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modulates neuroinflammatory responses 
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Abstract 

Escherichia coli is the most common gram-negative pathogenic bacterium causing meningitis. It penetrates the 
blood–brain barrier (BBB) and activates nuclear factor kappa B (NF-κB) signaling, which are vital events leading to 
the development of meningitis. Long non-coding RNAs (lncRNAs) have been implicated in regulating neuroinflam-
matory signaling, and our previous study showed that E. coli can induce differential expression of lncRNAs, including 
lncC11orf54-1, in human brain microvascular endothelial cells (hBMECs). The hBMECs constitute the structural and 
functional basis for the BBB, however, it is unclear whether lncRNAs are involved in the regulation of inflammatory 
responses of hBMECs during meningitic E. coli infection. In this study, we characterized an abundantly expressed 
lncRNA, lncC11orf54-1, which was degraded by translocated coilin to produce mgU2-19 and mgU2-30 in hBMECs 
during E. coli infection. Functionally, lncC11orf54-1-originated non-coding RNA mgU2-30 interacted with interleu-
kin-1 receptor-associated kinase 1 (IRAK1) to induce its oligomerization and autophosphorylation, thus promoting 
the activation of NF-κB signaling and facilitating the production of pro-inflammatory cytokines. In summary, our 
study uncovers the involvement of lncC11orf54-1 in IRAK1–NF-κB signaling, and it functions as a positive regulator of 
inflammatory responses in meningitic E. coli-induced neuroinflammation, which may be a valuable therapeutic and 
diagnostic target for bacterial meningitis.
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Introduction
Bacterial meningitis is an important life-threatening 
infection of the central nervous system (CNS), with high 
morbidity and mortality worldwide. Escherichia coli 
is the most common causative gram-negative patho-
genic bacterium [1]. E. coli causes CNS dysfunction by 

penetrating the blood–brain barrier (BBB), inducing 
local inflammation, increasing BBB permeability, and 
allowing leukocytes to migrate across the BBB [2, 3]. 
Brain microvascular endothelial cells (BMECs) consti-
tute the structural and functional basis for the BBB [1, 4]; 
their invasion by E. coli and the activation of inflamma-
tory responses are vital steps in meningitis pathogenesis 
[5, 6]. Activation of nuclear factor kappa B (NF-κB) sign-
aling, the master regulator of inflammatory responses [7], 
is a hallmark feature of bacterial meningitis [8]. Although 
accumulating evidence indicates the involvement of 
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NF-κB signaling in modulating meningitic E. coli-
induced CNS inflammation [9, 10], our current knowl-
edge on the underlying regulatory mechanisms is limited.

LncRNAs are a novel class of transcripts that are longer 
than 200 nucleotides, with no or limited protein-coding 
potential [11]. They regulate diverse biological processes, 
such as imprinting control, cell differentiation, develop-
ment, and tumor metastasis via interactions with DNA, 
RNA, or proteins [12–14]. In the field of immunol-
ogy, increasing evidences have indicated that lncRNAs 
have crucial functions in regulating immune responses, 
including inflammation [15], which involve various 
inflammation-associated signaling pathways, such as 
the NF-κB pathway and the mitogen-activated protein 
kinase (MAPK) pathway [16, 17]. LncRNAs can work in 
different ways; however, the most studied mechanism is 
the functioning of lncRNAs as competitive endogenous 
RNAs to competitively sponge microRNA, thus inhibit-
ing the degradation of mRNA [18]. For example, lncRNA 
H19 can sponge microRNA let-7a to regulate interleu-
kin-6 (IL-6) expression and increase vascular inflamma-
tion [19]. Nevertheless, the regulatory mechanisms of 
more lncRNAs in meningitic E. coli-induced inflamma-
tory responses remain to be systematically and compre-
hensively elucidated.

In the current study, we characterized an abundantly 
expressed lncRNA, lncC11orf54-1, in E. coli-chal-
lenged human BMECs (hBMECs). Meningitic infection 
in hBMECs by E. coli can dramatically degrade lnc-
C11orf54-1 and produce non-coding RNA mgU2-19 
and mgU2-30, which positively regulate E. coli-triggered 
pro-inflammatory cytokines production through IL-1 
receptor-associated kinase 1 (IRAK1) autophosphoryl-
ation-mediated activation of the NF-κB signaling path-
way. Thus, lncC11orf54-1 is an important inflammatory 
regulator of the NF-κB pathway during meningitic E. coli 
infection and may be an important therapeutic and diag-
nostic target in bacterial meningitis.

Results
LncC11orf54‑1 displayed differential expression 
during meningitic E. coli infection
To identify the lncRNAs involved in the inflammatory 
response induced by meningitic E. coli, we performed 
RNA-seq analysis in hBMECs challenged with or with-
out E. coli PCN033 [20]. Reanalysis data showed that 
280 known lncRNAs exhibited significant differences 
in hBMECs in response to meningitic E. coli infection 
(p < 0.05). Among these lncRNAs, 54.7% were mapped to 
intergenic regions, followed by antisense regions (27.6%), 
intronic regions (11.1%), sense overlapping regions 
(4.2%), and bidirectional regions (2.4%) (Fig. 1a). The dif-
ferentially expressed lncRNAs were subsequently filtered 

according to their transcript abundance. We identified 
20 lncRNAs (Fig.  1b) with this method, among which 
lncC11orf54-1 was abundantly expressed in hBMECs. 
LncC11orf54-1 is a 353-nt lncRNA, and tissue distribu-
tion analysis in humans revealed that lncC11orf54-1 
was abundantly expressed in the brain and adrenal 
gland (Fig. 1c). Three tools, including the coding poten-
tial capacitator (CPC), coding potential, assessment tool 
(CPAT), ORF length, and GC content (LGC), were sub-
sequently used to predict the protein-coding potential 
of lncC11orf54-1. The prediction results supported the 
idea that lncC11orf54-1 has no protein-coding poten-
tial, similar to the potential coding analyses of the known 
lncRNAs MALAT1 and NEAT1, but opposite that of the 
typical protein-coding mRNAs such as TLR4, STAT1, 
and RelA (Fig.  1d). Together, these data show that lnc-
C11orf54-1 is a brain-abundant lncRNA that is differen-
tially expressed in hBMECs in response to meningitic E. 
coli infection.

E. coli infection facilitated the degradation 
of lncC11orf54‑1
The response of lncC11orf54-1 to E. coli infection was 
confirmed by qPCR, and the results showed that lnc-
C11orf54-1 expression was significantly decreased in this 
process (Fig.  2a). LncC11orf54-1, an intronic lncRNA, 
is located on chromosome 11 of the human genome. It 
contains two smaller fragments, known as mgU2-19 and 
mgU2-30 (Fig. 2b). Determining the subcellular localiza-
tion of a lncRNA can provide insights into its potential 
mechanism of action. The subcellular localization of lnc-
C11orf54-1 in hBMECs was determined using nucleo-
cytoplasmic separation and FISH assays. As shown in 
Fig. 2c, lncC11orf54-1 was primarily located in the cyto-
plasm. The nucleocytoplasmic separation assay showed 
that lncC11orf54-1 could be detected in both nuclear and 
cytoplasmic compartments, but was highly enriched in 
the cytoplasm, similar to 18S rRNA (Fig. 2d). As shown 
in Fig.  2a, when challenged with E. coli, the expression 
of lncC11orf54-1 was decreased in hBMECs, while that 
of mgU2-19 and mgU2-30 was not. To better assess the 
processed fragments generated on infection of hBMECs 
with E. coli, processing assays were run on formaldehyde 
agarose gels and Northern blotting. As shown in Fig. 2e, 
lncC11orf54-1 in hBMECs could be degraded by E. coli 
infection in a time-dependent manner; the expression 
of full-length lncC11orf54-1 was significantly decreased, 
while that of the processed mgU2-30 was increased. 
Taken together, these findings suggest that lncC11orf54-1 
is a cytoplasm-located lncRNA in hBMECs and is sig-
nificantly degraded in response to meningitic E. coli 
infection.
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E. coli infection led to the translocation of coilin 
to the cytoplasm
Coilin is an RNase generally located in the nucleus, and 
RNAs like lncC11orf54-1 with GU-rich motif can be 
the target for coilin processing [21, 22]. Next, an immu-
nofluorescence assay was performed to determine the 

mechanism underlying the involvement of coilin in the 
degradation of lncC11orf54-1 in E. coli-infected hBMECs. 
We observed coilin translocation from the nucleus to the 
cytoplasm upon meningitic E. coli infection (Fig.  3a). 
The nuclear-to-cytoplasmic translocation of coilin was 
further determined by nucleocytoplasmic separation, 
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Fig. 1 Differentially expressed lncRNAs in hBMECs treated with meningitic E. coli. A The pie chart shows the different aberrantly expressed lncRNAs 
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Fig. 2 LncC11orf54-1 is downregulated in hBMECs with meningitic E. coli infection. A Expression of lncC11orf54-1, mgU2-19, and mgU2-30 in 
hBMECs infected with E. coli for 0 h (control, lane 1), 1 h (lane 2), 2 h (lane 3) or 3 h (lane 4) using qPCR analysis. GAPDH was used as the internal 
reference for the qPCR. Data are presented as mean ± SD from three independent experiments. **p < 0.01, and ***p < 0.001 by student’s t-test. 
B Visualization of lncC11orf54-1 in the ZENBU browser, showing exonic expression signaling in several different visualizations. C Subcellular 
localization of lncC11orf54-1 (red) in hBMECs by FISH assay. 4′,6-diamidino-2-phenylindole (DAPI) staining is shown in blue. Scale bars, 20 μm. D 
Nuclear/cytoplasmic localization analyses of lncC11orf54-1 in hBMECs by qPCR. The 18S and U6 distribution were selected as the cytoplasmic and 
nuclear control, respectively. E Expression of lncC11orf54-1 and mgU2-30 in hBMECs infected with E. coli for 0 h (control, lane 1), 1 h (lane 2), 2 h 
(lane 3) or 3 h (lane 4) using Northern blotting

Fig. 3 Meningitic E. coli infection induces the translocation of coilin. A hBMECs were infected with or without meningitic E. coli, and the 
translocation of coilin (red) was detected by fluorescence microscopy. DAPI staining was shown in blue. Scale bars, 50 μm. B Nuclear-to-cytoplasmic 
redistribution analyses of coilin in E. coli-stimulated hBMECs. Western blotting analyses of coilin were performed on whole cell lysate, nuclear, and 
cytoplasmic fractions. GAPDH was used as the loading control for whole-cell lysate and cytoplasmic fractions, whereas for the nucleus fraction, 
lamin B was used as the loading control. C RNA FISH analyses and immunofluorescent analyses determining the co-localization of lncC11orf54-1 
(red) and coilin (green) in hBMECs with or without E. coli challenge. DAPI staining was shown in blue. Scale bars, 50 μm

(See figure on next page.)
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followed by Western blotting. We measured the expres-
sion of coilin in the nucleus, cytoplasm, and total cells, 
and the results indicated that E. coli-treated hBMECs 
showed a prominent increase in the levels of cytoplas-
mic coilin, while levels of total coilin and nuclear coilin 
were decreased compared with control cells (Fig.  3b), 
suggesting that E. coli induced the transfer of coilin from 
the nucleus to the cytoplasm or even to the extracellular 
space. Moreover, RNA FISH and immunofluorescence 
assay also showed that the translocated coilin colocal-
ized with lncC11orf54-1 in the cytoplasm (Fig. 3c). Thus, 
these results show that E. coli infection promotes the 
translocation of coilin to the cytoplasm and helps the 
processing of lncC11orf54-1 in hBMECs.

The processed product mgU2‑30 regulated the activation 
of NF‑κB pathway
To define the functional role of lncC11orf54-1 in menin-
gitic E. coli-induced inflammatory responses in hBMECs, 
lncC11orf54-1 was overexpressed or knocked out in 
hBMECs. In E. coli-challenged hBMECs, overexpression 
of lncC11orf54-1 promoted the phosphorylation of the 
NF-κB p65 subunit in a dose-dependent manner (Fig. 4a). 
As previously demonstrated, lncC11orf54-1 can be pro-
cessed to mgU2-19 and mgU2-30 in E. coli-infected 
hBMECs, therefore, we validated the potential regulatory 
effects of mgU2-19 or mgU2-30 on p65 phosphorylation. 
In agreement with the lncC11orf54-1 overexpression 
results, the overexpression of mgU2-30 in hBMECs also 
dose-dependently enhanced the phosphorylation level of 
p65, but mgU2-19 had no such effect (Fig. 4b and c).

To further confirm that mgU2-30 functions to activate 
the NF-κB pathway, we used CRISPR-Cas9 mediated 
genome editing in hBMECs to generate double-strand 
DNA breaks in the mgU2-30 region of lncC11orf54-1. 
Through screening for clones, we retained three clones 
in which the mgU2-30 region was deleted, and the PCR 
identification results for these deleted clones are shown 
in Fig.  4d and e. The results showed that in E. coli-
infected hBMECs, knockout of the mgU2-30 region of 
lncC11orf54-1 reduced the phosphorylation level of p65 
(Fig. 4f ). Collectively, these data indicate that the mgU2-
30 fragment generated from lncC11orf54-1 facilitates the 

activation of the NF-κB pathway in the E. coli-induced 
inflammatory response of hBMECs.

MgU2‑30 promoted IRAK1 oligomerization and facilitated 
its auto‑phosphorylation
Although we have provided clues indicating that p65 is 
a key regulator of the mgU2-30-dependent inflamma-
tory response, the details of the molecular mechanism 
by which mgU2-30 regulates p65 phosphorylation are 
unclear. Here, we performed RAP assay with biotinylated 
mgU2-30 probes, followed by immunoblotting, to charac-
terize the mgU2-30-interacting proteins in hBMECs. The 
associated proteins were analyzed by SDS-PAGE with 
silver staining. We found that proteins around 60  kDa 
may interact with mgU2-30 (Fig. 5a). Three key signaling 
proteins (IRAK1, p65, and TRAF6) with crucial functions 
in the activation of the canonical NF-κB pathway were 
identified by immunoblotting, and among them, IRAK1 
was confirmed to bind to mgU2-30 (Fig. 5b). To further 
verify this interaction between IRAK1 and mgU2-30, we 
used RIP assay and found that the anti-IRAK1 antibody 
significantly enriched mgU2-30 (Fig. 5c). Moreover, RNA 
FISH combined with immunofluorescence demonstrated 
the colocalization of mgU2-30 and IRAK1 (Fig.  5d and 
Additional file 1: Fig. S1).

IRAK1 is a serine/threonine kinase that mediates the 
activation of NF-κB and MAPK pathways [23]. Its oli-
gomerization and auto-phosphorylation are essential 
for signal transduction, resulting in IRAK1 activation 
and execution of the pathways [24, 25]. We subsequently 
determined whether the interaction of mgU2-30 with 
IRAK1 affected its oligomerization and phosphorylation, 
and cells were transfected to express Flag-tagged IRAK1 
and his-tagged IRAK1, with or without the presence of 
mgU2-30 overexpression constructs. Co-immunoprecip-
itation assays demonstrated that IRAK1 was able to inter-
act with itself (Fig. 6a), and this oligomerization of IRAK1 
could be promoted by mgU2-30 (Fig. 6b). To determine 
the effects of the lncC11orf54-1-derived mgU2-30 frag-
ment on the phosphorylation of IRAK1, hBMECs were 
transfected with a gradient of lncC11orf54-1 overexpres-
sion constructs, as shown in Fig. 6c and d. These experi-
ments revealed that overexpression of lncC11orf54-1 

(See figure on next page.)
Fig. 4 MgU2-30 promotes meningitic E. coli-induced activation of NF-κB signaling. A Western blot analysis of NF-κB p65 and phosphorylated 
p65 in hBMECs transfected with multiple dosages of lncC11orf54-1 (0, 100, 500, 1000, and 20,000 ng) under E. coli infection. β-actin was used as 
the loading control. B hBMECs were transfected with control construct (pcDNA3.1), overexpression constructs of lncC11orf54-1, mgU2-19, or 
mgU2-30, and infected with E. coli; the protein levels of NF-κB p65 and phosphorylated p65 were determined by Western blotting. β-actin was used 
as the loading control. C Western blot analysis of NF-κB p65 and phosphorylated p65 in hBMECs transfected with multiple dosages of mgU2-30 
(0, 100, 500, 1000, and 2000 ng) under E. coli infection. β-actin was used as the loading control. D Schematic diagram of CRISPR/Cas9 knockout 
strategies at the mgU2-30 loci. A deletion of 48 bp was validated by sequencing. The red rectangle outlines the deletion region, the blue arrows 
indicate genotyping PCR primers for identifying knocked-out cell clones. E Gel image shows PCR identification results for wildtype hBMECs, and 
mgU2-30 knockout hBMECs. F Effects of mgU2-30 knock out on the expression of NF-κB p65 and phosphorylated p65 in E. coli treated hBMECs, as 
determined by Western blotting. β-actin was used as the loading control
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in E. coli-challenged hBMECs promoted the phospho-
rylation of IRAK1 in a dose-dependent manner, and 
mgU2-30 also dose-dependently facilitated IRAK1 

phosphorylation. Altogether, these data suggest that 
mgU2-30 generated from lncC11orf54-1 interacts with 
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IRAK1 to promote its oligomerization, which eventually 
leads to the auto-phosphorylation of IRAK1.

MgU2‑30 promoted E. coli‑induced inflammatory 
responses in hBMECs
We further determined the effects of mgU2-30 in 
hBMECs by overexpressing or knocking out mgU2-30, 
which were subsequently infected with or without E. coli. 
At 3 h after E. coli infection, the qPCR results showed that 
overexpression of mgU2-30 led to a significant increase 
in the levels of pro-inflammatory cytokines IL-6, TNF-α, 
and IL-1β, whereas knockout of mgU2-30 did not cause 

an increase in the level of these cytokines in hBMECs 
(Fig. 7a and c). Consistent with the qPCR results, West-
ern blot analysis indicated that mgU2-30 overexpression 
promoted the expression of pro-inflammatory cytokines 
in hBMECs under E. coli challenge (Fig. 7b). In contrast, 
the knockout of mgU2-30 in hBMECs no longer caused 
such a significant increase of these cytokines (Fig.  7d). 
Moreover, simple overexpression or knockout of mgU2-
30 without E. coli infection did not result in a change in 
pro-inflammatory cytokines at either the transcriptional 
and protein levels (Fig. 7a–d). Taken together, these find-
ings suggest that mgU2-30 can effectively facilitate the 
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expression of pro-inflammatory cytokines in meningitic 
E. coli-infected hBMECs and eventually aggravate the 
inflammatory response of hBMECs.

Discussion
Accumulating evidence has suggested that lncRNAs are 
involved in inflammatory processes [16, 26, 27] and in 
regulating CNS-related diseases, such as ischemic stroke, 
multiple sclerosis, and Huntington’s disease [28–30]. 
However, the roles of lncRNAs in CNS infectious diseases 
remain poorly understood. In this study, we reanalyzed 
lncRNA expression profiles in response to meningitic E. 

coli challenge in hBMECs and characterized a differen-
tially expressed lncRNA, lncC11orf54-1. E. coli infection 
led to the processing of lncC11orf54-1 into mgU2-30, 
which effectively augmented the infection-caused inflam-
matory responses by facilitating the oligomerization and 
autophosphorylation of IRAK1 (Fig. 8).

In the past decade, lncRNAs have been increas-
ingly recognized as regulators of diverse pathologi-
cal processes, such as cancer, chronic inflammation, 
and infectious diseases [31, 32]. Studies have indicated 
that lncRNAs play regulatory roles in the epigenetic, 
transcriptional, post-transcriptional, and translational 
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levels and in post-translational modifications [33–35]. 
Among these, the most reported regulatory mechanism 
is the action of lncRNAs as competitive endogenous 
RNAs to competitively sponge miRNAs, thus result-
ing in decreased mRNA degradation [36]. Over 3000 

studies have reported that lncRNAs function as sponges 
to interact with miRNAs; for example, lncRNA ZFAS1 
can sponge miR-150-5p to upregulate VEGFA expres-
sion to contribute to the progression of colorectal cancer 
[37], yet other regulatory mechanisms of lncRNAs are 
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few reported. Our study aimed to uncover the functional 
lncRNAs involved in human vascular inflammation via 
a unique mechanism. In E. coli-challenged hBMECs, we 
filtered out lncRNAs with high abundance, which might 
suggest certain potential biological function. In addi-
tion, before finally focusing on lncC11orf54-1, a major 
of these lncRNAs were overexpressed in hBMECs and 
this lncRNAs-overexpression screen revealed that lnc-
C11orf54-1 contributed to NF-κB p65 subunit phos-
phorylation during E.  coli infection. We therefore 
considered lncC11orf54-1 as an effective regulator of 
inflammatory responses in meningitic E. coli-induced 
neuroinflammation.

LncC11orf54-1 is an intronic lncRNA, also known 
as SCARNA9, which contains two smaller fragments, 
mgU2-19 and mgU2-30 and a GU-rich motif between 
them. Various studies have demonstrated that in  vitro 
transcribed lncC11orf54-1 can be processed to gener-
ate mgU2-19 and mgU2-30 by co-incubating with the 
purified protein coilin [22, 38, 39]. Coilin is a Cajal body 
marker protein with RNase activity and is generally 
located in the nucleus. Coilin is occasionally motile; it 
can make large movements and traverse the full diameter 
of the nucleus in some cases, such as in cell division [40, 
41]. Since previous studies have already shown that coilin 
can target RNAs with GU-rich motif and degrade them, 
we further demonstrated that in our hBMECs model, E. 
coli led to the translocation of coilin from the nucleus to 
the cytoplasm, thus providing the opportunity for coilin 
to degrade cytoplasmic lncC11orf54-1. And actually, it 
was observed that lncC11orf54-1 was indeed degraded.

The NF-κB pathway is considered a central media-
tor of the immune response, and most bacteria can 
activate the NF-κB pathway. For example, E. coli K1 
IbeA-binding proteins Vimentin and PTB-associated 
splicing factor act in concert to activate NF-κB [9], 
while Streptococcus pneumoniae can activate NF-κB 
by triggering the host factors toll-like receptors 2 and 
4 [42]. However, the function of host lncRNAs in acti-
vating the NF-κB pathway during bacterial infection is 
poorly understood. We, thus, indicated that lncRNA 
lncC11orf54-1 is involved in the phosphorylation of 
p65, which indicates activation of the NF-κB pathway. 
There are at least two pathways of NF-κB activation. 
The canonical pathway relies on IKKγ–IKKβ-mediated 
degradation of the NF-κB inhibitor alpha (IκBα). The 
alternative pathway relies on IKKα-mediated p100 
phosphorylation and processing to p52 [43, 44]. Among 
them, IRAK1 is a key signal transducer [25], which 
can be recruited by myeloid differentiation marker 88 
(MyD88) and leads to the phosphorylation of IRAK1 
and IRAK4 [45]. Phosphorylation of IRAK1 and IRAK4 
facilitates oligomerization and auto-ubiquitination of 

TRAF6 [46], which is followed by the activation of IKK, 
and ultimately leads to the activation of NF-κB [47]. 
A few studies have reported that lncRNAs can influ-
ence the modification of these signaling molecules and 
affect the activation of the NF-κB pathway. For exam-
ple, lncRNA Mirt2 inhibits the activation of NF-κB and 
MAPK pathways by attenuating the K63 ubiquitination 
of TRAF6 in macrophages [16]. In contrast, our results 
revealed that the product of lncC11orf54 processed by 
coilin could enrich IRAK1. Since it is generally believed 
that IRAK1 undergoes oligomerization and autophos-
phorylation, we subsequently demonstrated that the 
oligomerization and autophosphorylation of IRAK1 
could be promoted by enrichment of mgU2-30, thereby 
facilitating the activation of the NF-κB pathway.

Inflammation is a fastidiously balanced condition 
orchestrated by cytokines, chemokines, and their 
respective receptors [48]. In bacterial meningitis, bac-
terial invasion across the BBB stimulates BMECs, 
pericytes, astrocytes, and microglia to release a vari-
ety of inflammatory factors, including cytokines and 
chemokines, resulting in severe CNS inflammatory 
responses [8, 49, 50]. In the current study, we found 
that mgU2-30 potentiated the release of the pro-
inflammatory cytokines IL-6, TNF-α, and IL-1β, which 
represented a potential relationship between mgU2-30 
and the neuroinflammatory response. Taken together, 
our findings provide substantial evidence on the pro-
inflammatory function of lncRNAs during meningitis-
causing bacterial infection. In meningitic E. coli-treated 
hBMECs, we demonstrated that mgU2-30 derived 
from lncC11orf54-1 could function as a reservoir to 
enrich IRAK1, which facilitated the oligomerization 
and auto-phosphorylation of IRAK1 and, therefore, the 
phosphorylation of p65. Activation of p65 eventually 
potentiates vascular inflammation. However, inflam-
mation is a complicated and dynamic process, and our 
in  vitro hBMECs model could only partially resemble 
in  vivo conditions, and the effects of different factors 
on meningitic E. coli-induced inflammatory responses 
should be considered. In addition, further studies are 
required to explore the mechanisms of coilin transloca-
tion caused by E. coli infection.

In conclusion, we characterized the function of 
lncRNA lncC11orf54-1 in meningitic E. coli-infected 
hBMECs and investigated its possible working mech-
anism. Our data confirmed that E. coli infection in 
hBMECs induced the translocation of coilin, which led to 
the processing of lncC11orf54-1 into mgU2-30. MgU2-30 
in hBMECs specifically facilitated the phosphorylation 
of IRAK1, thus potentiating inflammatory responses by 
activating NF-κB (Fig. 8). These findings suggest that lnc-
C11orf54-1 and mgU2-30 may serve as novel targets for 
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future therapeutic strategies against bacterial meningitis. 
Moreover, the translocation of coilin from the nucleus to 
the cytoplasm may be a potential target for the diagnosis 
of inflammation.

Materials and methods
Cell line and cell culture
The hBMECs cell line was kindly provided by Prof. 
Kwang Sik Kim from Johns Hopkins University School of 
Medicine. It was routinely cultured in RPMI1640 media 
with 10% fetal bovine serum, 2 mM L-glutamine, 1 mM 
sodium pyruvate, essential amino acids, non-essential 
amino acids, vitamins, and penicillin and streptomycin 
(100 U/mL) in a 37 °C incubator under 5%  CO2 until the 
cell monolayer reached confluence.

Meningitic E. coli infection of hBMECs
The meningitic E. coli strain PCN033, a highly virulent 
cerebrospinal fluid isolate isolated in China in 2006, was 
used as the model [51]. Bacterial cells were routinely 
grown in Luria–Bertani medium at 37  °C overnight. 
hBMECs were challenged with E. coli PCN033 as fol-
lows. An overnight E. coli culture was resuspended and 
diluted in serum-free medium and then added to the 
starved confluent hBMECs monolayer at a multiplicity of 
infection (MOI) of 10 (approximately  107 colony-forming 
units per mL) and incubated at 37  °C with 5%  CO2 for 
3 h.

Transfection
hBMECs were cultured in six-well plates and grown to 
50–60% confluence. Cells were subsequently transfected 
with the constructs using the jetPRIME transfection 
reagent (Polyplus transfection, Illkirch, France), accord-
ing to the manufacturer’s instructions. Briefly, 200 μL of 
jetPRIME buffer was added to the 2000  ng of plasmids 
before adding 4 μL of jetPRIME. The suspension was 
briefly mixed by vortexing, incubated at 25 °C for 10 min, 
and then added dropwise to the cells and cultured at 
37 °C with 5%  CO2 for 48 h.

RNA isolation and quantitative real‑time polymerase chain 
reaction analysis
hBMECs were washed three times with ice-cold phos-
phate-buffered saline (PBS) before RNA extraction. Total 
RNA was extracted from hBMECs using TRIzol reagent 
(Invitrogen, Carlsbad, CA, USA) according to the manu-
facturer’s protocol. After RNA extraction, 500 ng of total 
RNA was reverse transcribed into cDNA using HiScript 
II Q RT SuperMix (Vazyme, Nanjing, China). Quantita-
tive real-time polymerase chain reaction (qPCR) was 
performed using a qTOWER3/G qPCR thermal cycler 

(Analytikjena, Jena, Germany) with the AceQ qPCR 
SYBR Green Master Mix (Vazyme), according to the 
manufacturer’s instructions. The amplification conditions 
were as follows: 50  °C for 2  min, 95  °C for 10  min, fol-
lowed by 40 cycles of 95 °C for 15 s and 60 °C for 1 min. 
The products were then subjected to a melting curve 
stage comprising denaturation at 95  °C for 15 s, anneal-
ing at 60 °C for 1 min, and slow dissociation by ramping 
from 60  °C to 95  °C at 0.1  °C/s to ensure the specificity 
of the primers for their target sequences. The relative 
gene expression was normalized to that of glyceraldehyde 
3-phosphate dehydrogenase (GAPDH). The primers used 
for qPCR are listed in Additional file  1: Table  S1. Each 
assay was performed in triplicates.

RNA fluorescence in situ hybridization and protein 
immunofluorescence
For RNA fluorescence in  situ hybridization (FISH), a 
commercial FISH kit was purchased from Bersinbio 
(Guangzhou, China) and used according to the manufac-
turer’s instructions. Briefly, hBMECs grown on 20-mm 
cell culture dishes (SORFA, Huzhou, China) were fixed 
in 4% paraformaldehyde for 30  min and washed twice 
with DNase/RNase-free PBS. Cells were permeabilized 
with 0.1% Triton X-100 for 15  min, washed twice with 
PBS, and then treated with 2 × saline sodium citrate 
(SSC). These samples were subsequently treated as fol-
lows: 70% ethanol for 5 min, 85% ethanol for 5 min, and 
100% ethanol for 5 min. Dried samples were then incu-
bated with pre-hybridization buffer (2 × SSC, 10% for-
mamide) at 37  °C for 30 min, followed by incubation in 
the hybridization buffer with probes for lncC11orf54-1 
(5′-Cy3-CCA CCC TCA ATC TCA TTC AT-3′) and mgU2-
30 (5′-Cy3-AGC TCA GGT CAA GTG TAG AA-3′) to a 
final concentration of 100  nM at 37  °C overnight. The 
samples were then washed with SSC buffer. All probes 
were purchased from GenePharma (Shanghai, China). 
For colocalization analysis of RNA and protein, the RNA 
FISH protocol was combined with protein immunofluo-
rescence. Samples were treated with blocking buffer and 
then incubated for 2  h with primary antibodies against 
IRAK1 (Sigma-Aldrich, St. Louis, MO, USA) or coilin 
(Proteintech, Chicago, IL, USA), followed by fluorescein 
isothiocyanate-conjugated goat anti-mouse or anti-rabbit 
secondary antibody (Biodragon, Beijing, China). Nuclei 
were counterstained with 4′,6-diamidino-2-phenylindole 
(Beijing Solarbio Science & Technology Co., Ltd., Beijing, 
China). Images were acquired using a confocal micro-
scope (LSM710, Carl Zeiss, Oberkochen, Germany).

Northern blotting
The hBMECs were infected with meningitic E. coli, fol-
lowed by RNA isolation. Fifty micrograms of RNA from 
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each sample were run on 1.5% formaldehyde agarose gel 
in 5 × 3-morpholinopropane-1-sulfonic acid buffer at 
50 V for 60 min. The gel was then washed in diethyl pyro-
carbonate-treated  H2O and 10 × SSC and transferred 
onto a positively charged nylon membrane by siphoning. 
After transfer, the membrane was rinsed quickly in dis-
tilled water and allowed to dry. The RNA was then cross-
linked to the membrane using an ultraviolet cross-linker 
(UVP, Upland, CA, USA) at a setting of 120,000 μJ/cm2. 
The membrane was placed in a hybridization bottle and 
pre-hybridized using Ultrahyb Ultrasensitive Hybridiza-
tion buffer (Ambion Life Technologies, Grand Island, NY, 
USA) at 42  °C for 1.5  h. The digoxigenin (DIG)-labeled 
probe for mgU2-30 (5′-DIG-AGC TCA GGT CAA GTG 
TAG AA-3′) was purchased from Genscript (Nanjing, 
China). After pre-hybridization, the membrane was 
hybridized with Ultrahyb Ultrasensitive Hybridization 
buffer containing a probe at 42  °C overnight in a slow 
rotating hybridization oven. The blots were then washed 
with 2 × SSC/0.1% sodium dodecyl sulfate (SDS) and 
0.5 × SSC/0.1% SDS and detected using the DIG Nucleic 
Acid Detection Kit (Roche, Basel, Switzerland) according 
to the manufacturer’s instructions.

Western blotting
hBMECs were lysed using radioimmunoprecipitation 
assay buffer (Epizyme, Shanghai, China) with protease 
inhibitor cocktail and phosphatase inhibitor cocktail 
(MedChemExpress, Monmouth, NJ, USA), followed 
by centrifugation at 12,000  rpm for 15  min at 4  °C to 
remove insoluble cell debris. The supernatants were 
measured using the bicinchoninic acid protein assay kit 
(NCM Biotech, Suzhou, China) and used for western 
blot analyses. Equal amounts of protein were separated 
by 12% SDS–polyacrylamide gel electrophoresis (PAGE) 
and transferred to polyvinylidene difluoride membranes. 
Membranes were blocked with 5% bovine serum albu-
min in Tris-buffered saline with Tween 20, followed 
by immunoblotting with primary antibodies against 
coilin, GAPDH, lamin B, β-actin, IL-6, tumor necrosis 
factor-α (TNF-α), IL-1β, His, Flag (Proteintech, Chi-
cago, IL, USA), IRAK1, TNF receptor-associated factor 6 
(TRAF6) (Merck Millipore, Billerica, MA, USA), NF-κB 
p65, phospho-NF-κB p65 (Cell Signaling Technology, 
Danvers, MA, USA), or phospho-IRAK1 (Abcam, Cam-
bridge, MA, USA). Membranes were then washed and 
incubated with horseradish peroxidase-conjugated anti-
rabbit or anti-mouse secondary antibodies (Biodragon, 
Beijing, China). The blots were visualized with the Super 
electrochemiluminescence Prime kit (US Everbright, 
Suzhou, China) and densitometrically analyzed using 
Image Lab software (Bio-Rad, Hercules, CA, USA).

RNA immunoprecipitation
The RNA immunoprecipitation (RIP) assay was per-
formed using the Magna RIP RNA-Binding Protein 
Immunoprecipitation Kit (Merck Millipore, Billerica, 
MA, USA), according to the manufacturer’s instructions. 
Briefly, protein A/G magnetic beads were incubated with 
anti-IRAK1 antibody, SNRNP70 antibody (positive con-
trol), or mouse IgG (negative control), and rotated for 
30 min at room temperature. Antibody-treated magnetic 
beads were then co-incubated with hBMECs lysates and 
rotated overnight at 4 °C, followed by digestion with pro-
teinase K buffer and purification of RNA. The purified 
RNA was further quantified and reverse transcribed into 
cDNA. The abundance of target genes was determined by 
qPCR.

RNA antisense purification
The RNA antisense purification (RAP) assay was per-
formed using the RNA Antisense Purification Kit 
(BersinBio, Guangzhou, China) according to the manu-
facturer’s instructions. Briefly, hBMECs were cross-
linked and homogenized in the presence of protease and 
RNase inhibitors, and DNA was subsequently removed 
using DNase. Samples were denatured and incubated 
with biotin-labeled probes for mgU2-30 (5′-Biotin-AGC 
TCA GGT CAA GTG TAG AA-3′) or negative control 
probe with rotation for 180  min at 37  °C, followed by 
addition of streptavidin beads with rotation for 30  min 
at room temperature. Finally, the protein bound to the 
beads was dissociated using elution buffer and analyzed 
by immunoblot assay.

Deletion of mgU2‑30 in hBMECs via CRISPR/Cas9 
technology
A three-in-one pYSY-spCas9-sgRNA-Puro vector was 
obtained from YSY Biotech (Nanjing, China). Human 
mgU2-30-sgRNA1 (5′- CAC CGA CTG ATC TTT GTA 
ACT ATG A-3′) and sgRNA2 (5′- AAA CAA TCA TTT 
CTG GGC AAT GAT C-3′) were synthesized and cloned 
into the vector to generate the pYSY-spCas9-mgU2-
30-sgRNA-Puro construct. hBMECs were seeded into 
six-well plates at a density of 2 ×  105 cells per well for 
24  h, followed by transient transfection with 2  μg of 
pYSY-spCas9-mgU2-30-sgRNA-Puro plasmid using 
the jetPRIME transfection reagent. The cells were 
incubated at 37  °C with 5%  CO2 for 24  h, and a fresh 
medium containing 200  ng/mL puromycin was added 
and incubated for another 48  h. Cells were then col-
lected, and each single-cell clone was transferred into 
96-well plates following a limiting dilution method. 
Genomic DNA was extracted when the cells were con-
fluent using QuickExtract DNA Extraction Solution 
(YSY Biotech). Cells with mgU2-30 sequence deletion 
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were validated by PCR using GoldenStar T6 Super PCR 
Mix (Tsingke Biological Technology, Beijing, China), 
as shown in Fig.  4d. The primers used for identifica-
tion were as follows: 5′-TTA TGC TGT GGA GGA AGA 
-3′ (forward) and 5′-ACT GGG AGC CTT TTA AGT -3′ 
(reverse) (amplicon PCR1), 5′-TGT GGA GGA AGA ACA 
TGC -3′ (forward) and 5′-TTC ATC ATT GCC CAG AAA 
-3′ (reverse) (amplicon PCR2), 5′-GGG CAA TGA TGA 
AAA GGT -3′ (forward) and 5′AGG CTC CCA GTG GAA 
ACA -3′ (amplicon PCR3), and 5′-AGC TGT TTG GCT 
TCG TAT -3′ (forward) and 5′-CCA TCA ATT AGG CTT 
TCA -3′ (reverse) (amplicon PCR4).

Statistical analysis
Data are expressed as mean ± SD from three independent 
experiments, and the significance of differences between 
groups was evaluated using the t-test. * p < 0.05 was con-
sidered significant, and ** p < 0.01 and *** p < 0.001 were 
considered extremely significant. Graphs were plotted 
and analyzed using GraphPad Prism (version 6.0; Graph-
Pad Software, La Jolla, CA, USA).
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