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ABSTRACT

Programmed RNA breakage is an emerging theme
underlying cellular responses to stress, virus infec-
tion and defense against foreign species. In many
cases, site-specific cleavage of the target RNA
generates 20,30 cyclic phosphate and 50-OH ends.
For the damage to be repaired, both broken ends
must be healed before they can be sealed by a
ligase. Healing entails hydrolysis of the 20,30 cyclic
phosphate to form a 30-OH and phosphorylation of
the 50-OH to form a 50-PO4. Here, we demonstrate
that a polynucleotide kinase-phosphatase enzyme
from Clostridium thermocellum (CthPnkp) can cat-
alyze both of the end-healing steps of tRNA splicing
in vitro. The route of tRNA repair by CthPnkp can be
reprogrammed by a mutation in the 30 end-healing
domain (H189D) that yields a 20-PO4 product instead
of a 20-OH. Whereas tRNA ends healed by wild-type
CthPnkp are readily sealed by T4 RNA ligase 1, the
H189D enzyme generates ends that are spliced by
yeast tRNA ligase. Our findings suggest that RNA
repair enzymes can evolve their specificities to suit
a particular pathway.

INTRODUCTION

‘RNA repair’ is a versatile mechanism to rectify pro-
grammed breaks in tRNAs and mRNAs incurred during
tRNA processing and under conditions of cellular stress.
Examples include virus-mediated tRNA repair to thwart a
host antiviral response to bacteriophage infection (1),
splicing of intron-containing tRNAs (2) and unconven-
tional mRNA splicing during the unfolded protein
response (3,4). In each of these cases, the inciting event
is a site-specific endonuclease cleavage of the target RNA
to generate a 20,30 cyclic phosphate end and a 50-OH end.
Both broken ends must be healed before they can be
sealed by an RNA ligase. Healing entails hydrolysis of the

20,30 cyclic phosphate to form a 30-OH and phosphoryla-
tion of the 50-OH to form a 50-PO4.

Two pathways of tRNA repair have been delineated,
which proceed through distinct 30 end-healing steps that
result in different products of the RNA ligase reaction
(1,2). The first pathway is catalyzed by the familiar T4
enzymes polynucleotide kinase-phosphatase (Pnkp) and
RNA ligase 1 (Rnl1). Pnkp is a bifunctional enzyme that
remodels the ends of the broken tRNA by converting the
20,30 cyclic phosphate to a 30-OH, 20-OH and by
phosphorylating the 50-OH end to form a 50-PO4. Rnl1
then joins the 30-OH and 50-PO4 RNA ends to form a
standard 30–50 phosphodiester at the repair junction
(Figure 1A) (1). The second pathway is catalyzed by
yeast tRNA ligase (Trl1), a multifunctional enzyme
composed of separable healing and sealing domains
(5–10). The healing domain, Trl1(389–827), consists of a
cyclic phosphodiesterase (CPD) module that hydrolyzes
the 20,30 cyclic phosphate of the proximal tRNA half-
molecule to a 30-OH, 20-PO4 and a polynucleotide
kinase module that converts the tRNA 50-OH to a
50-PO4 (Figure 1A). The ligase domain, Trl1(1–388),
then joins the healed ends to form a tRNA with a
20-PO4, 30–50 phosphodiester at the splice junction.
[The junction 20-PO4 is ultimately removed by a phospho-
transferase, Tpt1, that is specific to the yeast tRNA repair
pathway (11)].

Recent studies highlight a plethora of target-specific
endoribonuclease toxins in bacteria (12–18) and fungi (19)
and their role in defending the organism against non-self
species and viruses. This raises the question of whether
RNA repair systems exist in bacterial cells as a means of
evading programmed RNA breakage. Our identification
of candidate RNA healing and sealing enzymes in several
bacterial proteomes (20,21) suggests an RNA repair
capacity, but the scant knowledge of the genetics and
ecology of those bacteria provides no clues to what types
of RNA damage might be subject to repair. Here, we
demonstrate that an enzyme from Clostridium thermo-
cellum (CthPnkp) can catalyze both of the end-healing
steps of tRNA splicing in vitro. The biochemical pathway
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of tRNA repair by the CthPnkp can be reprogrammed by
a mutation in the 30 end-healing domain that yields a
20-PO4 product instead of a 20-OH.

MATERIALS AND METHODS

Recombinant T4 and yeast tRNA repair enzymes

His10-tagged versions of T4 Rnl1, T4 Pnkp and yeast
Trl1(1–388) were produced in E. coli and purified from
soluble lysates by Ni-agarose chromatography as
described previously (8,22,23). Yeast Trl1(389–827) was
produced in E. coli as a His-Smt3 fusion and recovered
from a soluble extract by Ni-agarose chromatography.
The His-Smt3 tag was removed with the Smt3-specific
protease Ulp1 and the tag-free Trl1(398–927) protein was
recovered in the flow-through fraction during a second
round of Ni-agarose chromatography. SDS-PAGE anal-
ysis of the enzyme preparations is shown in Figure 2.

RecombinantCthPnkp

Wild-type CthPnkp and mutated or truncated versions of
CthPnkp were produced in E. coli as His10-tagged fusions
and purified from soluble bacterial extracts by Ni-agarose
chromatography (24,25). The 200-mM imidazole eluates
were dialyzed against 150mM NaCl in buffer A (50mM
Tris-HCl, pH 8.0, 10% glycerol, 1mM EDTA, 1mM

b-mercaptoethanol) and then applied to 1-ml columns of
DEAE-Sephacel that had been equilibrated in buffer A.
The columns were washed with 5ml of buffer A and then
eluted stepwise with 200 and 500mM NaCl in buffer A.
The CthPnkp proteins were recovered in the DEAE flow-
through, apparently free of contaminating nucleic acids
(which were detected in the 0.5M NaCl eluate). SDS-
PAGE analysis of the CthPnkp preparations is shown in
Figure 2.

Synthesis of pre-tRNA in vitro

The intron-containing pre-tRNA is a chimera consisting
of the mature tRNA sequence of plant pre-tRNATyr plus
the intron and anticodon of Methanocaldococcus pre-
tRNATrp (26). This pre-tRNA was generated by in vitro
transcription of BstN1-cut plasmid pNtY9-T7-M1 by T7
RNA polymerase in the presence of [a32P]ATP. A reaction
mixture (100ml) containing 80mM HEPES-KOH (pH
7.5), 24mM MgCl2, 40mM DTT, 2mM spermidine,
2.5mM CTP, UTP and GTP, 0.5mM [a-32P]ATP, 5 mg
template DNA, 120 units RNAsin (Promega), 0.5 units
yeast inorganic pyrophosphatase (Sigma) and 300 units T7
RNA polymerase (New England Biolabs) was incubated
for 3 h at 378C. The labeled pre-tRNA was purified by
electrophoresis through an 8% polyacrylamide-urea gel.
The pre-tRNA was eluted from an excised gel slice in

Figure 1. Pathway choice in tRNA splicing is dictated by the outcome of 30 end healing. (A) Distinctive phage and yeast pathways of tRNA repair.
In phage tRNA restriction-repair, the 20,30 cyclic phosphate and 50-OH ends of the broken tRNA are healed by T4 Pnkp, which completely removes
the phosphate at the 30 end and phosphorylates the 50 terminus. T4 Rnl1 then seals the 30-OH and 50-PO4 termini to form a standard 30–50

phosphodiester linkage. In yeast tRNA splicing, the ends are healed by Trl1 kinase-CPD domain (389–827), which generate a 30-OH, 20-PO4 on the
proximal tRNA half and a 50-PO4 on the distal half, and then sealed by a Trl1 ligase domain (1–388). The yeast pathway leaves a 20-PO4 at the splice
junction. (B) Reaction mixtures (10 ml) containing 50mM Tris-HCl (pH 7.5), 10mM MgCl2, 5mM DTT, 25 mM ATP, 25 mM GTP, 140 fmol
32P-labeled cleaved tRNA and 1 pmol of T4 Rnl1, T4 Pnkp, Trl1(1–388) or Trl1(389–827), where indicated by þ over the lanes, were incubated for
30min at 378C. The reactions were quenched by adding 10 ml of 95% formamide, 50mM EDTA. The samples were heated at 958C for 1min and
then analyzed by electrophoresis through a 15-cm 15% polyacrylamide gel containing 7M urea in 45mM Tris-borate, 1mM EDTA. The products
were visualized by autoradiography.
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650ml of 10mM Tris-HCl (pH 8.0), 1mM EDTA. This
procedure yielded 380–420 pmol of pre-tRNA.

Cleavage of the pre-tRNA with archaeal-splicing
endonuclease

pre-tRNA cleavage reaction mixtures (100 ml) containing
50mM Tris-HCl (pH 7.5), 100mM KCl, 10mM MgCl2,
1mM DTT, 40 mM spermine, 40 pmol [32P[AMP-labeled
pre-tRNA and 1.5 mg Methanocaldococcus jannaschii
tRNA-splicing endonuclease (produced in E. coli as a
His10 fusion and purified by Ni-agarose chromatography)
were incubated for 20min at 658C. The RNA products
were phenol-extracted, precipitated with ethanol (28–32
pmol of cleaved tRNA recovered), resuspended in 100 ml
of 10mM Tris-HCl (pH 8.0), 1mM EDTA and stored at
�208C.

RESULTS AND DISCUSSION

Distinct tRNA repair pathways in vitro

The finding that the essential healing and sealing
components of the yeast tRNA-splicing system can be
replaced in vivo by their bacteriophage analogs (27)
attested to the portability of RNA repair systems from
widely distant taxa. However, certain restrictions apply.
T4 Pnkp can substitute for the yeast kinase-CPD domain
only in tandem with T4 Rnl1 and the yeast ligase domain
functions only in tandem with yeast kinase-CPD. Because
the kinase modules of the phage and yeast healing
enzymes are structurally homologous and the reaction
products are identical (a 50-PO4 RNA end), the critical
factor appears to be the distinctive 30-OH, 20-PO4 end
configuration generated by yeast CPD versus the 30-OH,
20-OH end produced by T4 Pnkp. In other words, the
yeast tRNA ligase appears to require the 20-PO4 terminus
to seal tRNAs in vivo.

To better delineate the specificity of end-healing and
end-sealing during tRNA repair/splicing, we exploited an
in vitro tRNA-splicing system designed by Englert and
Beier (26). The broken tRNA substrate was generated by
treating a 32P-labeled intron-containing pre-tRNA with a
tRNA-splicing endonuclease, which led to quantitative
release of a linear 21-nt intron and the formation of two
‘half-tRNA’ molecules: a 37-nt 50 fragment and a 39-nt
30-fragment (Figure 1B). Reaction of the broken RNA
with a combination of yeast Trl1(1–388) and
Trl1(389–827) resulted in a mature spliced tRNA and
the circularization of the intron. Splicing of the tRNA
halves and intron circularization were also seen with T4
Rnl1 plus T4 Pnkp. However, the ligase domain of yeast
Trl1 was unable to splice the tRNA or circularize the
intron when paired with T4 Pnkp (Figure 1B). This in vitro
observation echoes precisely the inability of Trl1(1–388) to
function together with T4 Pnkp in vivo. This incompat-
ibility reflects a requirement for a 30-OH, 20-PO4 terminus
in order for the ligase component of Trl1 to seal the
broken RNA ends in vitro.

Clostridium Pnkp performs the end-healing
steps of tRNA repair

CthPnkp catalyzes the phosphorylation of 50-OH termini
of DNA or RNA polynucleotides and the dephosphoryla-
tion of 20,30 cyclic phosphate, 20-phosphate and
30-phosphate ribonucleotides (21,24,25). These character-
istics are consistent with a role in end healing during RNA
or DNA repair. CthPnkp is an 870-aa polypeptide
composed of three catalytic domains: an N-terminal
module that resembles the kinase domain of T4 Pnkp, a
central phosphoesterase module and a C-terminal
module that resembles the adenylyltransferase domain of
polynucleotide ligases. The distinctive feature of CthPnkp
vis a vis known repair enzymes is that its 30 end
modification component belongs to the binuclear

Figure 2. Purification of recombinant RNA repair enzymes. Aliquots (5mg) of the indicated recombinant proteins were analyzed by SDS-PAGE. The
Coomassie blue-stained gel is shown. The positions and sizes (kDa) of marker polypeptides are indicated on the left.
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metallophosphoesterase superfamily (24,25). The salient
question is whether CthPnkp can perform a bona fide
RNA repair reaction and, if so, to which of the two known
repair pathways it adheres. We found that CthPnkp
functioned in tRNA splicing in vitro as the sole source of
end-healing activity when added in tandem with T4 Rnl1,
resulting in the formation of a spliced tRNA product
and an intron circle (Figure 3). However, splicing activity
was attenuated severely when yeast Trl1(1–388) replaced
phage Rnl1 as the source of the RNA sealing
activity (Figure 3). We surmise that the predominant
outcome of CthPnkp healing of a tRNA 20,30 cyclic
phosphate end is not the 30-OH, 20-PO4 required by yeast
tRNA ligase.

Mechanism of 30 end healing byCthPnkp

To better address how CthPnkp acts at a 20,30 cyclic
phosphate end, we compared the release of inorganic
phosphate (Pi) from 20,30 cAMP by CthPnkp alone versus
a duplicate sample in which the products were treated with
calf intestinal phosphatase (CIP) prior to assay of Pi

release (Figure 4A). Whereas CthPnkp converted 16% of
the input 20,30 cAMP to Pi, treatment of the reaction
product with CIP increased the yield of Pi to 90% of the
input 20,30 cAMP substrate. (Treatment with CIP alone
released 52% of the Pi from 20,30 cAMP.) These
results indicate that a nucleoside 20,30 cyclic phosphate is
converted by CthPnkp to a phosphomonoester prior to
the release of Pi. The transient nature of the
phosphomonoester intermediate would account for why
CthPnkp-mediated tRNA repair proceeds down the
bacteriophage-type pathway.

Studies of the catalytic mechanism of the CthPnkp
phosphoesterase have shown it to be plastic, insofar as

certain mutations in the active site alter the reaction
outcome (25). In particular, an H189D change abolished
the phosphomonoesterase activity with p-nitrophenylpho-
sphate as a substrate, without affecting the phosphodies-
terase activity with bis-p-nitrophenylphosphate (25). Here,
we find that CthPnkp-H189D failed to release inorganic
phosphate from 20,30 cAMP, while converting 88% of
the input 20,30 cAMP to a monoester that was hydrolyzed
by CIP (Figure 4A). The reaction in substrate excess
proceeded to near completion with apparent pseudo-first-
order kinetics (Figure 4B) at an initial rate of 20 s�1. The
transformation of CthPnkp into a CPD-only end-healing
enzyme by the H189D mutation allowed us to probe the
outcome of the CPD reaction, by performing TLC
analysis of the reaction mixture as a function of reaction
time in the presence of CthPnkp only (no CIP). This
revealed a single-step conversion of 20,30 cAMP to a faster
moving product that comigrated with 20 AMP
(Figure 4C). We infer that a 20 phosphomonoester is the
relevant intermediate in tRNA end healing by wild-type
CthPnkp.

The H189D change alters the pathway of tRNA repair

Testing the activity of CthPnkp-H189D in tRNA splicing
revealed that its RNA repair specificity had been
transformed so that its healing activity was now channeled
through the yeast-type repair pathway. H189D exhibited a
gain of function in working with the yeast ligase to
perform both tRNA splicing and intron circularization
(Figure 5). CthPnkp-H189D had no repair activity in
the absence of Trl1(1–388) (not shown). Moreover, a
truncated version of H189D (aa 1–472) containing just
the kinase and phosphoesterase modules retained
full activity in tRNA splicing in combination with
Trl1(1–388) (Figure 5). Thus, the C-terminal
adenylyltransferase domain of CthPnkp was noncontrib-
utory to the observed tRNA repair activity. We intro-
duced into the H189D-healing domain a second mutation
in the ATP-binding motif of the polynucleotide kinase
module. The K21A change abolished 50 kinase activity,
without impacting the cyclic phosphoesterase function
(Figure 6). The K21A-H189D double mutant was inert in
tRNA repair (Figure 5), proving that the bacterial enzyme
is the source of the 50 end-healing function for tRNA
splicing in vitro.

CONCLUSIONS

The present study illuminates several aspects of RNA
repair: (i) the demonstration of a repair-competent RNA
end-healing enzyme encoded by a bacterium (to our
knowledge, the first case so documented); (ii) repair
pathway choice based on the compatibility of the 30 end-
healing and sealing reaction specificities; and (iii) the
ability to reprogram the choice of repair pathway by a
single missense mutation in the 30 end-healing component.
These properties suggest that RNA repair enzymes and
pathways can quickly evolve (or co-evolve) their specifi-
cities to suit a particular biological context, e.g. the CPD
reaction chemistry and stringent specificity of yeast Trl1

Figure 3. Wild-type CthPnkp elects the phage tRNA repair pathway.
Reaction mixtures (20 ml) containing 50mM Tris-acetate (pH 6.5),
5mM MgCl2, 0.5mM MnCl2, 50 mM ATP, 200 fmol radiolabeled
cleaved tRNA substrate, either 1 pmol Trl1(1–388) or 1 pmol T4 Rnl1,
and CthPnkp as specified were incubated for 30min at 378C. The
products were resolved by PAGE and visualized by autoradiography.
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Figure 4. CthPnkp-H189D opens a 20,30 cyclic phosphodiester to form a 20-phosphomonoester. (A) Reaction mixtures (10 ml) containing 50mM
Tris-HCl (pH 7.5), 0.5mM MnCl2, 10mM 20,30 cAMP (Sigma) and either 4mg wild-type CthPnkp, 1.4 mg CthPnkp-H189D or 1 unit CIP (New
England Biolabs) where indicated byþwere incubated for 30min at 458C. The reactions were quenched by adding 1ml of 0.5M EDTA. Phosphate
release was measured colorimetrically using the Malachite green reagent (BIOMOL Research Laboratories). (B) Reaction mixtures containing (per
10 ml) 50mM Tris-HCl (pH 8.0), 0.5mM MnCl2, 10mM 20,30 cAMP and either 1.4 mg of CthPnkp-H189D and 1U of CIP (closed circle), 1.4 mg of
CthPnkp-H189D alone (closed triangle) or 1U of CIP alone (open circle) were incubated at 458C. Aliquots (10 ml) were withdrawn at the times
specified and quenched immediately with EDTA. Phosphate release is plotted as a function of time. (C) A reaction mixture containing (per 10 ml)
50mM Tris-HCl (pH 8.0), 0.5mM MnCl2, 10mM 20,30 cAMP and 1.4 mg of CthPnkp-H189D was incubated at 458C. Samples (10 ml) were withdrawn
at the times specified and quenched immediately with EDTA. Aliquots (1 ml) of each sample were applied to a cellulose-F TLC plate (EMD
Chemicals). Markers 20AMP, 30AMP and 20,30 cAMP (5 nmol each) were spotted in lane M. The TLC plate was developed with buffer containing
saturated ammonium sulfate:3M sodium acetate:isopropanol (80:6:2), in which the order of migration away from the origin (Rf) is 20,30 cyclic
phosphate530-phosphate520-phosphate (28,29). The nucleotides were visualized by photography under UV light. All species on the TLC plate that
were detected by UV are shown in the photograph.

Figure 5. The H189D change redirects CthPnkp down the yeast tRNA-splicing pathway. Reaction mixtures (20 ml) containing 50mM Tris-acetate
(pH 6.5), 0.5mM MnCl2, 50 mM ATP, 5mM MgCl2, 200 fmol of cleaved tRNA substrate, 1 pmol Trl1(1–388) and wild-type CthPnkp, or mutated
versions as specified were incubated for 30min at 378C. The products were resolved by PAGE and visualized by autoradiography.
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for a 30-OH, 20-PO4 terminus ensures avoidance of sealing
RNA ends not generated by programmed cleavage
events (27).

Although CthPnkp is clearly tRNA repair-competent
in vitro, our initial attempts to replace Trl1(389–827) with
CthPnkp-H189D in vivo in yeast were not successful. We
suspect that the non-portability of this RNA repair
enzyme reflects idiosyncratic aspects of foreign protein
expression or localization in budding yeast, rather than
any mechanistic deficit, insofar as we were also unable to
complement a Saccharomyces cerevisiae trl1� strain with
the Trl1 ortholog from fission yeast Schizosaccharomyces
pombe.

Based on the detection of CthPnkp-like proteins with
similar size and domain organization in many other
bacterial genera (Bacillus, Helicobacter, Fusobacterium,
Herpetosiphon and Maricaulis), we propose that bacterial
RNA repair is hiding in plain sight.
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