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BACKGROUND: Peripheral artery disease (PAD) affects >200 million people worldwide and is associated with high mortality and 
morbidity. We sought to identify genomic variants associated with PAD overall and in the contexts of diabetes and smoking status.

METHODS: We identified genetic variants associated with PAD and then meta-analyzed with published summary statistics 
from the Million Veterans Program and UK Biobank to replicate their findings. Next, we ran stratified genome-wide 
association analysis in ever smokers, never smokers, individuals with diabetes, and individuals with no history of diabetes and 
corresponding interaction analyses, to identify variants that modify the risk of PAD by diabetic or smoking status.

RESULTS: We identified 5 genome-wide significant (Passociation ≤5×10−8) associations with PAD in 449 548 (Ncases=12 086) 
individuals of European ancestry near LPA (lipoprotein [a]), CDKN2BAS1 (CDKN2B antisense RNA 1), SH2B3 (SH2B adaptor 
protein 3) - PTPN11 (protein tyrosine phosphatase non-receptor type 11), HDAC9 (histone deacetylase 9), and CHRNA3 
(cholinergic receptor nicotinic alpha 3 subunit) loci (which overlapped previously reported associations). Meta-analysis with 
variants previously associated with PAD showed that 18 of 19 published variants remained genome-wide significant. In 
individuals with diabetes, rs116405693 at the CCSER1 (coiled-coil serine rich protein 1) locus was associated with PAD (odds 
ratio [95% CI], 1.51 [1.32–1.74], Pdiabetes=2.5×10−9, Pinteractionwithdiabetes=5.3×10−7). Furthermore, in smokers, rs12910984 at the 
CHRNA3 locus was associated with PAD (odds ratio [95% CI], 1.15 [1.11–1.19], Psmokers=9.3×10−10, Pinteractionwithsmoking=3.9×10−5).

CONCLUSIONS: Our analyses confirm the published genetic associations with PAD and identify novel variants that may influence 
susceptibility to PAD in the context of diabetes or smoking status.
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Peripheral artery disease (PAD) is a morbid form of 
atherosclerotic vascular disease that affects the 
lower limbs of >200 million people worldwide.1 PAD 

poses a significant health care burden with an estimated 

$21 billion spent annually on hospitalizations in the 
United States alone.2 Despite high mortality and eco-
nomic impact, patients with PAD are underdiagnosed 
and undertreated.3
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PAD is often classified as proximal and distal, 
subtypes that are associated with different risk fac-
tors and comorbidity profiles; type 2 diabetes (T2D) 
being more strongly associated with distal disease 
and smoking more strongly associated with proximal 
disease.4 Much remains unknown about the biology 
of PAD in individuals with diabetes,5 although pro-
atherogenic changes, including chronic inflammation 
and hyperglycemia, are thought to increase the risk 
of PAD. Cigarette smoking increases the risk of all 
forms of atherosclerosis but is more strongly associ-
ated with PAD than with any other form of atheroscle-
rotic cardiovascular disease.6

Genetic studies have been useful for elucidating 
pathways and factors that contribute to the development 
of other complex traits such as coronary artery disease 
(CAD) and T2D.7,8 These studies have also been success-
ful in identifying context-specific variant effects, such as 
sex-specific effects.9 Fewer genetic association studies 
of PAD have been reported in contrast to other vascular 
traits, such as CAD.10 A recent study from the Million Vet-
erans Program (MVP) and replication in the UK Biobank 
(UKBB) identified 19 loci associated with PAD in 31 307 
PAD cases and 211 753 controls of mixed ancestry.11 In 
Individuals of East Asian descent, 3 variants—near IPO5 
(importin 5)/RAP2A (member of RAS oncogene family), 
EDNRA (endothelin receptor type A), and HDAC9 (histone 
deacetylase 9)—have been reported at genome-wide sig-
nificance.12 However, sample sizes remain considerably 
smaller than for other cardiovascular diseases, and pre-
vious studies have not assessed the relevance of phe-
notypic heterogeneity by examining the allelic effects by 
smoking or diabetes status genome wide.

In this study, we combined 11 independent genome-
wide association studies (GWAS) of individuals of Euro-
pean ancestry (Ncases=12 086 and Ncontrols=449 548) to 
identify which genetic variants associated with PAD 
(primary analysis) and to assess whether there were 
any specific effects in individuals with smoking or dia-
betes in a stratified analysis. We performed 3 analyses: 
(1) A primary GWAS in all individuals to identify loci 
that contribute to PAD overall, irrespective of diabetes 

or smoking status; (2) GWAS analyses of PAD strati-
fied by diabetes or smoking status to identify variants 
with smoking- or diabetes-specific effects; and (3) 
genome-wide interaction analyses of PAD stratified by 
diabetes status or smoking status to identify variants 
that interacted with either smoking or diabetes status 
to modify the risk of PAD. In addition, we attempted 
to assess whether PAD risk factors were linked to the 
development of PAD by performing genetic correlation 
analysis and contrasted these with associations with 
CAD.

METHODS
Summary level data from this study have been made pub-
licly available via figshare (10.6084/m9.figshare.7811639). 
This study made use of data generated from individual stud-
ies for which the relevant institutional review board approval 
had been obtained and all participants consented to inclusion 
in individual studies. An overview of the study design is illus-
trated in Figure 1, and the methods are provided in the Data 
Supplement.

RESULTS
Identification of Studies and Individuals to 
Include in the Meta-Analysis
The majority of PAD cases (Ncases=7172) were identi-
fied using clinical parameters (eg, ankle-brachial index, a 
clinical diagnosis, procedures specific to PAD and treat-
ment for claudication). A comparatively smaller subset 
of the PAD cases was identified based on a mixture of 
self-reported PAD in patients with clinical evidence of 
vascular disease and hospital admissions codes related 
to PAD (Ncases=4914; Table I in the Data Supplement).

Most of our controls were individuals without any 
known history of vascular disease at the time of 
recruitment (Ncontrols=419 548), in addition population 
controls who had population prevalence of vascular dis-
ease (Ncontrols=2757, 0.6% of the total number of con-
trols) and controls which may have had other types of 
vascular disease (Ncontrols=27 102), were included. Any 
potential misclassification of controls is expected to be 
minimal (given a 5% population prevalence) and would 
contribute to more conservative results.

Heritability
Heritability is the variability in a trait that can be explained 
by additive genetic variation. We were interested in 
whether the genetic heritability (in this case the chip heri-
tability) was comparable to the heritability estimated in 
other studies.13 We used a population prevalence of 5% 
(which best matched the prevalence for the age range 
of samples included in this study)14 and found that the 

Nonstandard Abbreviations and Acronyms

CAD coronary artery disease
EAF effect allele frequency
GWAS genome-wide association study
Lp(a) Lipoprotein (a)
MVP Million Veterans Program
OR odds ratio
PAD peripheral artery disease
UKBB UK Biobank



van Zuydam et al Genetics of Peripheral Artery Disease

Circ Genom Precis Med. 2021;14:e002862. DOI: 10.1161/CIRCGEN.119.002862 October 2021 625

heritability for PAD was 55% (SE=9%) which was com-
parable to the narrow sense heritability of 48% estimated 
from twin studies.13 The heritability estimates for the dia-
betes- and smoking-stratified analyses were not reliable 
due to sample size and are thus not reported here.

Primary GWAS of PAD
To identify variants associated with PAD, we combined 
summary statistics across GWAS in a fixed-effects meta-
analysis, under an inverse-variance weighting scheme.15 
Heterogeneity between studies was assessed using the 
Cochran Q test and I2. The primary genome-wide meta-
analysis included 12 086 PAD cases and 449 548 con-
trols with no known history of PAD from 11 studies of 
European ancestry (Figure 1; Tables I and II in the Data 
Supplement). We identified 4 loci, associated with PAD at 
genome-wide significance (P≤5×10−8), a threshold com-
monly used to declare association signals in GWAS (Fig-
ure 2A and 2B). We then conducted conditional analyses 
and identified a further independent signal at the LPA 
locus (rs7452960; Figure 2A, Table and Figure I in the Data 
Supplement). In summary, 2 independent index SNPs at 
the LPA (lipoprotein [a]) locus were identified (rs7452960 
and rs10455872), which have also been associated with 
Lp(a) (lipoprotein [a]) levels16,17 and CAD previously; one 
index SNP at the CDKN2BAS1 (CDKN2B antisense RNA 
1) locus (rs10738610) that has previously been associ-
ated with CAD and T2D7,8; another at the SH2B3 (SH2B 
adaptor protein 3) - PTPN11 (protein tyrosine phosphatase 
non-receptor type 11) locus (rs10774624) that has also 
been associated with type 1 diabetes and chronic kidney 
disease; and another at the CHRNA3 (cholinergic receptor 
nicotinic alpha 3 subunit) locus (rs1317286) that was also 
associated with smoking and lung cancer (Table III in the 
Data Supplement). These associations overlapped with 
associations reported at these loci by the MVP.11

Replication of Previously Published Loci
There were 19 published variants for PAD in individuals of 
different ancestries reported from a previous meta-analy-
sis of MVP+UKBB. Meta-analysis of the primary GWAS 
of PAD from GoLEAD (excluding UKBB) with published 
summary statistics from MVP+UKBB supported the asso-
ciation of 18 of the 19 published variants for the risk allele 
(Figure II and Table IV in the Data Supplement). The lead 
variant at MMP3 (matrix metallopeptidase 3) remained asso-
ciated with PAD but above the genome-wide significance 
threshold (odds ratio [OR; 95% CI], 1.07 [1.04–1.09], 
P=2.6×10−7). These associations are supported by studies 
which used different definitions of cases and controls, for 
example, electronic health records and clinical diagnoses.

We were interested in whether variants associ-
ated with PAD in populations of East Asian ancestry 
(Ncases/controls=3164/20 134)12 were also associated 
with PAD in populations of European ancestry. These 
may highlight common pathways contributing to PAD 
across these populations. The variants associated with 
PAD in individuals of East Asian ancestry (rs2074633, 
rs9584669, and rs6842241) showed varying asso-
ciations with PAD in individuals of European ancestry 
(Table V in the Data Supplement). We found rs2074633 
(effect allele frequency [EAF]EA=0.38), near HDAC9, 
to be associated with PAD (EAFEuro 0.22; OR [95% 
CI], 1.09 [1.05–1.12]; Passociation=6.0×10−6), albeit not at 
genome-wide significance, when comparing this to the 
East Asian population (EAFEA 0.38; OR [95% CI], 1.16 
[1.10–1.22]; Passociation=8.43×10−8) the OR is direction-
ally consistent. HDAC9 is a locus that has been reported 
for PAD across different ancestries. Rs9584669 
(EAFEA=0.94), near IPO5, was not associated with PAD 
in our cohort (EAFEuro 0.87; OR [95% CI], 1.02 [0.97–
1.06]; Passociation=0.48). Rs6842241 (EAFEA=0.70), near 
EDNRA, showed modest association, but in the opposite 
direction, with PAD (EAFEuro 0.86; OR [95% CI], 0.94 

Figure 1. Study design.
A primary meta-analysis of allelic effect on peripheral artery disease (PAD) in all individuals was performed. Subsequently and where smoking 
or diabetes status were available, individual study centers stratified by diabetes or smoking status and four additional meta-analyses of allelic 
effects on PAD were performed in: individuals with diabetes; individuals without diabetes; ever smokers and never smokers.
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[0.90–0.98]; Passociation=3.4×10−3). The allele frequen-
cies for rs6842241 were similar in individuals of East 
Asian and European ancestry. The inverse association in 
individuals of European ancestry could be due to chance 
as it did not surpass genome-wide significance or could 
reflect differences in linkage disequilibrium or risk fac-
tors between the 2 populations.

Diabetes- and Smoking-Stratified GWAS Meta-
Analyses
Identification of genetic factors that have stratum spe-
cific associations may indicate that different pathways 
are important to the development of PAD based on risk 
factor context. To identify these factors, we performed 
diabetes- and smoking-stratified analyses in the sam-
ples used for the primary PAD analysis (Figure 1). The 
PAD cases and PAD free controls were stratified by 
smoking status in 8 of the 11 studies (7404 PAD cases 
and 205 693 PAD free controls among ever smokers; 
and 2414 PAD cases and 239 806 PAD free controls 
among never smokers) and by diabetes status in 10 

of the 11 studies (3846 PAD cases and 28 881 PAD 
free controls with diabetes; and 6732 PAD cases and 
416 855 PAD free controls without diabetes; Table II in 
the Data Supplement).

First, we identified variants that were associated with 
PAD at genome-wide significance (P≤5×10−8) in individ-
ual strata: ever smokers; never smokers; individuals with 
diabetes; and individuals with no history of diabetes. We 
then performed genome-wide interaction analyses with 
smoking or diabetes status respectively (Data Supple-
ment) to identify genetic variants that interacted with 
the risk factor to modify the risk of PAD. These analyses 
used the stratified GWAS to test for interaction by com-
paring the differences in allelic effects between strata for 
all SNPs rather than combining allelic interaction effects 
from individual studies.

Diabetes Stratified Association Analysis
Rs116405693, a novel index variant near CCSER1 
(coiled-coil serine rich protein 1), was associated with 
PAD in individuals with diabetes (EAFdiabetes, 0.04, 

Figure 2. Four loci were associated with peripheral artery disease overall.
A, A Manhattan plot shows genome-wide associations from the GoLEAD consortium at the LPA (lipoprotein A), CDKN2BAS1 (CDKN2B 
antisense RNA 1), PTPN11 (protein tyrosine phosphatase, nonreceptor type 11), and CHRNA3 (cholinergic receptor nicotinic alpha 3 
subunit) loci with peripheral artery disease and (B) a QQ-plot shows a deviation from the normal distribution showing an inflation in genetic 
signal for variants associated with peripheral arterial disease in the GoLEAD consortium.

Table. Seven Lead Variants Were Associated With Peripheral Artery Disease at Genome-Wide Significance (P≤5×10−8) in the 
Genetics of Lower Extremity Arterial Disease (GoLEAD) Consortium (Including the UK Biobank)

Analysis CHR BP position SNP (nearest gene) EA/NEA EAF OR (95% CI) P value N cases N controls Pinteraction

All 6 160941641 rs7452960 (LPA) A/G 0.02 1.45 (1.22–1.65) 1.4×10−8 9052 418 102 …

6 161010118 rs10455872 (LPA) G/A 0.06 1.23 (1.19–1.28) 2.4×10−12 10 876 447 454 …

9 22123766 rs10738610 (CDKN2A-
BAS1)

C/A 0.47 1.13 (1.10–1.17) 5.0×10−17 11 004 448 069 …

12 111833788 rs10774624 (PTPN11) G/A 0.49 1.12 (1.10–1.15) 2.7×10−11 9165 424 394 …

15 78896129 rs1317286 (CHRNA3) G/A 0.33 1.10 (1.08–1.12) 1.4×10−8 10 876 447 460 …

Individuals  
without diabetes

7 19049388 rs2107595 (HDAC9) A/G 0.16 1.16 (1.11–1.21) 3.6×10−8 6616 416 267 8.2×10−3

Individuals with 
diabetes

4 91588354 rs116405693 (CCSER1) T/C 0.04 1.51 (1.32–1.74) 2.5×10−9 3454 26 707 5.3×10−7

CHR indicates chromosome number; EA, effect allele; EAF, effect allele frequency; and NEA, noneffect allele.
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ORdiabetes [95% CI], 1.51 [1.32–1.74), Pdiabetes=2.5×10−9; 
Table and Figure III in the Data Supplement); but not in 
individuals without diabetes despite power to detect an 
effect (OR [95% CI], 0.97 [0.87–1.08], Pnodiabetes=0.58, 
Pinteractionwithdiabetes=5.3×10−7; power to detect in individuals 
without diabetes ≥80%, α=5.0×10−8; Figure III in the 
Data Supplement). The variant showed strong evidence 
of interaction with diabetes status and is likely to repre-
sent a diabetes specific effect, suggesting that different 
pathways may play a role in the development of PAD 
in individuals with diabetes compared with individuals 
without diabetes. No other variants reached genome-
wide significance in this analysis.

The MVP reported an interaction for rs3104154 with 
T2D to modify the risk of PAD (Pinteraction=3.0×10−8), this 
was on the relative risk scale from a study which con-
sidered only variants also associated with T2D.18 In this 
study, using exponential odds, we found no evidence 
for interaction of rs3104154 with diabetes status (EAF, 
0.95, ORdiabetes [95% CI], 0.95 [0.90–1.23], Pdiabetes=0.54, 
ORnodiabetes [95% CI], 0.94 [0.94–1.19], Pnodiabetes=0.38, 
Pinteractionwithdiabetes

>0.99). The lack of replication could be 
due to the different scales used.

In individuals without diabetes, 3 index variants were 
associated with PAD at genome-wide significance. Two of 
these associations were the same index SNPs or proxies 
thereof reported in the primary PAD analysis near CDKN-
2BAS-1 and CHRNA3. Rs2107595, an index SNP near 
HDAC9, was associated with PAD in individuals without 
diabetes (EAFnodiabetes 0.16; ORnodiabetes [95% CI], 1.16 
[1.11–1.21], Pnodiabetes=3.6×10−8) but was not detected in 
the primary PAD analysis or in individuals with diabetes 
(Table, Figure 1, Table VI and Figure IV in the Data Sup-
plement). However, this is not a stratum specific effect, 
the combined allelic effects from GoLEAD+UKBB+MVP 
for rs2107595 showed that this variant was associated 
with PAD overall (Passociation=4.2×10−11; Table IV in the 
Data Supplement). We could not find any evidence to 
support differing pathways contributing to the develop-
ment of PAD in subjects without diabetes compared with 
the primary analysis.

Smoking Stratified Association Analyses
The same lead variants or their proxies at the LPA, 
CDKN2BAS-1, and CHRNA3 loci that were reported 
in the primary PAD GWAS were associated with 
PAD in ever smokers. However, the lead variant, 
rs12910984 (EAF 0.76, ORsmokers [95% CI], 1.15 
[1.11–1.19], Psmokers=9.3×10−10), at the CHRNA3 locus, 
showed evidence of interaction with smoking status 
(Pinteractionwithsmoking=3.9×10−5; power to detect an OR=1.15 
for EAF=0.76 in never smokers ≥80%; Figure V, Tables 
VII and VIII in the Data Supplement). The CHRNA3 locus 
was also associated with PAD in the overall cohort. 
CHRNA3 is a known risk factor for smoking, nicotine 

dependence, and greater smoking quantity.19 In the 
stratified analysis, this locus was associated in smokers 
but not in nonsmokers. This may suggest that the asso-
ciation in the general population may be partly driven by 
those who smoke. A novel association for index variant 
rs200841208, in HLA-DRB2 (Major histocompatibility 
complex, class II, DR beta 2 [pseudogene]), was detected 
for PAD in ever smokers (OR [95% CI], 1.35 [1.18–
1.55], Psmokers=3.6×10−8, Pinteractionwithsmoking=2.3×10−4), but 
not in never smokers (OR [95% CI], 0.95 [0.81–1.11], 
Pneversmokers=0.51; Figure V and Table VII in the Data Sup-
plement). This region is well known for its complex link-
age disequilibrium and our finding will require replication 
in an independent sample.

Post Hoc Power and Sample Size Calculations to 
Detect Interactive Effects
A substantial challenge in detecting loci that interact with 
diabetes or smoking status to modify the risk of PAD 
is sufficient sample size. The significance of an interac-
tion is determined by the size of the difference in allelic 
effects between strata and how well those allelic effects 
are estimated in each stratum (SE, a function of sample 
size). Power analyses were based on the following sam-
ple sizes: smokers (Ncases=7404 and Ncontrols=205 693) 
versus nonsmokers (Ncases=2414 and Ncontrols=239 806); 
and diabetes (Ncases=3846 and Ncontrols=28 881) versus 
no diabetes (Ncases=6732 and Ncontrols=416 855).

We had ≥80% power, at either α=5×10−4 (Bonfer-
roni correction for 100 SNPs selected for replication) 
or α=5×10−8, to detect large differences (15%–40%) 
in allelic effects between strata for SNPs with EAF>0.1 
where the allelic effects were either in opposite direc-
tions (ie, ORnonsmoker=0.80 and ORsmoker=1.20), or there 
was no effect in one stratum and an effect in the other 
stratum (ie, ORnonsmoker=1.00 and ORsmoker=1.15; Figure 
VI and Table VIII in the Data Supplement). There was 
<80% power to detect interactions where the allelic 
effects in each stratum were in the same direction (ie, 
ORnonsmoker=1.10 and ORsmoker=1.30). To replicate the 
interaction findings from this study, we would need a 
similar number of cases in each stratum included in this 
study (Table IX and Methods in the Data Supplement).

Shared Genetic Background With Other Traits
PAD and CAD are often comorbid and share many 
common risk factors. To understand whether these risk 
factors—represented by their underlying genetic varia-
tion—may affect the risk of PAD and CAD differently, 
we performed genetic correlation for 6 common risk 
factors. Pairwise genetic correlation analyses were per-
formed for PAD and CAD separately with body mass 
index,20 HDL-C (high-density lipoprotein cholesterol), 
LDL-C (low-density lipoprotein cholesterol), triglycer-
ides,21 T2D,22 systolic blood pressure (UKBB automated 
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reading). Positive correlations indicate that genetic 
variation associated with higher levels of the trait are 
associated with higher risk of PAD (or CAD), whilst a 
negative correlation indicates that the genetic variation 
associated with higher levels of the trait is associated 
with lower risk of PAD (or CAD). As anticipated, there 
was strong genetic correlation for PAD with CAD (rg 
0.58 [95% CI, 0.44–0.71], P=1.1×10−16; Table X in the 
Data Supplement). The pattern of genetic correlation 
of PAD and CAD with 6 risk factors was broadly similar 
across PAD and CAD with similar estimates of genetic 
correlation for both diseases. Body mass index, T2D, 
LDL-C, triglycerides, and blood pressure were positively 
correlated with both PAD and CAD while HDL-C was 
negatively correlated with PAD and CAD (Table X in the 
Data Supplement). The genetic correlation estimates 
are affected by the heritability of the traits being com-
pared, a low heritability in one of the traits can result 
in a weak genetic correlation. These results are in line 
with the epidemiological associations for these traits.

DISCUSSION
We identified 5 genetic variants associated with PAD at 
genome-wide significance in our study and one variant 
associated with PAD in those with diabetes. Additionally, 
we found a suggestive association for a variant at the 
HLA-DRB2 locus with PAD in ever smokers. Our analy-
sis supported the association of 18 of the 19 published 
genetic associations for PAD in the largest sample for 
PAD reported to date. The study by the MVP relied on 
PAD identified through electronic health records but, in 
this study, we validate the previous associations in PAD 
defined using multiple and different sources. Genetic 
correlation analyses suggest major similarities in com-
mon risk factors between PAD and CAD, in line with their 
shared atherosclerotic mechanism.

Many of the loci associated with PAD are also known 
CAD loci, that is, LPA, CDKN2BAS-1, HDAC9, and 
SH2B3/PTPN11. CDKN2BAS-1 and HDAC9 have also 
been associated with CAD and large artery stroke.8,23 
While the overlap of genetic determinants is unsurpris-
ing due to the shared underlying atherosclerotic pro-
cesses, they are not identical in terms of genetic risk. The 
PTPN11 locus has also been associated with CAD, but 
the index variant associated with PAD also overlapped 
associations with lower glomerular filtration rate and 
higher blood pressure. Chronic kidney disease is cor-
related with higher risk of PAD suggesting an overlap 
in pathways contributing to hypertension, chronic kid-
ney disease, and PAD.24 The genetic associations in this 
study indicate that the biological factors contributing to 
the development of PAD are not identical to the develop-
ment of CAD. There are differences in the genetic deter-
minants by smoking and diabetes status which are not 

observed in large stratified GWAS analyses of CAD.25–27 
The CCSER1 locus showed effects on PAD specific to 
the context of diabetes but not much is known about 
this locus and it requires further investigation. These 
genetic differences indicate that there may be pathways 
that could be targeted for therapeutic development that 
would be distinct from therapeutics for CAD.

Smoking status and smoking quantity are the stron-
gest risk factors for PAD in the general population.6 In 
prior GWAS, the lead variant at the CHRNA3 locus over-
lapped with variants that were also associated with pre-
disposition to become a smoker, smoking quantity, lung 
cancer, and chronic obstructive pulmonary disease.28 The 
same variant showed interaction with smoking status 
reflecting the association of the locus with predisposi-
tion to smoking and that the association with increased 
smoking quantity is an important risk factor for PAD in 
smokers. We also detected an association near HLA-
DRB1 with PAD in ever smokers only. However, the lead 
variant was not well imputed in larger cohorts (imputation 
information=0.61) and absent from many of the smaller 
studies. It is also in a region of the genome that has 
complex linkage disequilibrium structures; thus, it would 
be necessary to confirm this association in independent 
samples. Our results indicate that there are likely to be 
different biological mechanisms contributing to the devel-
opment of PAD in patients with diabetes and in smokers, 
potentially reflecting the phenotypic differences between 
distal and proximal PAD. This supports the clinical data 
which shows different manifestations of PAD dependent 
on risk factor context.4

The LPA variants associated with PAD in our study, 
irrespective of smoking or diabetes status have also 
been associated with plasma Lp(a) levels.16,17 Mendelian 
randomization studies in the UKBB have also shown that 
one SD reduction in Lp(a) levels was associated with 
a 31% lower risk of PAD. Therefore, genetic evidence 
suggests that new treatments currently under develop-
ment that lower serum Lp(a) levels have the potential to 
lower the risk of PAD.29,30 A phase 3 randomized, double 
blinded, placebo-controlled trial is currently evaluat-
ing the effect on Lp(a) lowering by antisense approach 
(AKCEA-APO(a)-LRx), on cardiovascular outcomes.30–32

The main limitation of this study is a lack of indepen-
dent replication for the main GWAS and for the stratified 
analyses. As we have demonstrated, through replication 
of GWAS hits previously reported in the MVP+UKBB, 
further studies can help to provide such support. Future 
meta-analyses will include additional samples and the 
opportunity to confirm the loci, we have identified both 
within those of European ancestry as well as to under-
take transethnic meta-analyses that will allow exploration 
of the overlap of these loci across ancestries.

Our results demonstrate that context dependent 
genetic factors are operative in PAD and highlight 
the importance of analyses stratified by diabetes and 
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smoking—the main risk factors for PAD. These results 
are also consistent with clinical observations of 2 sub-
types of PAD, proximal disease strongly associated with 
smoking and distal, disease strongly associated with dia-
betes.4 Future work should focus on mechanistic studies 
to investigate how genetic variation at these loci influ-
ence pathophysiologic processes relevant to PAD will aid 
in our understanding of the molecular genetic basis of 
PAD and development of new therapeutic targets.
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