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Carrying both COL1A2 and FBN2 gene 
heterozygous mutations results in a severe 
skeletal clinical phenotype: an affected family
Jing Chen1,2†, Qinqin Xiang1,2†, Xiao Xiao1,2, Bocheng Xu1,2, Hanbing Xie1,2, He Wang1,2, Mei Yang1,2*† and 
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Abstract 

Background:  Osteogenesis imperfecta (OI) is the most common monogenic disease of the skeletal system and is 
usually caused by mutations in the COL1A1 or COL1A2 genes. Congenital contractural arachnodactyly syndrome (CCA) 
is an autosomal dominant hereditary disease of connective tissue. To date, the FBN2 gene is the only gene reported 
to cause CCA. Researchers found that COL1A2 and FBN2 are both involved in the extracellular matrix organization 
pathway. These findings suggest that these two genes play an important role in a similar mechanism and may trigger 
a synergistic effect.

Methods:  Trio-whole-exome sequencing (Trio-WES) was performed to analyse the underlying genetic cause of a 
proband with OI in a Chinese family. Sanger sequencing was used to validate the mutations in 3 members of the fam-
ily with OI with varying degrees of severity of skeletal abnormalities and the members with no clinical signs.

Result:  A c.3304G > C mutation in the COL1A2 gene (p.Gly1102Arg) and a novel c.4108G > T mutation in the FBN2 
gene (p.Glu1370*) were detected in the proband, an affected member of the family. The affected individuals with 
both mutations present a more severe phenotype, while affected individuals present a milder phenotype if only the 
mutation in COL1A2 is detected (c.3304G > C). The unaffected individual in this family did not have any mutations in 
the COL1A2 gene or FBN2 gene.

Conclusion:  Our study is the first clinical report to indicate that patients carrying concomitant mutations in both the 
COL1A2 and FBN2 genes may present with more severe skeletal abnormalities. Furthermore, our study suggests the 
possibility of synergistic effects between the COL1A2 and FBN2 genes.

Keywords:  Osteogenesis imperfecta, Congenital contractural arachnodactyly syndrome, COL1A2, FBN2, Synergistic 
effect, Whole-exome sequencing
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Background
Osteogenesis imperfecta is a genetic disorder of increased 
bone fragility, low bone mass, and other connective-tis-
sue manifestations. In the majority of cases, osteogen-
esis imperfecta is caused by mutations in COL1A1 or 
COL1A2, which are genes that encode the two collagen 
type I alpha chains [1, 2]. The incidence of osteogen-
esis imperfecta in newborns in China is approximately 
1/15,000–1/77,000 [3]. OI has a variable phenotype, even 
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among patients in the same family [4–6]. According to 
clinical presentation, radiographic findings, and family 
history, COL1A1/2 osteogenesis imperfecta (COL1A1/2-
OI) is mainly classified into four types (I-IV) and is usu-
ally inherited in autosomal dominant (AD) pattern [4, 7]. 
OI-I has the mildest phenotype [2]. Patients with OI-II 
usually die during the perinatal period [8], and OI-III 
patients have recurrent fractures and severe bone defor-
mation. Patients with mild to moderate bone deformities 
and short stature are classified as OI-IV; the severity of OI 
types increases in the order OI-I < OI-IV < OI-III < OI-II 
[2]. With the constant increase in the number of identi-
fied mutations in COL1A1, COL1A2 or other genes, gen-
otype–phenotype correlation have become increasingly 
pertinent [1]. Contractural arachnodactyly syndrome 
(CCA) is a rare autosomal dominant connective tissue 
disease that is characterized by arachnodactyly, contrac-
tures of major joints and progressive scoliosis, and its 
clinical features partially overlap with the phenotype of 
Marfan syndrome (MFS) [9–11]. The alpha2 chain of the 
type I collagen (COL1A2) and fibrillin-2 (FBN2) genes, 
which are the cause of these two diseases, respectively, 
are members of the extracellular matrix pathway. This 
implies that these two genes may be functionally related 
and may trigger a synergistic effect.

In this report, we first describe a Chinese family in 
which the proband and his affected father carried het-
erozygous mutations in the COL1A2 gene (OMIM: 
120160; c.3304G > C; p.Gly1102Arg) and FBN2 gene 
(OMIM: 612570; c.4108G > T; p.Glu1370*) that caused a 

significantly more severe phenotype of OI. The proband’s 
elder sister, who had a milder clinical phenotype, only 
carried a mutation in the COL1A2 gene (OMIM: 120160; 
c.3304G > C; p.Gly1102Arg).

Method
Clinical data
A 28-year-old female (III4) who was three months 
pregnant sought genetic counselling and prenatal diag-
nosis for the foetus in the current pregnancy at West 
China Second University Hospital, Sichuan University 
(Chengdu, China). The woman informed the doctor 
that her family members had skeletal diseases of vari-
able severity. The proband (III5, the pregnant woman’s 
brother) was a 17-year-old male who had over six-
teen fractures after trauma, of which the long bones of 
the limbs and ribs were usually involved. At the time of 
examination, he showed short stature, slender upper 
limbs, slender fingers, severe joint contractures, signifi-
cant muscle atrophy and severe skeletal deformities and 
was unable to walk. Their father (II5) had symptoms 
similar to those of the proband but could walk slowly 
on crutches. The pregnant woman (III4) had the mild-
est phenotype in this family. She only had three fractures 
to date. She presented with only an old fracture of the 
left elbow and a mild limitation of dorsoextension. Her 
appearance and height were normal. The pedigree of this 
family is shown in Fig. 1.

Trio-whole-exome sequencing (Trio-WES) was per-
formed to analyse the underlying genetic cause of the 

Fig. 1  Pedigree of the proband’s family.Pedigree of a four-generation family with recurrent fractures and bone deformity. Generations are shown 
as I–IV. Squares indicate male, and circles indicate female. Empty symbols indicate unaffected individuals and filled symbols indicate affected 
individuals.Deceased individuals are indicated by a slash (/), the arrow shows the proband
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family. Suspected mutations detected by next-generation 
sequencing (NGS) were validated by Sanger sequencing.

DNA extraction
Total genomic DNA was extracted from whole blood 
from the proband and his family members using a 
DNeasy Blood & Tissue DNA kit (Qiagen, Hilden, Ger-
many) according to the manufacturer’s instructions.

Exome sequencing and bioinformatic analysis pipeline
To detect the variants carried by the proband, the Nano 
WES Human Exome V1 (Berry Genomics) was used to 
capture the sequences. Then, the enriched library was 
sequenced on a Nova seq 6000 with 150 paired-end reads. 
The reads were mapped to a human reference genome 
(hg38) with BWA (v0.7.15). Variant calling was per-
formed by Verita Trekker (v1.2.0.2). During the analysis 
of the data, we selected the variants if their minor allele 
frequencies (MAF) were < 0.05 in the 1000 Genomes Pro-
ject (1000G) (http://​brows​er.​1000g​enomes.​org), Exome 
Aggregation Consortium (ExAC) (http://​exac.​broad​insti​
tute.​org/), and gnomAD (http://​gnomad.​broad​insti​tute.​
org/). SNVs with a minor allele frequency (MAF) ≥ 1% 
for a dominant inheritance pattern were excluded. For 
pathogenicity prediction, CADD (https://​cadd.​gs.​washi​
ngton.​edu), SIFT (http://​sift.​jcvi.​org), PolyPhen-2 (http://​
genet​ics.​bwh.​harva​rd.​edu/​pph2), and Rare Exome Vari-
ant Ensemble Learner (REVEL) (https://​sites.​google.​
com/​site/​revel​genom​ics/) were used. To select disease-
causing variants, we referred to the information from the 
OMIM database (http://​www.​omim.​org), ClinVar data-
base (http://​www.​ncbi.​nlm.​nih.​gov/​clinv​ar) and Human 
Gene Mutation Database (http://​www.​hgmd.​org). SNVs 
were classified into five categories, pathogenic (P), likely 
pathogenic (LP), uncertain significance (VUS), likely 
benign (LB) and benign (B), according to the guidelines 
of the American College of Medical Genetics (ACMG) 
[12]. ACMG is based on population data, computational 
and predictive data, functional data, segregation data, de 
novo data, and allelic data. The detailed process for iden-
tifying candidate variants is shown in Additional file  1: 
Fig. S1.

Sanger sequencing
To validate the disease-causing variants selected, Sanger 
sequencing was performed using specific PCR primers 
designed with Primer Premier 5. The sequences of the 
FBN2 primers used were FBN2-F: 5′-GCA​AAC​TCA​CCA​
ATA​CAC​TT-3′ and FBN2-R: 5′-CTC​CAT​ACG​GTT​GCA​
TCT​T-3′. The sequences of the COL1A2 primers used 
were COL1A2-F: 5′-GAA​CAT​GCT​TCC​GTG​TGA​-3′ 
and COL1A2-R: 5′-CAT​CAA​CTT​CAT​AGT​CCT​TGG-
3′. PCR products were sequenced using an ABI 3500 

Genetic Analyser (Thermo Fisher Scientific) for COL1A2 
c.3304G > C and FBN2 c.4108G > T.

Results
Heterozygous mutations of the COL1A2 and FBN2 
genes were identified in a family with a skeletal clinical 
phenotype
A missense mutation in exon 49 of COL1A2 
(NM_000089.4; c.3304G > C; p.Gly1102Arg) was detected 
in the proband (III5); this mutation was inherited from 
the patient’s affected father (II5). Additionally, a nonsense 
mutation in exon 32 of FBN2 (NM_001999.4; c.4108G > T; 
p.Glu1370*) was also detected in the proband; this muta-
tion was also inherited paternally. In other words, both 
the proband (III5) and his father (II5) had a severe skele-
tal clinical phenotype and carried concomitant mutations 
in both the COL1A2 and FBN2 genes. The presence of 
the mutations was further validated by Sanger sequenc-
ing for the proband (III5) and his father (II5) (Figs. 3, 4). 
However, no mutations were detected in the unaffected 
mother (II6) (Figs.  3, 4). No other pathogenic or likely 
pathogenic variants related to the skeletal disorders were 
detected in the mother. The mutations and clinical data of 
the patients in the family are shown in Table 1 and Fig. 2. 
The presence of the mutations was further validated by 
Sanger sequencing in the affected elder sister (III4), who 
presented with a milder phenotype. Only the mutation in 
COL1A2 (c.3304G > C) was detected in the affected elder 
sister (III4) (Figs. 3, 4).

In silico analysis
The mutation (c.3304G > C) in COL1A2 results in 
replacement of a highly conserved glycine (polar amino 
acid) by arginine (basic amino acid). In silico analysis of 
the COL1A2 mutation (p.Gly1102Arg) indicated that 
this substitution is disease causing and deleterious, as 
determined by CADD_Phred, SIFT_pred, Polyphen2_
HVAR_pred, and REVEL. A change in the same codon 
that results in a p.Gly1102Arg substitution had been pre-
viously reported as a COL1A2 mutation associated with 
Osteogenesis imperfecta IV [17]. In addition, multiple 
sequence alignment of COL1A2 from different species 
showed the evolutionary conservation of the glycine resi-
due at position 1102 (Fig. 5).

The nonsense mutation (c.4108G > T) in FBN2 
(NM_001999.4) results in a premature termination 
codon at amino acid position 1370 (p.Glu1370*). The 
probability of loss-of-function intolerance (pLI = 0.99) 
of this mutation was greater than 0.9, revealing that this 
nonsense mutation was intolerant to loss-of-function 
(LoF). Furthermore, the NMD_predict forecasted that 
this nonsense mutation might generate nonmediated 
decay (NMD).

http://browser.1000genomes.org
http://exac.broadinstitute.org/
http://exac.broadinstitute.org/
http://gnomad.broadinstitute.org/
http://gnomad.broadinstitute.org/
https://cadd.gs.washington.edu
https://cadd.gs.washington.edu
http://sift.jcvi.org
http://genetics.bwh.harvard.edu/pph2
http://genetics.bwh.harvard.edu/pph2
https://sites.google.com/site/revelgenomics/
https://sites.google.com/site/revelgenomics/
http://www.omim.org
http://www.ncbi.nlm.nih.gov/clinvar
http://www.hgmd.org
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According to the guidelines of ACMG, the muta-
tion (c.3304G > C) in COL1A2 and the nonsense muta-
tion (c.4108G > T) in FBN2 were both classified as likely 

pathogenic (LP) and are considered to be the cause of the 
clinical manifestations in this family.

Table 1  Mutations and clinical features of individuals included in the study

Symbol +/− indicates whether there is a clinical phenotype, the number of + indicates the severity of the phenotype

*m: meter

II5 III5 III4 II6

Gene mutation COL1A2
c.3304G > C
FBN2
c.4108G > T

COL1A2
c.3304G > C
FBN2
c.4108G > T

COL1A2
c.3304G > C

None

Phenotype

Short stature +++ (1.1 m*) +++ (1.1 m) − (1.56 m) − (1.54 m)

Sclera − − − −
Recurrent fractures +++ (≥ 10 times) +++ (≥ 16 times) + (3 times) −
Scoliosis + + − −
Acromacria + + − −
Joint contracture ++ ++ − −
Muscle hypotrophy ++ ++ − −
Intellectual development or other 
systems

− − − −

Fig. 2  The clinical symptoms of proband’family. A The proband showed short stature, barrel chest, kyphosis, slender fingers and other 
skeletal deformities. B The proband’s father showed similar symptoms to the proband; C The proband’s sister had the mildest skeletal system 
abnormality,and from left to right is the proband, the proband’s mother, the proband’s sister and the proband’s father
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Discussion
The COL1A2 gene encodes the pro-alpha2 chain of 
type I collagen, whose triple helix comprises two 
alpha1 chains and one alpha2 chain [13]. Mutations 
in COL1A2 are associated with osteogenesis imper-
fecta types II-IV, Ehlers–Danlos syndrome, and idi-
opathic osteoporosis. Wenstrup et  al. identified the 
same heterozygous mutation (c.3304G > C) of COL1A2 

in a family with an autosomal dominant form of mild-
moderate osteogenesis imperfecta. The affected mem-
bers of this family had bone fragility, short stature and 
dentinogenesis imperfecta but had no clinical manifes-
tations of slender fingers and severe joint contractures 
[14]. In this report, the proband, his affected father 
and less affected sister all carried the same mutation 
(c.3304G > C) of the COL1A2 gene, and the proband 

Fig. 3  Sanger sequencing chromatograms of the II5, II6, III4 and III5 (COL1A2, c.3304G > C). The COL1A2 missense mutation was detected in all 
affected individuals (II5, III4 and III5) but not in unaffected members (II6) by Sanger sequencing. The black arrows indicate the point of mutation 
(G > C)

Fig. 4  Sanger sequencing chromatograms of the II5, II6, III4 and III5(FBN2, c.4108G > T) The FBN2 nonsense mutation was detected in severer 
affected individuals (II5, III5) but not in clinically less affected member (III4) or unaffected member (II6) by Sanger sequencing. The black arrows 
indicate the point of mutation (G > T)
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and his father had slender fingers and severe joint con-
tracture. This phenotype is not consistent with the phe-
notypes of osteogenesis imperfecta or Ehlers–Danlos 
syndrome and cannot be explained by genetic hetero-
geneity. It is likely that the clinical variation among the 
affected and less affected members of this family results 
from synergistic effects with other genes involved in 
matrix production.

FBN2 is an extracellular matrix gene that encodes 
fibrillin 2. It is a component of connective tissue micro-
fibrils and may be involved in elastic fibre assembly [15, 
16]. Mutations in FBN2 are associated with CCA. CCA is 
a connective tissue disease characterized by arachnodac-
tyly, contractures of major joints and progressive scoliosis 
[17]. These phenotypes are similar to the slender fingers 
and joint contractures observed in the proband and his 
father. Genetic analysis identified a novel heterozygous 
FBN2 nonsense mutation (c.4108G > T; p.Glu1370*) in 
the proband and his affected father. However, this muta-
tion was not found in his sister, who demonstrated a 
milder phenotype. These observations suggest a synergis-
tic effect of these mutant alleles of two related but dis-
tinct genes, COL1A2 and FBN2, and this finding provides 
evidence for a digenic form of skeletal disorders.

In this report, a heterozygous mutation in COL1A2 
combined with another heterozygous mutation in FBN2 
simultaneously aggravates the skeletal clinical pheno-
type in individuals. The Reactome signal pathway data-
base (https://​react​ome.​org) and previous studies show 
that both COL1A2 and FBN2 are involved in the extra-
cellular matrix organization pathway [11, 18], suggesting 
that both genes play an important role in the assembly 
and degradation of the extracellular matrix (ECM). It is 
well known that the extracellular matrix can send signals 
to cells to direct or regulate the transcription of certain 
mRNAs [19–21]. Therefore, we suspect that a mutation 
in one of the two genes, COL1A2 and FBN2, may affect 
the expression level of the other gene, but this requires 
further research.

Compared to monogenic inheritance, digenic inher-
itance does not follow the rules of Mendelian inher-
itance, so it is often underdiagnosed due to the 
difficulty of verifying the true synergistic effect. The 
members of the extracellular matrix structural con-
stituent, COL4A3, COL4A4 and COL4A5, have been 
reported to be consistent with digenic inheritance and, 
together, lead to the occurrence of Alport syndrome 
[22–24]. COL1A2 and FBN2 are also members of the 

Fig. 5  A The missense mutation (c.3304G > C) in the COL1A2 gene (NM_000089.4) results in replacement of glycine by a highly conserved arginine 
(p.G1102R); B The nonsense mutation (c.4108G > T) in the FBN2 gene (NM_001999.4) results in the premature termination of transcription (p.E1370*)

https://reactome.org
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extracellular matrix pathway. Thus, these two genes 
may be functionally related and may also have a syner-
gistic effect.

Large-scale research projects in genetic diseases have 
indicated that massively parallel whole-genome/whole-
exome sequencing can reveal a large number of new 
genes or new alleles that otherwise would be undetected 
by traditional sequencing methodologies [25]. At pre-
sent, whole-exome sequencing based on next-generation 
sequencing technology is one of the most effective tools 
for the diagnosis of genetic diseases. Our results pro-
vide accurate genetic information for targeted treatment, 
genetic counselling and subsequent prenatal diagnosis 
for the patients in this family.

Conclusion
In conclusion, we successfully identified a mutation in 
exon 49 of COL1A2 (c.3304G > C; p.Gly1102Arg) and 
another novel heterozygous FBN2 mutation (c.4108G > T; 
p.Glu1370*) in this family. The novel variant expands the 
spectrum of mutations in the FBN2 gene. Furthermore, 
this is the first clinical report to identify patients carry-
ing coexisting mutations in both the COL1A2 and FBN2 
genes that contribute to more severe skeletal abnormali-
ties. Furthermore, our segregation analysis indicated the 
possibility of synergistic effects between the COL1A2 and 
FBN2 genes.
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