between Cufflinks and MaLTA for Ion Torrent HeLa
datasets.

DID-413 DID-416 GOG-382

# assembled
transcripts

# confirmed annotated
transcripts

# assembled
transcripts

# confirmed annotated
transcripts

# assembled
transcripts

# confirmed annotated
transcripts

MaLTA 15,109 4,000 9,908 2,807 16,143 4,395

Cufflinks 12,100 1,228 7,419 759 13,887 1,557

Assembled transcripts are matched against UCSC hg18 reference annotations.
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assemble highest number of transcripts confirmed by
reference annotations for GOG-382 dataset. Cufflinks
and MaLTA respectively were able to assemble 13,887
and 16,143 transcripts, of which 1,557 and 4,395 are
known annotated transcripts. A large number of identi-
fied annotated transcripts were confirmed by both
methods (Figure 5). The GOG-382 dataset contains the
highest number of annotated transcripts confirmed by
both methods; among identified annotated transcripts
1,291 transcripts were confirmed by both methods.
To evaluate transcriptome quantification accuracy of

the methods we ran IsoEM and Cufflinks on Ion Tor-
rent RNA-Seq data generated from two commercially
available reference RNA samples that have been well-
characterized by quantitative real time PCR (qRT-PCR)
as part of the MicroArray Quality Control Consortium
(MAQC); namely the Ambion Human Brain Reference
RNA, Catalog #6050), henceforth referred to as HBRR
and the Stratagene Universal Human Reference RNA
(Catalog #740000), henceforth referred to as UHRR. We
used five HBRR datasets and five UHRR datasets for the
comparison. To assess accuracy, gene expression esti-
mates obtained from RNA-Seq data were compared
against those obtained from TaqMan qRT-PCR mea-
surements (GEO accession GPL4097) collected as part
of the MAQC project. As described in [41], each Taq-
Man Assay was run in four replicates for each measured
gene. POLR2A (ENSEMBL id ENSG00000181222) was

chosen as the reference gene and each replicate CT was
subtracted from the average POLR2A CT to give the
log2 difference (delta CT). For delta CT calculations, a
CT value of 35 was used for any replicate that had CT
>35. The normalized expression value for gene g was
computed as 2(CT of POLR2A)-(CT of g), and the aver-
age of the qPCR expression values in the four replicates
was used as the ground truth. Mapping gene names to
Ensembl gene IDs using the HUGO Gene Nomenclature
Committee (HGNC) database resulted in TaqMan qPCR
expression levels for 832 Ensembl genes. Tables 5 and 6
show statistics for the size, number of mapped reads,
and accuracy of gene expression levels estimated by
IsoEM for each of the 10 datasets as well as the com-
bined reads for each sample. Figure 6 presents a com-
parison between IsoEM and Cufflinks results. IsoEM
estimates correlate better with qPCR measurements
compared to Cufflinks. Additionally, IsoEM estimates
have less variability across different Ion Torrent runs.
We also compared IsoEM and Cufflinks on two of the

cancer Ion Torrent datasets, GOG-382 and DID-413.
Methods were evaluated by calculating correlation
between estimated FPKMs for External RNA Controls
Consortium (ERCC) spike-in controls [38] with the
known frequencies of these RNA controls in the sam-
ples (ERCC mix1 was spiked in for both runs). Table 7
presents the results of this comparison, showing higher
R2 for IsoEM in both cases.

Figure 5 Consistency of transcriptome assembly. Number of identified annotated transcripts confirmed by both methods for GOG-382,DID-
416 and DID-413 datasets.
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Conclusion
In this paper we described the MaLTA-IsoEM method
for simultaneous transcriptome assembly and quantifica-
tion from Ion Torrent RNA-Seq data. Our approach
explores transcriptome structure and incorporates a
maximum likelihood model into the assembly and quan-
tification procedure. Results on real cancer and MAQC
RNA-Seq datasets show that Ion Torrent RNA-Seq data
can be successfully used for transcriptome analysis.
Transcriptome assembly and quantification accuracy
was confirmed by comparison to annotated transcripts
and TaqMan qRT-PCR measurements and External
RNA Controls Consortium RNA spike-in controls.
Experimental results on both real and synthetic datasets
generated with various sequencing parameters and dis-
tribution assumptions suggest increased transcriptome
assembly and quantification accuracy of MaLTA-IsoEM
compared to existing state-of-the-art approaches.
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Table 5 Read mapping statistics and correlation between
gene expression levels estimated by IsoEM and qPCR
measurement for Ion Torrent UHRR dataset.

Run # reads # mapped reads R2

POZ-125 268 1,601,962 1,103,357 0.489

DID-144 283 1,990,213 1,368,073 0.487

POZ-126 269 1,800,034 1,291,935 0.469

GOG-140 284 2,052,587 1,452,006 0.499

POZ-127 270 2,263,519 1,615,623 0.484

All runs 9,708,315 6,830,990 0.485

Table 6 Read mapping statistics and correlation between
gene expression levels estimated by IsoEM and qPCR
measurement for Ion Torrent HBRR dataset.

Run # reads # mapped reads R2

LUC-140 265 1,588,375 1,142,306 0.728

POZ-124 266 1,495,151 1,066,809 0.729

DID-143 282 1,703,169 1,215,093 0.732

GOG-139 281 1,621,848 1,208,950 0.736

LUC-141 267 1,390,667 1,039,816 0.747

All runs 7,799,210 5,672,974 0.756

Figure 6 Correlation of estimates obtained by both IsoEM and
Cufflinks with qPCR measurments for HBRR and UHRR
datasets. The red color represents the 2nd quartile and the green
color represents the 3rd quartile.

Table 7 Correlation (R2) between known frequencies of
spiked in ERCC controls and gene expression levels
estimated by IsoEM and Cufflinks for Ion Torrent HeLa
datasets.

Dataset IsoEM Cufflinks

GOG-482 0.723 0.683

DID-413 0.890 0.870
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