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Abstract

Improving travel time prediction for public transit effectively enhances service reliability, opti-

mizes travel structure, and alleviates traffic problems. Its greater time-variance and uncer-

tainty make predictions for short travel times (�35min) more subject to be influenced by

random factors. It requires higher precision and is more complicated than long-term predic-

tions. Effectively extracting and mining real-time, accurate, reliable, and low-cost multi-

source data such as GPS, AFC, and IC can provide data support for travel time prediction.

Kalman filter model has high accuracy in one-step prediction and can be used to calculate a

large amount of data. This paper adopts the Kalman filter as a travel time prediction model

for a single bus based on single-line detection: including the travel time prediction model of

route (RTM) and the stop dwell time prediction model (DTM); the evaluation criteria and

indexes of the models are given. The error analysis of the prediction results is carried out

based on AVL data by case study. Results show that under the precondition of multi-source

data, the public transportation prediction model can meet the accuracy requirement for

travel time prediction and the prediction effect of the whole route is superior to that of the

route segment between stops.

I. Introduction

Public transit travel time prediction is one effective measure for improving service reliability,

optimizing travel structure, and alleviating traffic problems. Accurate real-time travel time

information benefits include reducing passenger waiting time, relieving passenger anxiety, rea-

sonably distributing travel time, improving convenience in taking or transferring busses,

enriching public transit services types, enhancing public transit’s image and improving its

desirability, and providing a rational basis for scheduling [1]. In contrast, conventional transit

is a complex non-linear system with multiple parameters, creating a high degree of uncer-

tainty. This complexity makes it challenging to predict travel times, especially when short-
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term travel times are more susceptible to random factors and uncertainties than long-term

forecasts. Moreover, as travel time increases, so does the probability of unexpected accidents.

The requirement for short-term travel time prediction precision (�35min) is higher than for

long-term, making its prediction also more complex.

Traditional travel time prediction methods based on statistical analysis or mathematical

modeling are deficient in intelligence and have weak adaptability. Current methods depend on

real-time detection of traffic conditions regardless of precision or accuracy. Some methods

based on new mathematical tools, such as neural networks, have a good application effect for

some specific problems but lack generalizability. Other knowledge discovery methods embody

knowledge-based requirements but have not formed a methodology suitable for traffic data

analysis. Therefore, in the big data environment, it is necessary to study travel time prediction

technology to more fully meet the data requirements in the operation analysis process of

urban public transit and improve its applicability.

This paper studies the travel time prediction of urban public transit based on the Kalman

filter in a big data environment. Based on leading research and application in intelligent transit

technologies, the theories and methods of current travel time prediction of public transit based

on data mining are enriched and complemented. Additionally, a travel time prediction system

of conventional transit under the influence of random factors is constructed, and a short-term

(�35min) travel time prediction model with strong applicability is built. These will work con-

gruously to improve prediction’s real-time accuracy and adaptability and reduce costs associ-

ated with data acquisition. This paper provides a scientific theoretical basis and decision

support for the practical work of using intelligent technology to improve the prediction accu-

racy of travel time. It holds practical application value for four stakeholder groups:

1. Travelers: As a general travel time prediction system of public transit, it can predict travel

time information within a certain period. This improves an urban public transit system’s

service levels and provides passengers with real-time travel time information through mul-

tiple channels to facilitate their travel choices.

2. Public transit operators: Accurate travel time prediction is the basis of dynamic scheduling.

Using artificial intelligence to perceive and predict the system’s status continuously

improves travel time predictions in real-time. Establishing a new generation of intelligent

information service systems that bases predictions on big data analysis improves and

enhances the intelligent service level of public transit. Innovative big data analysis applied

to public transit realizes gains in the efficient operation and management of public trans-

portation systems.

3. Public transit managers: Building a flexible and universal public transit travel time model

based on data mining in the big data environment can provide public transit managers with

decision-support information related to management planning.

4. Public transit policymakers: Strategic public policymakers and planners can use this

approach for improving passenger satisfaction, optimizing scheduling schemes, increasing

public transit system reliability, making public transit options more attractive, promoting

reasonable travel plan creation, and relieving the pressure of urban traffic. These benefits

will facilitate the strategic development of public transit.

II. Literature review

Prior researchers have developed methods to predict travel time [2–4]. This section is an over-

view of methods for predicting travel time published in the last five years. These methods can
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be divided into five categories: Global Positioning System (GPS) based, Neural Network based,

Support Vector Machines (SVM) based, Particle Filtering (PF) based, and Kalman Filter (KF)

based.

A. Global positioning system

GPS signal positioning is the most direct method for travel time prediction. Based on bus rid-

ers’ smartphone Wi-Fi information, Liu et al. [5] presented a model to track and predict the

arrival time of a city bus. Automatic Vehicle Location (AVL) and smartphone location can

also predict bus arrival time. Farooq et al. [6] presented a prediction system relying on real-

time AVL. While using technological solutions such as GPS and AVL, those methods could

not use historical information and ignored space features.

Chen EH et al. [7] proposed a generic framework to analyze short-term passenger flow,

considering passenger flow’s dynamic volatility and nonlinearity during special events. Four

different generalized autoregressive conditional heteroscedasticity models and the ARIMA

model were used to model the mean and volatility of passenger flow based on the transit smart

card data(Contains GPS information) from Nanjing, China. The proposed framework could

effectively capture the mean and volatility of passenger flow and outperform the traditional

methods in terms of accuracy and reliability. Zhang B et al. [8] focuses on identifying the dis-

tribution of regions with high travel intensity and the correlation between travel intensity and

points of interest (POIs), based on the online car-hailing data collected in Chengdu, China

(Contains GPS information). Zhang HL et al. [9] propose a spatial-temporal generative adver-

sarial network (ST-GAN) to assign the generative factors of traffic flow to the feature vector in

latent space and reconstructs the high-dimensional citywide traffic flow from the given ele-

ments. With the help of the disentangled representations, the decomposed feature vector in

latent space discloses the relationship between underlying patterns and citywide traffic dynam-

ics. Liu Y et al. [10] propose a novel travel mode recommendation system for multi-modal

transportation. In the proposed model, the feature engineering focuses on the application sce-

nario of the multi-modal transportation recommendation and is designed from multiple per-

spectives of users, travel modes, locations, and time.

B. Neural network

Neural networks’ non-linear modeling ability has made them more popular. Chen CH et al.

[11] proposed an arrival time prediction method (ATPM) based on recurrent neural networks

(RNNs) to predict the stop-to-stop travel time for motor carriers. Pang et al. [12] proposed to

exploit the long-range dependencies among the multiple time steps for bus arrival prediction

via a recurrent neural network. Zhang et al. [13] proposed a model based on MapReduce com-

bining clustering with the neural network. Yang et al. [14] proposed a novel stacked autoenco-

der Levenberg-Marquardt model, a type of deep architecture of neural network approach that

aimed to improve forecasting accuracy. Polson et al. [15] developed a deep learning model to

predict traffic flows. Wu et al. [16] proposed a deep neural network (DNN) based traffic flow

prediction model (DNN-BTF) to improve the prediction accuracy. Cristina et al. [17] tried five

neural network models and identified the best performing deep learning model. Wichai et al.

[18] proposed another DNN-based model. Zhang et al. [19] proposed an end-to-end multitask

learning temporal convolutional neural network (MTL-TCNN) to predict the short-term pas-

senger demand at a multi-zone level. In the same year, Zhang et al. [20] also proposed a deep

learning-based multitask learning (MTL) model using Bayesian optimization to tune parame-

ters of MTL to predict short-term traffic speed. Zheng et al. [21] proposed a feature selection-

based approach to identify reasonable spatial-temporal traffic patterns related to the target link
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to improve online prediction performance. To resolve the problem that empirical methods

cannot adequately capture various travel time distributions, Zhang et al. [22] proposed a deep

learning-based Trip Information Maximizing Generative Adversarial Network (T-InfoGAN).

Liu Y et al. [23] analyze the passenger flow from scopes on macroscopic and microscopic lev-

els. Decision-tree-based models are used in modeling and predicting passenger flow. Inspired

by the feature engineering of decision-tree-based models, a modular convolutional neural net-

work is designed, which contains automatic feature extraction block, feature importance

block, fully-connected block, and data fusion block. However, these articles do not combine

timely GPS data with the neural network model.

C. Support vector machine

SVM maps the input data into higher dimensional space with a specifically designed kernel

such that the relationship between modified input data and the target variable is linear. Yang

et al. [24] presented a prediction model of bus arrival time based on SVM with a genetic algo-

rithm (GA-SVM). Peng et al. [25] proposed a forecasting method based on principal compo-

nent analysis-genetic algorithm-support vector machine (PCA-GA-SVM) to improve arrival

time prediction precision. Yao et al. [26] proposed a single-step prediction SVM model com-

posed of spatial and temporal parameters. Moridpour et al. [27] suggested a Least Squares

SVM (LS-SVM) method that expedited the training process by simplifying the quadratic pro-

gramming problem using a linear regression technique. Lu LL et al. [28] propose a methodol-

ogy for real-time freeway travel time estimation with data from sparse detectors, utilizing a

self-organized mapping algorithm to cluster the sensors with similar traffic patterns. The data

collected from the representative detectors within each cluster is then employed to estimate

the travel time based on a support vector regression model.

And further, to better assist travelers in making trip decisions in under-connected environ-

ments and undersaturated signalized arterial environments, Lu LL et al. [29, 30] propose a

lane-level travel time prediction model under a connected environment real-time prediction

model for vehicle individuals on an undersaturated signalized arterial. Conventional models

are suitable for estimating the travel time distributions of only a few road segments. In con-

trast, these two models fully capture travel time reliability metrics such as the buffer time

index, skewness, and width of the travel time distributions for all road segments, these results

will help traffic managers and engineers carry out effective traffic management and control to

optimize the operation under-connected environments, and undersaturated signalized arterial

environments.

D. Particle filtering

The PF technique has been widely applied to deal with historical GPS information and predict

bus arrival time. Dhivyabharathi et al. [31] proposed a method to predict stream travel time

using a particle filtering approach that considers the predicted stream travel time as the sum of

the median of historical travel times, random variations in travel time over time, and a model

evolution error. Dhivyabharathi et al. [32] developed a model based on particle filtering tech-

nique which was better than the existing method with MAPE values around 17% with the

accuracy of +/- 2 minutes, wherein inputs were obtained using the K-NN (k-nearest neigh-

bors) algorithm (the core of KNN is that a sample belongs to most categories of k samples adja-

cent to it). However, the particle filtering algorithm used in these two papers is only suitable

for a non-linear stochastic system with the state-space model, but the time property of bus

arrival prediction was not considered.
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E. Kalman filtering

Kalman first proposed Kalman filtering in 1960. It takes the minimum mean square error as

the best estimation criterion to seek a set of recursive estimation algorithms. Its basic idea is to

use the state-space model of signal and noise, update the estimation of state variables by using

the estimated value of the previous time and the observed value of the current time, and obtain

the estimated value of the present time. It is suitable for real-time processing and computer

operation. Kalman filters are ideal for conventional urban transit systems, a multi-parameter

and time-varying complex giant system with a high degree of uncertainty and are non-linear.

This filter can consider quantities that are partially or entirely neglected in other methods

(such as the variance of the initial estimate of the state and the variance of the model error). It

provides information about the quality of the estimation by providing, in addition to the best

estimate, the variance of the estimation error.

KF has been widely applied to the prediction of travel time. Li et al. [33] considered KF

combined with other methods and proposed a three-stage mixed model including K-means,

real-time adjusted Kalman filter, and Markov historical transfer model. Huo JB et al. [34] pro-

pose a spatiotemporal extended Kalman filter (SEKF)short-term pedestrian density estimation

and prediction method based on mobile phone data. A massive mobile phone dataset collected

in Nanjing, China, is used in the case study. The estimated pedestrian density from Monday to

Thursday is used for Friday’s prediction. KF model has the advantages of high prediction accu-

racy and a large amount of data processed by computer. At the same time, there still is room

for improvement in model construction and data input in previous studies.

While the models described in this section can solve the bus-to-station prediction problem to

some degree, the influence factors these models considered are one-sided. GPS over-emphasizes the

current state of the bus, degrading the prediction accuracy as the predicted distance increases. The

input used in the NN network is too one-sided and does not consider the comprehensive impact of

time and space characteristics. SVM relies too much on kernel tricks to achieve predictions on a

large scale. The PF only finds the time of the bus to the stop and ignores the spatial effect of the bus.

The system contains accurate mathematical noise statistics (noise mean and variance

matrix), which is the essential requirement of the Kalman filtering method. However, in prac-

tical application, the mathematical model and/or noise statistics of the system are always

unknown (the model or noise statistics of the system contain errors). In addition, there is

often model uncertainty and/or interference uncertainty; that is, there is an unmodeled

dynamic system, which will cause the filtering performance to deteriorate or even diverge.

This paper tries to achieve as follows:

1. Build the model to match the actual situation;

2. Noise convergence is ensured based on multi-source data input;

The above two points ensure that the performance of the Kalman filter is good to overcome

the shortcoming mentioned.

This paper applies models to the public transit network data of Madison, Wisconsin, USA.

It combines the Kalman filter model with the AVL and IC card intelligent bus technologies,

both currently widely used, to predict urban public transit travel time.

III. Methodology

A. Definitions

1) Research object. In conventional urban transit, the uncertainty of many external fac-

tors makes it challenging to execute vehicle and personnel scheduling and dispatching, leading
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to the low reliability of public transportation. Bus ridership is consistently at low levels due to

lack of information about wait times, anxiety regarding the timeliness of the bus service, and

failure to arrive at the destination at the expected time. These deficiencies inconvenience

urban commuters who rely on mass public transit and hinder the resultant urban traffic struc-

tures that would lower energy consumption and pollution, raise efficiency, and yield more sus-

tainable development. Given existing technical conditions, in-depth research on the

prediction method of travel time of conventional transit is of great practical value.

2) Short-term travel time predictions. Short-term travel time predictions are influenced

by random factors (road conditions, traffic conditions, time, climate, emergencies, vehicle

conditions, drivers, passengers, intersection, and control mode [35–37]). Unexpected and

accidental events occur less predictably, thus requiring greater precision than long-term pre-

diction. In this paper, the short time travel prediction is the next step prediction of travel

time, that is, at time T, a short-term prediction is made for the travel time of the following

decision moment T + Δt, where the prediction period Δt is generally not more than 35

minutes.

Historical data is used to predict long-term travel time (35 minutes or more). However,

travel time prediction (15 minutes or less) uses real-time data. Short-term travel time predic-

tion (15 minutes ~ 35 minutes) uses historical and real-time data, where the recorded data is

used to build and test models, and real-time information is used for online prediction and

evaluation. The classification of travel time prediction is shown in Fig 1.

From this analysis, this paper’s specific research focus is the short-term travel time predic-

tion of the urban conventional transit with fixed routes and stops within the time range of

15min ~ 35min, where the system is equipped with at least advanced intelligent public transit

technologies, including AVL, IC, and another real-time spatial positioning, monitoring, and

transmission.

3) Definition of bus travel time. In this paper, public transit travel time consists of two

parts: Route travel Time (RT) + stop Dwell Time (DWT). Transfer time is not included in the

scope of this paper. Combined with the above discussion, this paper’s definition of the public

transport travel time can be expanded to the short-time travel time (15min ~ 35min) with the

regular bus as the carrier, namely the single bus travel time prediction based on single-line

detection.

B. Data preprocessing

1) The data type. Relative to IC and dispatching information, route and stop information

is relatively fixed and does not change often. It is usually obtained directly from bus companies

or government passenger transport authorities. However, this information is often neither

detailed nor accurate enough, especially the location of stops and other information. Discrep-

ancies often arise in routes, requiring a supplementary survey of the routes and stops to deter-

mine their correct directions and locations.

The Madison bureau of the Wisconsin Traffic Operations and Safety Laboratory provided

the data analyzed herein (see S3 File, Figs 1 and 2). All data obtained for routes and stops are

spatial data. This data was digitized and stored in a spatial database utilizing GIS technology

for storage. The raw data required for data mining are:

1. Static primary data of transit

■ Route data: route number, number of stops, stop location (latitude and longitude), etc.

■ Stop data: stop ID, stop site (latitude and longitude), the distance between adjacent stops,

etc.
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2. Dynamic primary data of transit

■ IC data: Service day, bus code, swiping time, latitude and longitude when swiping, ID of IC,

route number, etc.

■ AVL data: Service day, bus code, pattern ID, actual arrival time, actual departure time, time

point ID, stop ID, etc.

Fig 1. Differentiation of travel time.

https://doi.org/10.1371/journal.pone.0262535.g001

Fig 2. Composition of bus travel time.

https://doi.org/10.1371/journal.pone.0262535.g002
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■ Bus dispatching data: bus code, pattern ID, departure time, arrival time, departure interval, etc.

2) Data preprocessing. In this paper, data preprocessing and analysis were carried out

using Oracle and MATLAB software. Clustering was carried out on the IC data, and the travel

time after clustering was divided into sections to obtain the arrival, departure, and stop dwell

times of each stop. These steps are shown in S1 File. The dwell time of each stop was assessed

to estimate each boarding stop. Finally, the essential travel time of stops after segmentation

based on the actual stops was obtained as the input data of the travel time prediction model.

These results are shown in S2 File, Table 1.

AVL data was used to verify the validity of the IC data processing procedures. These steps

are shown in S1 File. AVL data was also used both to estimate the parameters of the prediction

model and evaluate the accuracy of the prediction model. AVL key stops (Timepoint) informa-

tion was used to assess the accuracy of the segmented results: AVL key stop (Timepoint) data

was used to adjust the parameters of the data processing procedures, allowing the absolute

error to be minimized.

C. Prediction model

1) Model assumptions.

i. The basic assumptions

A Transit Network consists of routes and stops. Routes are comprised of route segments and stops.

1. The whole route is simplified into two parts: stop and route segment (see Fig 2). The route

segment is divided into two adjacent stops: the initial and terminal stops. The route seg-

ment may or may not contain intersections. The total travel time consists of two parts:

route travel time (RT) + stop dwell time (DWT).

2. All vehicles are equipped with IC and AVL systems.

3. Intersection delays and road segment delays are reflected in RT. The time of arrival and

departure stop, as well as stop delays, are reflected in DWT.

4. Due to the limitation of route and dispatch, drivers are not affected by their subjective will

factors.

5. The vehicle type and performance are the same on the same route.

6. There will be no changes to road infrastructure or stops during the prediction period.

7. Assuming that the bus has two doors, one door for boarding and another for disembarking,

the time taken by unit passengers to get on and off is the same, and the number of people

determines the time to get on and off.

ii. Basic principle

The travel time prediction model based on single route detection comprises the route travel

time prediction model (RTM), and the stop dwell time prediction model (DTM).

Table 1. Average absolute error and relative error of travel time prediction of the route segment.

Bus number Morning peak(s) Evening peak(s) Flat peak(s)

1 2 3 1 2 3 1 2 3 4

Absolute error (seconds) 11.78 11.20 11.60 14.11 13.54 15.98 11.67 13.12 12.32 11.56

Mean relative error (seconds) 12.0% 9.0% 10.0% 14.0% 13.0% 15.0% 12.0% 13.0% 12.0% 9.0%

https://doi.org/10.1371/journal.pone.0262535.t001
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Route travel time is predicted by the route travel time prediction model (RTM). Each route

segment’s historical travel time data is used as the input to the prediction model. The arrival

time at the stop for each route segment is obtained from IC card data, and the updated travel

time is used to predict the new travel time, then stored as historical data. The dwell time model

(DTM) and passenger arrival rate prediction model (PARM) are based on IC records of getting

on and off the bus at each stop (combined with historical and current data).

The chosen historical data input for this model is the travel time data of the same period for

the previous three days and the previous period of the same day, and the model output is the

travel time of the current period of the day.

2) Overall model. The single route travel time between stops is composed of two parts: road

travel time (RT) + stop dwell time (DWT), which can be expressed by the arrival time of buses:

ATnðiþ1Þ ¼ DTnðiÞ þ RTnði;iþ1Þ ðEq 1Þ

Where,

ATn(i+1) is the predicted time the bus n to arrives at the stop i +1;

DTn(i) is the time the bus n to leave the stop i;
RTn(i, i+1) is the travel time of bus n between stops i and i +1 predicted by the Kalman filter-

ing algorithm.

The stop dwell time can be expressed as:

DWTnðiþ1Þ ¼ lðiþ1Þ �Hðiþ1Þ � ravgðiþ1Þ ðEq 2Þ

Where,

DWTn(i+1) is the time of bus n stay at stop i+1 to be predicted;

λ(i+1) is the passenger arrival rate at the stop i +1 predicted by the Kalman filtering algorithm;

H(i+1) is the headway of bus n in the stop i + 1, H(i+1) = ATn(i+1)−ATn-1(i+1).

ρavg(i+1) is consumed at the boarding time of the average passenger at the stop i +1, assumed

to be 2.5 seconds per person.

The time when the bus leaves the stop can be expressed as:

DTnðiþ1Þ ¼ ATnðiþ1Þ þ DWTnðiþ1Þ ðEq 3Þ

Where,

DTn(i+1) is the predicted time for bus n to leave the stop i +1;

ATn(i+1) is the time of bus n arriving at stop i +1 predicted by Eq (1);

DWTn(i+1) is the time of bus n stay at stop i +1 predicted by Eq (2).

Meanwhile, according to Eqs (1), (2) and (3), the time of departure from the stop i +1 is:

DTnðiþ1Þ ¼ DTnðiÞ þ RTnði:iþ1Þ þ lðiþ1Þ �Hðiþ1Þ � ravgðiþ1Þ ðEq 4Þ

In the equation, each parameter is the same as the above equation. The above equations can

predict the arrival and departure times of bus n at stop i+1. In the equation, RTn(i, i+1) and λi+1

are obtained from the Route Travel Time Prediction Model(RTM) and the Passenger Arrival

Rate Prediction Model(PARM).

i. Route Travel Time Prediction Model (RTM)

The road travel time prediction model of period k+1 of a single route between adjacent

stops can be expressed in Eqs (5) ~ (8):

g ðkþ 1Þ ¼
eðkÞ þ VARðdataoutÞ

eðkÞ þ VARðdataoutÞ þ VARðdatainÞ
ðEq 5Þ
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aðkþ 1Þ ¼ 1 � gðkþ 1Þ ðEq 6Þ

eðkþ 1Þ ¼ VARðdatainÞ � gðkþ 1Þ ðEq 7Þ

RTnði;iþ1Þðkþ 1Þ ¼ aðkþ 1Þ � artðkÞ þ gðkþ 1Þ � AvgðartÞ

¼ aðkþ 1Þ � artðkÞ þ gðkþ 1Þ �
art1ðkþ 1Þ þ art2ðkþ 1Þ þ art3ðkþ 1Þ

3

ðEq 8Þ

Where,

g (k+1) is the gain of the Kalman filter in the period k +1;

a (k+1) is the loop gain in the period k +1;

e (k) is the filter error in period k, which is calculated in the previous cycle;

e (k+1) is the filter error of period k +1, which is used for the calculation of the following

process;

RTn(i,i+1)(k+1) is the travel time of bus n between stops i and i +1 predicted by Kalman fil-

tering algorithm in period k +1;

art (k) is the travel time of bus n between stop i and i +1 in period k;
art1 (k+1) is the travel time of bus n between stops i and i +1 during period k+1 on the pre-

vious day;

art2 (k+1) is the travel time of bus n between stops i and i +1 during period k+1 on the pre-

vious two days;

art3 (k+1) is the travel time of bus n between stops i and i +1 during period k+1 on the pre-

vious three days;

VAR(dataout) is the variance of the prediction;

VAR(datain) is the variance of the travel time "art1 (k+1), art2 (k+1), art3 (k+1)" between

stops i and i +1 for the previous three days, which can be expressed by the travel time " art1 (k
+1), art2 (k+1), art3 (k+1)"of the previous three days:

VAR ðdatainÞ ¼ VAR½art1ðkþ 1Þ; art2ðkþ 1Þ; art3ðkþ 1Þ� ðEq 9Þ

The variance of the random variable can be expressed as:

VARðXÞ ¼ E½X � E½X�Þ2� ðEq 10Þ

E ðXÞ ¼ AvgðartÞ ¼
art1ðkþ 1Þ þ art2ðkþ 1Þ þ art3ðkþ 1Þ

3
ðEq 11Þ

The equation expresses the relevant variables:

Δ1 ¼ ½art1ðkþ 1Þ� avgðartÞ�
2

ðEq 12Þ

Δ2 ¼ ½art2ðkþ 1Þ� avgðartÞ�
2

ðEq 13Þ

Δ3 ¼ ½art3ðkþ 1Þ� avgðartÞ�
2

ðEq 14Þ

VARðdatainÞ ¼
Δ1 þ Δ2 þ Δ3

3
ðEq 15Þ
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VAR(dataout) is determined by the prediction result of the filter model and the observation

value in the future, which cannot be obtained because the prediction result is unknown, and

the future trip has not yet happened, ideally, under the condition of good prediction state,

VAR(dataout) = VAR(datain), the introduction of new variables: VAR(localdata) is used to indi-

cate the VAR(dataout), VAR(datain) and can be represented as:

VARðlocaldataÞ ¼ VARðdatainÞ ¼ VARðdataoutÞ ðEq 16Þ

Filter gain (Eq (5) and filter error (Eq (7)) can be reduced to Eqs (17) and (18):

gðkþ 1Þ ¼
eðkÞ þ VARðlocaldataÞ
eðkÞ þ 2VARðlocaldataÞ

ðEq 17Þ

eðkþ 1Þ ¼ VARðlocaldataÞ � gðkþ 1Þ ðEq 18Þ

From what has been discussed above, the prediction model of route travel time for a single

route between stops based on the Kalman filter mainly consists of Eqs (6), (8), (17) and (18).

The four essential equations can predict the route travel time of bus n on the whole route by

rolling(these results are shown in S2 File, Table 2).

ii. Stop Dwell Time prediction Model (DTM)

(1) Stop Dwell Time Prediction Model

Stop dwell time refers to the bus’s time at a stop due to events. According to the vehicle

arrival process, stop dwell time includes passenger service time, acceleration and deceleration

time, opening and closing door time, and additional delay time caused by queuing at the stop.

Most passenger service time is when passengers require to board and disembark the bus.

Acceleration and deceleration times, opening and closing door times are the same for the same

type of bus on the same route. Additional delays caused by queuing occur at stops with multi-

ple routes, and there are second dwell at longer stops. However, direct observation finds that

when there is a queue at the stop, buses can often use the queuing time to complete the loading

and unloading service. The time lost in queuing is considered negligible due to its small size.

Therefore, this paper only considers the difference in service time of passengers on and off

the bus. The dwell time of the bus at the stop i+1 is mainly determined by the number of pas-

sengers arriving in a unit time (expressed by Eq (2)). The equation shows thatH (i +1) can be

obtained directly from the IC data. The only predictive value in this equation is the passenger

arrival rate λ(i+1).

(2) Passenger Arrival Rate prediction Model (PARM)

λ(i+1) is the number of passengers arriving per unit of time. The historical arrival rate λ(i+1)

per stop can be obtained through IC data mining technology. In this paper, the Kalman filter-

ing method is still used to predict the passenger arrival rate of stop i +1. The prediction model

Table 2. Absolute and relative errors of the total travel time prediction of the whole route.

Bus number Morning peak(s) Evening peak(s) Flat peak(s)

1 2 3 1 2 3 1 2 3 4

Absolute error (minutes) 1.23 1.98 2.11 0.98 2.23 0.78 1.43 0.17 0.83 1.76

The relative error 2.3% 0.4% 3.0% 4.0% 6.0% 4.0% 3.0% 2.2% 7.0% 4.0%

https://doi.org/10.1371/journal.pone.0262535.t002
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construction follows, VAR(localdata) can be expressed as follows:

VARðlocaldataÞ ¼ VAR½par1ðkþ 1Þ; par2ðkþ 1Þ; par3ðkþ 1Þ� ðEq 19Þ

There are:

E ðXÞ ¼ AvgðparÞ ¼
par1ðkþ 1Þ þ par2ðkþ 1Þ þ par3ðkþ 1Þ

3
ðEq 20Þ

Δ1 ¼ ½par1ðkþ 1Þ� avgðparÞ�2 ðEq 21Þ

Δ1 ¼ ½par2ðkþ 1Þ� avgðparÞ�2 ðEq 22Þ

Δ1 ¼ ½par3ðkþ 1Þ� avgðparÞ�2 ðEq 23Þ

VARðlocaldataÞ ¼
Δ1 þ Δ2 þ Δ3

3
ðEq 24Þ

The Kalman gain g (k + 1) and the loop gain a (k + 1), λ(i+1)(k+1) prediction model:

gðkþ 1Þ ¼
eðkÞ þ VARðlocaldataÞ
eðkÞ þ 2VARðlocaldataÞ

ðEq 25Þ

aðkþ 1Þ ¼ 1 � gðkþ 1Þ ðEq 26Þ

lðiþ1Þðkþ 1Þ ¼ aðkþ 1Þ � parðkÞ þ gðkþ 1Þ � AvgðparÞ

¼ aðkþ 1Þ � parðkÞ þ gðkþ 1Þ �
par1ðkþ 1Þ þ par2ðkþ 1Þ þ par3ðkþ 1Þ

3

ðEq 27Þ

Where,

g (k+1) is the gain of the Kalman filter in the period k +1;

a (k+1) is the loop gain in the period k +1;

e (k) is the filter error of period k, which is calculated from the previous cycle;

e (k+1) is the filter error of period k +1, which is used for the calculation of the following

process;

par (k) is the passenger arrival rate between stops i and i +1 during the period k;
par1 (k+1) is the passenger arrival rate at stop i+1 during period k +1 in the previous day;

par2 (k+1) is the passenger arrival rate at stop i+1 during period k +1 in the previous two days;

par3 (k+1) is the passenger arrival rate at stop i+1 during period k +1 in the previous three days.

VAR(localdata) is the variance of the passenger arrival rate of " par1 (k+1), par2 (k+1), par3 (k
+1) " during period k+1 between stops i and i +1 in the previous three days.

eðkþ 1Þ ¼ VARðlocaldataÞ � gðkþ 1Þ ðEq 28Þ

The Passenger Arrival Rate prediction Model (PARM) based on the Kalman filter is mainly

composed of Eqs (25), (26), (27), and (28). Based on the above four essential equations, the

passenger arrival rate of bus n in the period i +1 can be predicted by rolling to obtain the dwell

time of each stop (these results are shown in S2 File, Table 3).

3) Prediction process. In conclusion, the travel time prediction model constructed above can

predict the travel time of the whole route.
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Step 1: Overall prediction

1. Determine the target route predicted and its initial and terminal stops: determine the initial

forecast period k +1, assume stop i as the initial stop, and predict the time of bus n arriving

at stop i +n;

2. Prepare the basic data required for prediction;

3. i = 0;

4. i = i+1;

5. Executing Stop Dwell time prediction Module (DTM): to predict the dwell time of bus n at

stop i, DWTn(i);

6. Executing Route Travel time prediction Module (RTM): to predict the route travel time of

bus n between stop i and i+1 during the k+1 period, RTn(i, i+1)(k+1);

7. Sum, DTn(i) = ATn(i)+DWTn(i), ATn(i+1) = DTn(i) = RTn(i, i+1);

8. Determine if i +1 = n, then end the operation; otherwise, return to Step (4) and continue

the procedure until the end of the prediction.

After the repeated cyclic operation, the arrival time of bus n ATn(i+n) at stop i +n during

period k+m can be obtained by stop, one by one (as shown in Fig 3).

Step 2–1: Built-in module (Stop Dwell Time Prediction Module (DTM))

1. Initialize e (k) = 0, assuming stop i is the initial stop;

2. The historical data of passenger arrival rate between stop i and i +1 for these four days (dur-

ing period k +1 in the previous three days, during period k in the same day) can be obtained

through the IC card system: par3 (k+1), par2 (k+1), par1 (k+1), par(k);

3. The passenger arrival rate of stop i +1 in period k +1 can be predicted according to the Eqs

(25), (26), (27), and (28);

4. The headway of the corresponding stop in period k+1 of the predicted day can be obtained

through the bus IC data;

5. According to Eq (2), the dwell time of stop i +1 in period k+1 can be predicted.

Step 2–2: Built-in module (Route Travel Time Prediction Module (DTM))

1. Initialize e (k) = 0, assuming stop i is the initial stop, and the AVL system can obtain its

departure time, and it is set as DTn(i);

2. The historical data of travel time between stop i and i +1 for these four days (during period

k +1 in the previous three days, during period k in the same day) can be obtained through

the IC card system: art3 (k+1), art2 (k+1), art1 (k+1), art(k);

3. According to Eqs (6), (8), (17), and (18), the route travel time of bus n between stop i and i
+1 in period k+1 can be predicted RTn(i, i+1)(k+1).

Table 3. The mean absolute error of predictive travel time of route 2 # (entire route).

Route Mean Absolute Error (MAE, S)

Prediction of arrival time Prediction of departure time

#2 59.24 46.41

https://doi.org/10.1371/journal.pone.0262535.t003
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The prediction process is shown in Fig 4.

IV. Case study

A. Data preprocessing

1) Circuit information. This example selects route 2 in Madison, Wisconsin, located in

the Madison metropolitan area. The chosen route is the section between N Frances Street in

Fig 3. Steps of travel time prediction between stops.

https://doi.org/10.1371/journal.pone.0262535.g003
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the east and N Midvale Blvd in the west and traverses the city’s center. The route goes through

different road types and thus can comprehensively reflect the operational characteristics of

buses under other road conditions (shown in S3 File, Figs 3 and 4).

2) Data information. The IC card and AV data of four days on October 1, 2, 3, and 4,

2019 were selected as the primary data of the example, and the historical data of period k+1 on

October 1, 2, and 3 and period k on October 4 were used to predict the data of period k+1 on

October 4. Among them, 4,157 sets of travel time data (IC data) were used as the model’s input

data, and 2,124 sets of AVL data were used as the validation data of the model.

B. Preliminary results

According to the characteristics of urban roads, in this paper, the day was divided into three

time periods, with morning and evening peaks as the boundary:

■ Period 1: 7:00–9:00, morning peak;

Fig 4. Travel time prediction process based on single route detection.

https://doi.org/10.1371/journal.pone.0262535.g004
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■ Period 2: 17:00–19:00, evening peak;

■ Period 3: another period, flat peak.

Given these three periods, this paper will first analyze the change laws between these three

periods and then analyze the change rule within each period.

1) Route segment between stops. The average absolute error and relative error of the

travel time prediction of the ten shifts were calculated. Table 1 shows the results.

Table 2 shows that the average absolute error of the travel time prediction between stops is

concentrated between 11~16 seconds, and the average absolute error of the evening peak is

slightly higher than that of the other two periods. The average relative error is higher than the

whole route, concentrated in the range of 9% to 15%.

2) Whole route. The travel time of the whole route is the total time taken by the bus

between the initial and terminal stop (prediction results are shown in S2 File, Table 4). Table 2

shows the calculations of the absolute error and relative error of the total travel time prediction

of the route of 10 shifts between 128 stops in the entire day.

Table 2 shows that the absolute error of the total travel time prediction for the ten shifts is

within 2.25 minutes, with the maximum absolute error of 2.23 minutes and the minimum

absolute error of only 0.17 minutes. The maximum relative error is 7%, and the minimum rela-

tive error is only 0.4%. At the same time, the absolute and relative errors of the morning, even-

ing, and flat peaks are not significantly different, indicating that the prediction model can

respond to the change of traffic conditions over time and can make an accurate prediction of

travel time during peak hours.

In summary, the relative error of the model is within 15%, and the absolute error is concen-

trated in about 11~16 seconds when the route travel time between stops is taken as the predic-

tion object. The relative error of the model is within 7%, and the absolute error is concentrated

in 0~2.5 minutes when the whole route is taken as the prediction object. The forecast method

proposed in this paper can accurately predict the travel time of buses, and the prediction effect

of the whole route is better than that of the route segment between stops.

Table 4. Prediction error of travel time between stops.

Route Segment The Evaluation Index Kalman Filter The Neural Network

Route segment 1 MRE 0.0681 0.0750

RSRE 0.0730 0.0849

MARE 0.1155 0.1431

Route segment 2 MRE 0.0276 0.0632

RSRE 0.0355 0.0740

MARE 0.0760 0.1303

Route segment 3 MRE 0.0750 0.1638

RSRE 0.0918 0.3494

MARE 0.2240 0.0661

Route segment 4 MRE 0.0859 0.1076

RSRE 0.1076 0.1431

MARE 0.2290 0.1214

Route segment 5 MRE 0.0434 0.1115

RSRE 0.0543 0.2290

MARE 0.1204 0.1194

Route segment 6 MRE 0.0424 0.1392

RSRE 0.0444 0.1303

MARE 0.0967 0.2280

https://doi.org/10.1371/journal.pone.0262535.t004
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C. Evaluation

Travel time predictions for 235 groups of 128 sections between stops of route 2# were carried out

throughout the day from 6:00 to 18:00. The following three forms were evaluated respectively in

route segment between stops, whole route, and comparison with another prediction method.

1) Route segment between stops.

i. Route segment 1 (CAMPUS & BABCOCK[ID#0809] W JOHNSON & CHARTER

[ID#0581])

Fig 5 shows the predicted travel time for route segment 1 using this process (Campus & Bab-

cock [ID#0809] W Johnson & Charter [ID#0581]).

ii. Route segment 2 (W JOHNSON & CHARTER [ID#0581] W JOHNSON & MILLS

[ID#0741])

Fig 6 shows the predicted travel time for route segment 2(W Johnson & Charter [ID #0581]

W Johnson & Mills [ID #0741]).

iii. Route segment 3 (W JOHNSON & MILLS [ID#0741] W JOHNSON & N PARK

[ID#0435])

Fig 7 shows the predicted travel time for route segment 3 (W Johnson & Mills [ID #0741]

W Johnson & N Park [ID #0435]).

Fig 5. Predicted result of travel time (route segment 1).

https://doi.org/10.1371/journal.pone.0262535.g005
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Fig 6. Predicted result of travel time (route segment 2).

https://doi.org/10.1371/journal.pone.0262535.g006

Fig 7. Predicted result of travel time (route segment 3).

https://doi.org/10.1371/journal.pone.0262535.g007
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iv. Route segment 4 (W JOHNSON & PAKE [ID#0435] W JOHNSON & FRANCES

[ID#0941])

Fig 8 shows the predicted result travel time for route segment 3 (W Johnson & Pake [ID

#0435] W Johnson & Frances [ID #0941]).

2) Whole route. The critical stop data (time points) across route 2# was taken for analysis

and evaluation. The Mean Absolute Error (MAE) of the whole route was evaluated. Table 3

displays these results:

3) Comparison with other prediction models. Since neural network models can guaran-

tee real-time prediction and adequately control multiple influencing factors in public transit

systems, previous researchers primarily used neural network models to predict travel time.

Comparing and analyzing the current model’s prediction results against neural networks, a

travel time prediction method based on a neural network model was introduced. The two fore-

casting methods’ Mean Relative Error (MRE), Root Squared Relative Error (RSRE), and Maxi-

mum Relative Error (MARE), were calculated. From the evaluation results, the MRE were all

less than 20%, indicating that this model is a good prediction model. The calculation results

are shown in Table 4.

Table 4 demonstrates that the Kalman filtering algorithm is more accurate and stable than

the neural network, with less fluctuation and minor errors.

Fig 8. Predicted result of travel time (route segment 4).

https://doi.org/10.1371/journal.pone.0262535.g008
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IV. Conclusions

The travel time prediction of public transit is one of the effective measures to improve service

reliability and travel structure, alleviate traffic problems. The Kalman filter model has high pre-

cision in one-step-ahead prediction and uses computer software to calculate massive data.

Under the background of the urban intelligent public transit system and big data, this paper

focuses on an urban conventional transit system. The Kalman filter-based travel time predic-

tion technology of an urban public transit system with various random traffic factors was stud-

ied based on AVL and IC data.

1. Prediction model: The overall prediction model (including prediction steps and processes)

was constructed: 1) Road travel Time prediction Model (RTM); 2) stop Dwell time predic-

tion Model (DTM) and Passenger Arrival Rate prediction Model (PARM).

2. Model evaluation: The model’s evaluation criteria and indices are given; The travel time of

route #2 in Madison was selected for prediction, and the error analysis of the prediction

results was carried out in combination with AVL data. The results show that the model can

meet the accuracy requirements of the travel time prediction, and the prediction effect of

the whole route is superior to that of the route segment between stops.

In this paper, the travel time considered only a single bus in a journey, which is the basis of

passenger-oriented travel time predictions. The prediction model should be expanded to be

more consistent with the actual application scenario of a conventional large-scale composite

transit network. Due to the data’s particularity and the demand’s diversity and complexity,

future research should focus on these points:

1. Data mining: In practical applications, massive multi-source data is needed. Meticulous

data collection, processing, and analysis are conducive to improving the accuracy of predic-

tion results. Therefore, the construction and management of databases need further

research. Data mining is an iterative process in which mining results are constantly applied

to practice, the effect is tested, and the mining algorithm is improved. Further research is

needed on the actual application effect, user evaluation, and improvement direction of data

mining algorithm in the intelligent public transit system to promote the perfection and

improvement of the prediction model.

2. Prediction model of travel time: This paper only studies the travel time prediction method

based on the Kalman filter. In future research, other commonly used prediction methods

such as Long Short-Term Memory (LSTM) and comprehensive modeling can be combined

to improve prediction accuracy.

3. Levels of travel time prediction: In this paper, the travel time focuses on a single bus in a

journey, which is the basis of traveler-oriented travel time predictions. In contrast, a trip

consists of the sum of one or more bus journeys. Based on several routes for multiple buses,

travel time prediction problems involving line selection and transfer will need to consider

the transit system’s network capacity. For a large-scale network, the complexity will increase

sharply with stops and routes. Therefore, making the method scalable to large networks

should be studied.

4. Promotion and application: Extensive cooperation and investment of enterprises and

research institutes would benefit the use of the models described here. Special attention to

the characteristics of those local enterprises, allowing measures to be adjusted to local con-

ditions will ease the application and promotion of this technology. Properly promoted and
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applied, these models will contribute to developing and using intelligent public transit sys-

tems to meet the needs of passengers, operators, managers, and policymakers.

Supporting information

S1 File.

(DOCX)

S2 File.

(DOCX)

S3 File.

(DOCX)

Acknowledgments

We would like to acknowledge Mr. Hongjie Liu for providing the part of data for the study.

Additionally, special gratitude to Mr. Les Lauber for reviewing the language usage. Thanks to

anonymous reviewers for their constructive comments and suggestions regarding the earlier

version of this paper.

Author Contributions

Conceptualization: Xinhuan Zhang, Hongjie Liu.

Data curation: Xinhuan Zhang, Hongjie Liu, Meili Xie, Yuran Pan.

Formal analysis: Xinhuan Zhang, Hongjie Liu, Yuran Pan.

Funding acquisition: Xinhuan Zhang.

Investigation: Xinhuan Zhang, Junqing Shi.

Methodology: Xinhuan Zhang, Hongjie Liu.

Project administration: Xinhuan Zhang.

Resources: Xinhuan Zhang.

Supervision: Xinhuan Zhang, Hongjie Liu.

Validation: Junqing Shi.

Writing – original draft: Xinhuan Zhang.

Writing – review & editing: Les Lauber.

References
1. Ma J, Chan J, Ristanoski G, Rajasegarar S, Leckie C. Bus travel time prediction with real-time traffic

information. Transportation Research Part C: Emerging Technologies. 2019; 105: 536–549. https://doi.

org/10.1016/j.trc.2019.06.008

2. Niklas CP, Filipe R, Francisco CP. Multi-output bus travel time prediction with convolutional LSTM neu-

ral network. Expert Systems with Applications. 2019; 120(4): 426–435. https://doi.org/10.1016/j.eswa.

2018.11.028

3. Huang Z, Li Q, Li F, Xia JZ. A Novel Bus-Dispatching Model Based on Passenger Flow and Arrival Time

Prediction. IEEE Access. 2019, 7: 106453–106465. https://doi.org/10.1109/ACCESS.2019.2932801

ISBN: 2169–3536.

PLOS ONE Travel time prediction of urban public transportation based on detection of single routes

PLOS ONE | https://doi.org/10.1371/journal.pone.0262535 January 14, 2022 21 / 23

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0262535.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0262535.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0262535.s003
https://doi.org/10.1016/j.trc.2019.06.008
https://doi.org/10.1016/j.trc.2019.06.008
https://doi.org/10.1016/j.eswa.2018.11.028
https://doi.org/10.1016/j.eswa.2018.11.028
https://doi.org/10.1109/ACCESS.2019.2932801
https://doi.org/10.1371/journal.pone.0262535


4. Kumar BA, Jairam R, Shriniwas SA, Lelitha V. Real-time bus travel time prediction using k-NN classifier.

Transportation Letters. 2017, 8: 362–372. https://doi.org/10.1080/19427867.2017.1366120

5. Liu WP, Liu JC, Jiang HB, Xu BC, Lin HZ, Jiang GY, et al. WiLocator: WiFi-sensing based real-time bus

tracking and arrival time prediction in urban environments. 2016 IEEE 36th International Conference on

Distributed Computing Systems (ICDCS). IEEE, 2016. https://doi.org/10.1109/ICDCS.2016.31

6. Farooq MU, Shakoor A, Siddique AB. GPS based Public transit Arrival Time Prediction. 2017 Interna-

tional Conference on Frontiers of Information Technology (FIT). IEEE, 2017. https://doi.org/10.1109/

FIT.2017.00021

7. Chen EH, Ye ZR, Wang C, Xu MT. Subway Passenger Flow Prediction for Special Events Using Smart

Card Data[J]. IEEE Transactions on Intelligent Transportation Systems. March 2020, 21(3):1109–

1120. https://doi.org/10.1109/TITS.2019.2902405

8. Zhang B, Chen SY, Ma YF, et al. analysis on spatiotemporal urban mobility based on online car-hailing

data[J]. Journal of Transport Geography. 2020, 82:102568. https://doi.org/10.1016/j.jtrangeo.2019.

102568

9. Zhang HL, Wu YK, Tan HC, et al. Understanding and Modeling Urban Mobility Dynamics via Disentan-

gled Representation Learning. IEEE Transactions on Intelligent Transportation Systems. October 26,

2020: 1 – 11, https://doi.org/10.1109/TITS.2020.3030259

10. Liu Y, Lyu C, Liu ZY, Cao JD. Exploring a large-scale multi-modal transportation recommendation sys-

tem[J]. Transportation Research Part C: Emerging Technologies. May 2021, Volume 126. https://doi.

org/10.1016/j.trc.2021.103070

11. Chen CH. An arrival time prediction method for bus system. IEEE Internet of Things Journal. 2018, 5

(5): 4231–4232. https://doi.org/10.1109/jiot.2018.2863555

12. Pang JB, Huang J, Du Y, Yu HT, Huang QM, Yin Baocai. Learning to Predict Bus Arrival Time from Het-

erogeneous Measurements via Recurrent Neural Network. IEEE Transactions on Intelligent Transpor-

tation Systems 2019, 20(9): 3283–3293. https://doi.org/10.1109/TITS.2018.2873747.ISBN: 1524–

9050.

13. Zhang J, Gu JH, Guan L, Zhang SQ. Method of predicting bus arrival time based on MapReduce com-

bining clustering with neural network. IEEE 2nd International Conference on Big Data Analysis

(ICBDA). IEEE, 2017. https://doi.org/10.1109/ICBDA.2017.8078828

14. Yang HF, Dillon TS, Chen YP. Optimized structure of the traffic flow forecasting model with a deep

learning approach. IEEE transactions on neural networks and learning systems. 2017, 10: 2371–2381.

https://doi.org/10.1109/TNNLS.2016.2574840 PMID: 27448371

15. Polson NG, Sokolov VO. Deep learning for short-term traffic flow prediction. Transportation Research

Part C: Emerging Technologies. 2017, 79: 1–17. https://doi.org/10.1016/j.trc.2017.02.024 ISBN: 0968-

090X.

16. Wu YK, Tan HC, Qin LQ, Ran B, Zhu XJ. A hybrid deep learning-based traffic flow prediction method

and its understanding. Transportation Research Part C: Emerging Technologies. 2018, 90: 166–180.

https://doi.org/10.1016/j.trc.2018.03.001

17. Cristina H. Ph.D. Forum: Forecasting Public Transit Using Neural Network Models. 2017 IEEE Interna-

tional Conference on Smart Computing (SMARTCOMP). IEEE, 2017. https://doi.org/10.1109/

SMARTCOMP.2017.7947031

18. Wichai T, Wasan PA, Sippakorn K. Bus arrival time prediction at any distance of bus route using deep

neural network model. 2017 IEEE 20th International Conference on Intelligent Transportation Systems

(ITSC). IEEE, 2017. https://doi.org/10.1109/ITSC.2017.8317891

19. Zhang KP, Liu ZJ, Zheng L. Short-term prediction of passenger demand in multi-zone level: temporal

convolutional neural network with multitasks learning. IEEE Transactions on Intelligent Transportation

Systems, 2020, 21(4):1480 – 1490. https://doi.org/10.1109/TITS.2019.2909571.

20. Zhang KP, Zheng LP, Liu ZJ, Jia N. A deep learning based multitask model for network-wide traffic

speed prediction. Neurocomputing.2020, 396:438–450. https://doi.org/10.1016/j.neucom.2018.10.097.

21. Zheng L, Zhu C, Zhu N, He T, Dong N, Huang HL. Feature selection-based approach for urban short-

term travel speed prediction. IET Intelligent Transport Systems. 2018, 12(6): 474–484. https://doi.org/

10.1049/iet-its.2017.0059

22. Zhang KP, Jia N, Zheng L, Liu ZJ, A novel generative adversarial network for estimation of trip travel

time distribution with trajectory data. Transportation Research Part C. 2019, 108:223–244. https://doi.

org/10.1016/j.trc.2019.09.019

23. Liu Y, Lyu C, Liu X, Liu ZY. Automatic Feature Engineering for Bus Passenger Flow Prediction Based

on Modular Convolutional Neural Network. IEEE Transactions on Intelligent Transportation Systems.

April, 2021, 22(4):2349–2358, https://doi.org/10.1109/TITS.2020.3004254

PLOS ONE Travel time prediction of urban public transportation based on detection of single routes

PLOS ONE | https://doi.org/10.1371/journal.pone.0262535 January 14, 2022 22 / 23

https://doi.org/10.1080/19427867.2017.1366120
https://doi.org/10.1109/ICDCS.2016.31
https://doi.org/10.1109/FIT.2017.00021
https://doi.org/10.1109/FIT.2017.00021
https://doi.org/10.1109/TITS.2019.2902405
https://doi.org/10.1016/j.jtrangeo.2019.102568
https://doi.org/10.1016/j.jtrangeo.2019.102568
https://doi.org/10.1109/TITS.2020.3030259
https://doi.org/10.1016/j.trc.2021.103070
https://doi.org/10.1016/j.trc.2021.103070
https://doi.org/10.1109/jiot.2018.2863555
https://doi.org/10.1109/TITS.2018.2873747.
https://doi.org/10.1109/ICBDA.2017.8078828
https://doi.org/10.1109/TNNLS.2016.2574840
http://www.ncbi.nlm.nih.gov/pubmed/27448371
https://doi.org/10.1016/j.trc.2017.02.024
https://doi.org/10.1016/j.trc.2018.03.001
https://doi.org/10.1109/SMARTCOMP.2017.7947031
https://doi.org/10.1109/SMARTCOMP.2017.7947031
https://doi.org/10.1109/ITSC.2017.8317891
https://doi.org/10.1109/TITS.2019.2909571
https://doi.org/10.1016/j.neucom.2018.10.097
https://doi.org/10.1049/iet-its.2017.0059
https://doi.org/10.1049/iet-its.2017.0059
https://doi.org/10.1016/j.trc.2019.09.019
https://doi.org/10.1016/j.trc.2019.09.019
https://doi.org/10.1109/TITS.2020.3004254
https://doi.org/10.1371/journal.pone.0262535


24. Yang M, Chen C, Wang L, Yan XX, Zhou LP. Bus arrival time prediction using support vector machine

with genetic algorithm. Neural Network World. 2016, 26(3):205–217. https://doi.org/10.14311/NNW.

2016.26.011

25. Peng ZX, Jiang YL, Yang XL, Zhao ZG, Zhang L, Wang YT. Bus arrival time prediction based on PCA-

GA-SVM. Neural Network World. 2018, 28(1): 87–104. https://doi.org/10.14311/NNW.2018.28.005

26. Yao BZ, Chen C, Cao QA, Jin L, Zhang MH, Zhu HB, et al. Short-term traffic speed prediction for an

urban corridor. Computer-Aided Civil and Infrastructure Engineering. 2016, 7: 154–169. https://doi.org/

10.1111/mice.12221

27. Moridpour S, Anwar T, Sadat MT, Mazloumi E. A genetic algorithm-based support vector machine for

bus travel time prediction. 2015 International Conference on Transportation Information and Safety

(ICTIS). IEEE, 2015, 6: 264–270. https://doi.org/10.1109/ICTIS.2015.7232119

28. Lu LL, Wang J, He ZB, Chan CY. Real-time estimation of freeway travel time with recurrent congestion

based on sparse detector data. IET Intelligent Transport Systems. September 2017, IET Intelligent

Transport Systems 12(1). https://doi.org/10.1049/iet-its.2016.0356

29. Lu LL, He ZB, Wang J, Chen JF, Wang W. Estimation of lane-level travel time distributions under a con-

nected environment. Journal of Intelligent Transportation Systems. February 3, 2021, 25(5): 501–512,

https://doi.org/10.1080/15472450.2020.1854093

30. Lu LL, Wang J, Wu Y, Chen X, Chan CY. Real-time prediction model for vehicle individual travel time on

an undersaturated signalized arterial. IEEE Intelligent Transportation Systems Magazine. April 30,

2021: 2–17. https://doi.org/10.1109/MITS.2021.3068416

31. Dhivyabharathi B, Hima ES, Vanajakshi L. Stream travel time prediction using particle filtering

approach. Transportation Letters. 2018, 2: 75–82. https://doi.org/10.1080/19427867.2016.1192016

32. Dhivyabharathi B, Anil KB, Vanajakshi L. Real-time bus arrival time prediction system under Indian traf-

fic condition. 2016 IEEE International Conference on Intelligent Transportation Engineering (ICITE).

IEEE, 2016. https://doi.org/10.1109/ICITE.2016.7581300

33. Li JL, Gao J, Yang Y, Wei HR. Bus arrival time prediction based on mixed model. China Communica-

tions. 2017, 5: 38–47. https://doi.org/10.1109/CC.2017.7942193

34. Huo JB, Fu X, Liu ZY, Zhang Q. Short-Term Estimation and Prediction of Pedestrian Density in Urban

Hot Spots Based on Mobile Phone Data. IEEE Transactions on Intelligent Transportation Systems, July

26, 2021: 1–12. https://doi.org/10.1109/TITS.2021.3096274

35. Ji Bao, Qun Chen, Dandan Luo, Yuli Wu, Zuli Liang. Exploring the impact of signal types and adjacent

vehicles on drivers’ choices after the onset of yellow. Physical A: Statistical Mechanics and its Applica-

tions, 2018, 500: 222–236. https://doi.org/10.1016/j.physa.2018.02.066

36. Du MX; Liu JH, and Chen. Improving traffic efficiency during yellow lights using connected vehicles.

Physical A: Statistical Mechanics and its Applications, 2021, 578. https://doi.org/10.1016/j.physa.2021.

126108

37. Chen Q, and Luo DD. Flow feasibility condition analysis and design optimization of contraflow left-turn

lanes at signalized intersections based on kinematic wave theory. TRANSPORTMETRICA B-TRANS-

PORT DYNAMICS, 2021, 9(1): 746–774. https://doi.org/10.1080/21680566.2021.1950071

PLOS ONE Travel time prediction of urban public transportation based on detection of single routes

PLOS ONE | https://doi.org/10.1371/journal.pone.0262535 January 14, 2022 23 / 23

https://doi.org/10.14311/NNW.2016.26.011
https://doi.org/10.14311/NNW.2016.26.011
https://doi.org/10.14311/NNW.2018.28.005
https://doi.org/10.1111/mice.12221
https://doi.org/10.1111/mice.12221
https://doi.org/10.1109/ICTIS.2015.7232119
https://doi.org/10.1049/iet-its.2016.0356
https://doi.org/10.1080/15472450.2020.1854093
https://doi.org/10.1109/MITS.2021.3068416
https://doi.org/10.1080/19427867.2016.1192016
https://doi.org/10.1109/ICITE.2016.7581300
https://doi.org/10.1109/CC.2017.7942193
https://doi.org/10.1109/TITS.2021.3096274
https://doi.org/10.1016/j.physa.2018.02.066
https://doi.org/10.1016/j.physa.2021.126108
https://doi.org/10.1016/j.physa.2021.126108
https://doi.org/10.1080/21680566.2021.1950071
https://doi.org/10.1371/journal.pone.0262535

