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Abstract

Background

Pancreatic cancer is the third leading cause of cancer related deaths in the United States.

Several dietary factors have been identified that modify pancreatic cancer risk, including low

folate levels. In addition to nutrition and lifestyle determinants, folate status may be influ-

enced by genetic factors such as single nucleotide polymorphisms (SNPs). In the present

study, we investigated the association between folate levels, genetic polymorphisms in

genes of the folate pathway, and pancreatic cancer.

Methods

Serum and red blood cell (RBC) folate levels were measured in pancreatic cancer and con-

trol subjects. Genotypes were determined utilizing Taqman probes and SNP frequencies

between cases and controls were assessed using Fisher’s exact test. Logistic regression

was used to estimate the odds ratio (OR) and corresponding 95% confidence intervals (CIs)

to measure the association between genotypes and pancreatic cancer risk. The association

between folate levels and SNP expression was calculated using one-way ANOVA.

Results

Mean RBC folate levels were significantly lower in pancreatic cancer cases compared to

unrelated controls (508.4 ± 215.9 ng/mL vs 588.3 ± 229.2 ng/mL, respectively) whereas

serum folate levels were similar. Irrespective of cancer status, several SNPs were found to

be associated with altered serum folate concentrations, including the D919G SNP in methio-

nine synthase (MTR), the L474F SNP in serine hydroxymethyl transferase 1 (SHMT1) and

the V175M SNP in phosphatidyl ethanolamine methyltransferase (PEMT). Further, the V

allele of the A222V SNP and the E allele of the E429A SNP in methylene tetrahydrofolate

reductase (MTHFR) were associated with low RBC folate levels. Pancreatic cancer risk was

found to be significantly lower for the LL allele of the L78R SNP in choline dehydrogenase
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(CHDH; OR = 0.29; 95% CI 0.12–0.76); however, it was not associated with altered serum

or RBC folate levels.

Introduction

Pancreatic cancer, the third leading cause of cancer deaths in the United States, is an aggressive

cancer with median 5 year survival rates of only 8% [1]. Detection late in the disease course,

rapid metastasis, and chemo-resistance contribute to the poor prognosis for pancreatic cancer

[2]. In the age of personalized medicine, identification of genetic and environmental factors

that affect the risk for development of pancreatic cancer may aid in prevention or lead to

increased surveillance of susceptible individuals. Environmental factors including tobacco and

alcohol use, exposure to selected environmental chemicals, obesity, and diet, have been postu-

lated to play a significant role in the etiology of sporadic pancreatic cancer [3]. Deficiencies in

dietary sources of methyl groups, including choline, methionine, vitamin B-12 and folate, have

been associated with pancreatic dysfunction in rodents [4,5]. In addition, risk of development

of various cancer types in humans, including pancreatic cancer, has been shown to increase

with low dietary folate intake [6–9].

In humans, folate provides methyl groups for de novo deoxynucleotide synthesis and for

intracellular methylation reactions. Methylene tetrahydrofolate reductase (MTHFR) plays a

central role in folate metabolism by catalyzing the conversion of 5,10-methylenetetrahydrofo-

late (5,10-methylene THF) to 5-methyltetrahydrofolate (5-methyl THF), which is the main cir-

culating form of folate in the blood and a cosubstrate for the conversion of homocysteine to

methionine (Fig 1). Low levels of 5,10-methylene THF can cause an increased dUMP/dTMP

ratio, which could result in the incorporation of uracil into DNA in place of thymine, leading

to an increased risk for DNA mutations and DNA strand breakage [10]. In addition, low levels

of 5-methyl THF can lead to decreased s-adenosylmethionine (SAM) levels, which could result

in DNA hypomethylation leading to activation of cellular oncogenes, genomic instability, and

DNA damage [11,12]. Low folate levels therefore would be predicted to modify cancer risk by

influencing both pathways.

Disruption of the folate metabolic pathway can result from either insufficient dietary intake

of folate or the presence of genetic variants, such as single nucleotide polymorphisms (SNPs), in

genes of the folate pathway. Several SNPs in genes of the folate pathway have been shown to

result in altered serum and red blood cell (RBC) folate levels, including SNPs in the reduced

folate carrier (RFC) [13], dihydrofolate reductase (DHFR) [14] and MTHFR genes [15]. An

increased risk for development of pancreatic cancer has been associated with expression of the

VV allele of the A222V SNP in MTHFR [16–19]. In addition, expression of the YY genotype in

the methionine synthase reductase (MTRR) H595Y SNP and the 3Rc/3Rc genotype in thymidy-

late synthase (TYMS) also increased the risk for development of pancreatic cancer [18,20].

We have previously designed a case-control study to investigate the contribution of envi-

ronment and genetics to the risk for development of pancreatic cancer, where we recruited

pancreatic cancer subjects, an unrelated control who resided with the subject, as well as a

genetic relative control who did not reside with the subject [21]. Initial results from this study

demonstrated that direct DNA damage was significantly higher in pancreatic cancer patients

as compared to healthy related and unrelated controls [21]. As the folate pathway plays a sup-

portive role in DNA synthesis and repair pathways, the overall goal of this study was to investi-

gate whether altered folate levels are observed in these patients and whether expression of

SNPs in genes of the folate metabolic pathway are associated with pancreatic cancer risk.
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Materials and methods

Ethics statement

This study was approved by the Indiana University Institutional Review Board. A signed writ-

ten informed consent form was obtained from all participants at the time of recruitment.

Study population

A total of 265 subjects were recruited, of which 159 were pancreatic cancer cases (Stage I-IV),

55 were unrelated controls (spouses or partners) who shared the same environment, and 51

were related controls (children or siblings) who were expected to share a similar genetic

makeup. Stratification of the controls was chosen such that the contribution of both environ-

mental and genetic factors and their interaction in pancreatic cancer risk could be investigated.

Genetically related controls were included provided that they did not reside with the case

whereas unrelated controls were included only if they cohabited with the case. All subjects

were Caucasian, >18yrs of age, and able to read, understand and sign a written informed

Fig 1. Folate metabolic pathway. Depiction of folate uptake and reduction, transmethylation, and transulfuration pathways.

Genes in the shaded circles were analyzed for single nucleotide polymorphisms. RFC, reduced folate carrier; PCFT, proton

coupled folate transporter; DHF, dihydrofolate; THF, tetrahydrofolate; DHFR, dihydrofolate reductase; SHMT, serine

hydroxymethyltransferase; MTHFR, methylene tetrahydrofolate reductase; MTHFD1, methylene tetrahydrofolate

dehydrogenase 1; TYMS, thymidylate synthase; MTR, methionine synthase; MTRR, methionine synthase reductase; BHMT,

betaine hydroxymethyl transferase; CHDH, choline dehydrogenase; PC, phosphatidylcholine; PE, phosphatidylethanolamine;

PEMT, phosphatidylethanolamine N-methyltransferase; SAM, S-adenosyl methionine; MAT, methionine adenosyltransferase;

SAH, S-adenosyl homocysteine; AHCY, S-adeonsyl-L-homocysteine hydrolase; GSH, glutathione; CBS, cystathione ß-synthase;

CTH, cystathionase; GS, glutathione synthase.

https://doi.org/10.1371/journal.pone.0193298.g001

Folate and pancreatic cancer risk

PLOS ONE | https://doi.org/10.1371/journal.pone.0193298 February 23, 2018 3 / 15

https://doi.org/10.1371/journal.pone.0193298.g001
https://doi.org/10.1371/journal.pone.0193298


consent. Information on demographics was collected through a questionnaire. Cases with any

other malignancies besides pancreatic cancer, who had previously received chemotherapy,

or any other treatment for cancer were excluded. Blood samples for isolation of genomic

DNA and serum and RBC folate levels were collected from all participants at the time of

recruitment.

DNA extraction and SNP genotyping

Whole blood was collected and stored in vacutainer vials (BD Diagnostics, Franklin Lakes, NJ)

at -80˚C until further analysis. Genomic DNA was isolated from peripheral blood mononu-

clear cells (PBMCs) using the QIAamp DNA blood midi kit (Qiagen, Valencia, CA). Allelic

discrimination was performed using fluorogenic SNP Taqman probes (Applied Biosystems,

Carlsbad, CA) for selected SNPs in the folate pathway (S1 Table) and analyzed on an Illumina

Eco Real-Time PCR machine (Illumina, San Diego, CA). Genotypes were assigned using the

analysis software provided by Illumina.

Microbiological assay for folate determination

Folate levels were measured in serum or plasma and RBCs using the Lactobacillus casei micro-

biological assay [22,23]. Lactobacillus casei, a folate-dependent bacterium whose growth is an

indirect indicator of folate levels in a sample, was purchased from ATCC (ATCC 7946; ATCC,

Manassas, VA), and cultured in L.casei broth (BD Biosciences), which contains minimal levels

of folate. Bacterial stocks were prepared and cryopreserved in glycerol at -80˚C. To quantify

folate levels in RBCs, whole blood samples were lysed with 1% ascorbic acid and further

diluted in 0.5% sodium ascorbate. For the microbiological assay, cryopreserved bacteria were

suspended in 0.9% NaCl and added to folate standards and the serum/plasma or whole blood

samples. After incubation in a rotating shaker at 37˚C for 48 hrs, absorbance of the cultures

was determined at 546 nm, which was used as a measure of bacterial growth. Serum/plasma

and whole blood folate concentrations were determined using polynomial regression gener-

ated from a standard curve. To calculate RBC folate levels, hemoglobin was measured using

the whole blood samples as per the manufacturer’s protocol (Hemoglobin Assay kit, Sigma).

The hemoglobin concentrations were then used to calculate hematocrit (Hct) levels from

which RBC folate levels were derived according to the formula:

RBCfolate ¼Whole bloodfolate � dilution factor � ½serumfolate ð1 � Hct=100Þ�=ðHct=100Þ�:

Statistical analysis

Fisher’s exact test was used to compare SNP frequencies between patients and unrelated

healthy controls. Logistic regression was used to estimate odds ratios (OR) and corresponding

95% confidence intervals to measure the association between genotypes and risk for pancreatic

cancer. Hardy-Weinberg Equilibrium (HWE) was tested using χ 2 analysis. The gene dose

overall, dominance and recessive were calculated using χ 2 analysis. To measure the correlation

between folate levels and genotype, the independent samples t-test was used. One-way

ANOVA was used to calculate overall p-value for the association of genotype with serum and

RBC folate levels. Serum and RBC folate levels were compared between patients and controls

(unrelated and related) using the Student’s t-test. Serum tertile distribution among patients

and controls was analyzed using the Student’s t-test. The serum tertile distribution was based

on the CDC definition of deficient (�2.6 ng/mL), normal (2.6–14.2 ng/mL) and above normal
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(�14.2 ng/mL) serum folate ranges (Centers for Disease Control and Prevention www.cdc.

gov). For RBC folate stratification, the deficient and normal range distribution was combined

because of insufficient subjects in the deficient range according to the CDC definition of nor-

mal (102.6–410.9 ng/mL), deficient (� 102.6 ng/mL) and above normal (� 410.9 ng/mL) RBC

folate concentrations (Centers for Disease Control and Prevention www.cdc.gov). Age at the

time of diagnosis for the cancer cases, age at the time of sample collection, and date for control

groups was included as a continuous variable. Gender for the study population was included

as a dichotomous variable. The resulting ORs and corresponding CIs were reported both

unadjusted and adjusted for age and gender due to differences in these variables among the

patients and the controls. P-values of<0.05 were considered statistically significant. All statis-

tical analyses were performed using SPSS 16.0.

Results

Demographic characteristics of the study population

Age and gender of the study population are shown in Table 1. Pancreatic cancer cases were sig-

nificantly older than healthy related controls (p = 0.002); however, the unrelated controls

exhibited a similar age range as the cases. In this study, pancreatic cancer cases were more

likely to be males.

Association of serum and RBC folate levels to pancreatic cancer

Serum folate levels were not significantly different between pancreatic cancer cases (9.5 ± 4.9

ng/mL) and unrelated (9.3 ± 4.0 ng/mL) or related controls (9.6 ± 4.5 ng/mL) (Table 2). How-

ever, while not achieving statistical significance (p = 0.05), 12% of the pancreatic cancer cases

exhibited deficient serum folate levels (below 2.6 ng/mL) compared with only 7% of the

Table 1. Demographics of the subject population.

Pancreatic cancer cases(n = 159) Healthy unrelated controls (n = 55) Healthy related controls (n = 51) p-value

Agea

Mean ± SD 64.2 ± 11.5 60.1 ± 11.6 46.6 ± 11.8 0.002b

Range 23–92 33–87 19–80

Gendera

Male 82 (55%) 13 (26%) 16 (32%) 0.0003c

Female 68 (45%) 37 (74%) 34 (68%)

aMissing information for 9 cases, 5 healthy unrelated controls and 3 healthy related controls
bComparison between cases and healthy unrelated controls
cComparison of gender in cases only

https://doi.org/10.1371/journal.pone.0193298.t001

Table 2. Serum and RBC folate levels in pancreatic cancer cases and controls.

n� Serum folatea (ng/mL) p-value RBC folatea (ng/mL) p-value

Pancreatic cancer cases 143 9.5 ± 4.9 — 508.4 ± 215.9 —

Unrelated controls 45 9.3 ± 4.0 0.40 588.3 ± 229.2 0.01#

Related control 48 9.6 ± 4.5 0.43 531.8 ± 239.7 0.20

�Missing serum samples for 16 cases; 10 unrelated controls and 3 related controls
aResults are expressed as mean ± SD
#Significantly different, p<0.05

https://doi.org/10.1371/journal.pone.0193298.t002
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healthy unrelated control group (S2 Table). Pancreatic cancer cases exhibited significantly

lower RBC folate levels (508.4 ± 215.9 ng/mL) compared to unrelated controls (588.3 ± 229.2

ng/mL); however, RBC folate levels in the related controls were not significantly different from

that in the cases (Table 2). When RBC folate levels were stratified according to CDC criteria,

33% of the cases demonstrated deficient to normal RBC folate levels (<102.6–410.9 ng/mL)

whereas 67% were observed to have higher than normal (>410.9 ng/mL) RBC folate levels.

However, these values were not statistically different between cases and controls (S3 Table).

Association of SNPs in the folate pathway and pancreatic cancer

Genotypes for 15 SNPs in 12 genes of the folate metabolic pathway (Fig 1 and S1 Table) were

determined in the pancreatic cancer cases and control groups (Table 3). A significant differ-

ence was observed in the genotype distribution among patients and healthy unrelated controls

for the choline dehydrogenase CHDH L78R SNP (p = 0.03), as well as in the dominant gene

dose model (p = 0.02) (Table 3). No other significant differences were observed in genotype

frequencies for the remaining SNPs in the folate pathway. Hardy-Weinberg equilibrium

(HWE) was next tested using χ2 analysis for these SNPs and polymorphisms that did not fol-

low HWE were not analyzed further. Odds ratios were determined for the remaining 8 SNPs

(Table 4). Subjects that carried the LL genotype (nucleotide TT) of the CHDH L78R SNP were

found to be at decreased risk for pancreatic cancer both prior to (OR = 0.29; 95% CI 0.12–

0.76) and after adjusting for age and sex (OR = 0.29; 95% CI 0.10–0.84) (Table 4). No other sig-

nificant associations with pancreatic cancer risk for the remaining SNPs in the folate pathway

were observed.

Association of SNPs in the folate pathway with altered serum and RBC

folate levels

We observed significantly different serum folate levels associated with individuals expressing

the serine hydroxymethyltransferase (SHMT1) L474F, 5-methltetrahydrofolate-homocysteine

methyltransferase (MTR) D919G and the phosphatidylethanolamine N-methyltransferase

(PEMT) V175M polymorphisms (Table 5). Individuals with the LF allele of the SHMT1 L474F

SNP showed significantly higher serum folate levels (10.4 ± 0.4 ng/mL) compared to those of

LL allele (9.1 ± 0.4 ng/mL); however a gene dose-response trend was not observed. Individuals

with the DG genotype of the MTR D919G polymorphism had significantly lower serum folate

concentrations (8.2 ± 0.5 ng/mL) compared to those expressing the reference genotype DD

(10.3 ± 0.3 ng/mL). For the PEMT V175M polymorphism, the subjects with the VV genotype

exhibited significantly lower serum folate levels (7.1 ± 1.2 ng/mL) compared to the reference

genotype MM (9.6 ± 0.4 ng/mL).

Significant differences in RBC folate levels were observed in the subjects expressing A222V

and E429A polymorphisms of the MTHFR gene. Subjects with the AV and VV genotypes of the

MTHFR A222V SNP showed significantly lower RBC folate levels (509.6 ± 21.3 ng/mL and

370.6 ± 31.7 ng/mL respectively) compared to individuals expressing the wild type allele AA

(603.5 ± 21.4 ng/mL). The EE allele of the MTHFR E429A polymorphism was also found to be

significantly associated with lower RBC folate levels (496.6 ± 21.5 ng/mL) compared to the het-

erozygous EA and AA variant allele (560.0 ± 21.5 ng/mL and 563.8 ± 44.6 ng/mL, respectively).

Discussion

Pancreatic cancer is a devastating disease, with a relative 5 year survival rate of 8%. One of the

reasons for the dismal prognosis is that more than half of the cases are diagnosed at late stage,

where the 5-year survival rate is only 3% [1]. As such, identification of risk susceptibility

Folate and pancreatic cancer risk

PLOS ONE | https://doi.org/10.1371/journal.pone.0193298 February 23, 2018 6 / 15

https://doi.org/10.1371/journal.pone.0193298


Table 3. Genotype frequencies of SNPs in genes in the folate pathway.

Amino Cases Unrelated p-values

rs# Gene SNP Genotype Acid n (%) Controls n (%) Overall Dominance Recessive

3578659000 RFC A558V TT AA 65 (100)# 31 (100)# 1.00 1.00 1.00

CT AV 0 (0) 0 (0)

CC VV 0 (0) 0 (0)

1979277 SHMT L474F CC LL 66 (42) 26 (47) 0.77 0.43 0.28

CT LF 78 (49) 25 (45)

TT FF 15 (9) 4 (8)

2236225 MTHFD1 Q653R GG RR 45 (28) 15 (27) 0.95 0.52 0.23

AG QR 82 (52) 28 (51)

AA QQ 32 (20) 12 (22)

59755869 TYMS E100Q CC EE 0 (0) 0 (0) 1.00 1.00 1.00

CG EQ 0 (0) 0 (0)

GG QQ 71 (100)# 31 (100#

1801133 MTHFR A222V CC AA 61 (38) 24 (44) 0.30 0.16 0.30

CT AV 73 (46) 26 (47)

TT VV 25 (16) 5 (9)

1801131 MTHFR E429A AA EE 87 (54) 24 (44) 0.25 0.20 0.08

AC EA 60 (38) 24 (44)

CC AA 12 (8) 7 (12)

10380 MTRR H595Y CC HH 123 (77) 46(84) 0.32 0.55 0.22

CT HY 34 (21) 9 (16)

TT YY 2 (1) 0 (0)

1805087 MTR D919G AA DD 101 (64) 34 (62) 0.88 0.55 0.47

AG DG 45 (28) 17 (31)

GG GG 13 (8) 4 (7)

12749581 MTR R52Q GG RR 59 (33) 18 (33) 0.63 0.34 1.00

AG RQ 100 (67) 37 (67)

AA QQ 0 (0) 0 (0)

3733890 BHMT Q239R GG RR 81 (51) 27 (49) 0.87 0.47 0.35

AG RQ 67 (42) 23 (42)

AA QQ 11 (7) 5 (9)

7946 PEMT V175MMMM TT MM 88 (55) 35 (64) 0.27 0.30 0.23

CT MV 55 (35) 17 (31)

CC VV 16 (10) 3 (5)

9001 CHDH E40A AA EE 124 (78) 46 (83) 0.47 0.70 0.24

AC EA 34 (21) 9 (17)

CC AA 1 (1) 0 (0)

12676 CHDH L78R GG RR 84 (53) 21 (38) 0.03� 0.02� 0.06

GT LR 62 (39) 23 (42)

TT LL 13 (8) 11 (20)

1021737 CTH S430I GG SS 85 (53) 27 (49) 0.59 0.33 0.34

GT SI 54 (35) 23 (42)

TT II 20 (12) 5 (9)

234706 CBS C699T CC 0 (0) 0 (0) 1.00 1.00 1.00

CT 159 (100) 55 (100)

(Continued)
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profiles for pancreatic cancer could greatly impact early diagnosis and prevention strategies. In

a pilot study, we have previously shown that direct DNA damage was increased in pancreatic

cancer patients as compared to control subjects who resided with the patient (i.e. shared the

same environment) and also as compared to controls that are genetically related, but did not

share the same environment [21]. As defects in the folate metabolic pathway have been linked

to DNA damage, in this study we sought to determine (1) whether serum and RBC folate levels

differ between pancreatic cancer patients and controls, (2) whether SNPs in key genes of the

folate pathway associate with pancreatic cancer risk and (3) whether expression of specific

SNPs correlates with serum or RBC folate levels.

The relationship between dietary folate intake, measured serum and RBC folate levels, and

pancreatic cancer risk is not clearly defined. Dietary folate intake has been shown to be

Table 3. (Continued)

Amino Cases Unrelated p-values

rs# Gene SNP Genotype Acid n (%) Controls n (%) Overall Dominance Recessive

TT 0 (0) 0 (0)

# Not all subjects were analyzed as genotypes were all the same

�Significantly different, p<0.05

https://doi.org/10.1371/journal.pone.0193298.t003

Table 4. Association of folate metabolic gene SNPs and pancreatic cancer.

Amino Acid Genotype Cases n (%) Unrelated Controls n (%) UnadjustedOR (95% CI) p-value AdjustedOR (95% CI) p-value

SHMT L474F LL CC 66 (42) 26 (47) 1.00 -

LF CT 78 (49) 25 (45) 0.68 (0.20–2.23) 0.52 1.23 (0.61–2.48) 0.57

FF TT 15 (9) 4(8) 0.83 (0.25–2.74) 0.76 1.46 (0.41–5.21) 0.56

MTHFD1 Q653R RR GG 45 (28) 15 (27) 1.00

QR AG 82 (52) 28 (51) 0.59 (0.25–1.35) 0.21 1.63 (0.28–1.77) 0.29

QQ AA 32 (20) 12 (22) 0.89 (0.37–2.15) 0.79 1.07 (0.59–2.06) 0.78

MTHFR A222V AA CC 61(38) 24 (44) 1.00

AV CT 73 (46) 26 (47) 0.61 (0.22–1.67) 0.33 1.11 (0.54–2.31) 0.78

VV TT 25 (16) 5 (9) 0.70 (0.25–1.90) 0.49 1.32 (0.45–3.82) 0.62

MTHFR E429A EE AA 87 (54) 24 (44) 1.00 -

EA AC 60 (38) 24 (44) 1.93 (0.69–5.37) 0.21 0.63 (0.31–1.31) 0.22

AA CC 12 (8) 7 (12) 1.35 (0.47–3.78) 0.57 0.58 (0.19–1.76) 0.34

MTR D919G DD AA 101 (64) 34 (62) 1.00

DG AG 45 (28) 17 (31) 0.91 (0.28–2.99) 0.88 0.66(0.32–1.39) 0.28

GG GG 13 (8) 4 (7) 0.81 (0.23–2.85) 0.74 1.30 (0.32–5.29) 0.72

PEMT V175M MM TT 88 (55) 35 (64) 1.00 -

VM CT 55 (35) 17 (31) 1.29 (0.66–2.52) 0.46 1.62 (0.68–8.46) 0.61

VV CC 16 (10) 3 (5) 2.12 (0.58–7.74) 0.24 2.64 (0.83–10.61) 0.39

BHMT Q239R RR GG 81 (51) 27 (49) 1.00

QR AG 67 (42) 23 (42) 0.97 (0.51–1.84) 0.93 0.78 (0.38–1.57) 0.48

QQ AA 11 (7) 5 (9) 0.73 (0.23–2.30) 0.59 0.77 (0.21–2.79) 0.69

CHDH L78R RR GG 84 (53) 21 (38) 1.00

RL GT 62 (39) 23 (42) 0.67 (0.34–1.33) 0.25 0.69 (0.33–1.64) 0.33

LL TT 13 (8) 11 (20) 0.29 (0.12–0.76) 0.01� 0.29 (0.10–0.84) 0.02�

�Significantly different, p<0.05

https://doi.org/10.1371/journal.pone.0193298.t004
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inversely proportional to pancreatic cancer risk in several epidemiological studies in which

higher dietary folate intake was associated with lower risk for pancreatic cancer [24–26]. How-

ever, in the Nurses’ Health Study and the Health Professionals Follow-up Study, no relation-

ship between folate intake and pancreatic cancer risk was observed [27]. Low serum folate

levels were associated with increased risk of pancreatic cancer in male Finnish smokers in the

Alpha Tocopherol Beta Carotene Cancer prevention (ATBC) study [6]. Interestingly, the

European Prospective Investigation Into Cancer study has shown a U-shaped relationship

between plasma folate and pancreatic cancer risk; that is, individuals with high plasma folate

(>20 nM) and those with deficient or near deficient plasma folate levels (5–10 nM) had a simi-

lar increased risk when compared to those with adequate plasma folate levels (10–15 nM) [7].

In our study, we did not find significant differences in the mean serum folate levels of the

Table 5. Association of folate levels with genotype.

SNP Allele n Serum folate (ng/mL) p-value RBC folate (ng/mL) p-value

SHMT1 L474F LL 111 9.1 ± 0.4 533.0 ± 20.8

LF 101 10.4 ± 0.4 0.03� 515.7 ± 22.9 0.57

FF 25 7.8 ± 1.4 0.09 559.4 ± 45.7 0.58

MTHFD1 Q653R RR 51 9.0 ± 0.6 510.4 ± 29.9

QR 124 9.7 ± 0.4 0.69 547.0 ± 20.5 0.37

QQ 62 9.4 ± 0.6 0.72 505.5 ± 28.1 0.21

MTHFR E429A EE 120 10.0 ± 0.4 496.6 ± 21.5

EA 95 8.9 ± 0.5 0.09 560.0 ± 21.5 0.04�

AA 22 9.1 ± 0.9 0.39 563.8 ± 44.6 0.05

MTHFR A222V AA 96 8.9 ± 0.5 603.5 ± 21.4

AV 108 9.7 ± 0.4 0.09 509.6 ± 21.3 0.002�

VV 33 10.6 ± 0.7 0.06 370.6 ± 31.7 <0.001�

MTRR H595Y HH 183 9.4 ± 0.3 531.2 ± 16.9

HY 52 9.7 ± 0.6 0.68 526.2 ± 28.5 0.88

YY 2 11.1 ± 4.0 0.59 322.5 ± 151.5 0.24

MTR D919G DD 143 10.3 ± 0.3 524.8 ± 18.7

DG 72 8.2 ± 0.5 0.002� 520.2 ± 26.9 0.88

GG 22 8.6 ± 0.9 0.122 578.7 ± 46.6 0.29

BHMT Q239R RR 127 9.2 ± 0.4 526.5 ± 19.3

QR 96 10.1 ± 0.5 0.15 531.6 ± 23.6 0.89

QQ 14 8.4 ± 1.4 0.54 522.9 ± 67.7 0.95

PEMT V212M MM 132 9.6 ± 0.4 525.5 ± 18.4

VM 84 9.9 ± 0.5 0.70 538.5 ± 26.7 0.58

VV 21 7.1 ± 1.2 0.03� 506.5 ± 49.8 0.70

CHDH E40A EE 184 9.2 ± 0.3 541.7 ± 16.3

EA 51 10.6 ± 0.6 0.06 526.2 ± 28.5 0.06

AA 2 8.9 ± 0.4 0.94 676.5 ± 198.8 0.39

CHDH L78R RR 117 9.41 ± 0.44 510.7 ± 19.8

LR 93 9.67 ± 0.46 0.70 548.0 ± 23.9 0.84

LL 27 9.29 ± 0.92 0.90 538.1 ± 48.3 0.56

CTH S430I SS 135 9.3 ± 0.4 521.8 ± 19.2

SI 81 10.1 ± 0.5 0.25 526.3 ± 25.7 0.88

II 21 8.5 ± 1.2 0.47 578.6 ± 45.2 0.27

�Significantly different, p<0.05

https://doi.org/10.1371/journal.pone.0193298.t005
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pancreatic cancer cases and the unrelated controls or related controls (9.5 ± 4.9ng/mL,

9.3 ± 4.0 ng/mL, and 9.6 ± 4.5 ng/mL, respectively) (Table 2). We did observe however, that

12% of cases fell in the deficient range (<2.6 ng/mL) for serum folate, compared to only 6% in

unrelated controls and 7% in related controls (S2 Table). Since 1998, the FDA has required

folate fortification of cereals and grains in the US, and folate levels in the general population

have risen significantly [28], which may explain why differences in serum folate levels were

not observed in our study. In addition, the ATBC study consisted exclusively of male smokers

and smoking has been associated with low circulating folate levels [29].

Although RBC folate levels have been studied with respect to obesity and neural tube

defects, our study is the first, to our knowledge, to determine an association of RBC folate lev-

els with pancreatic cancer risk. We observed that RBC folate levels in pancreatic cancer cases

(508.4 ± 215.9 ng/mL) were significantly lower than that of unrelated healthy controls (588.3 ±
229.2 ng/mL), but not that of related controls (531.8 ± 239.7 ng/mL), suggesting that RBC

folate levels are, in part, dependent on genetics. Compared to serum folate levels, which are

indicative of recent folate intake, RBC folate concentrations represent tissue folate levels, and

hence are more representative of an individual’s overall folate status. While the RBC folate lev-

els were lower in pancreatic cancer subjects in this study, the observed levels are considered to

be within the CDC’s definition of folate-sufficient status. It is possible that the lower RBC

folate in the cases could have been due to underlying pathologies caused by cancer, such as

poor folate absorption or increased demand for DNA synthesis. On the other hand, animal

studies have shown that folic acid supplementation decreased MTHFR enzymatic activity

resulting in reduced methylation potential, suggesting that high tissue folate levels mimic

MTHFR deficiency [30]. As 67% of the pancreatic cancer cases were observed to have higher

than normal RBC folate levels according to CDC guidelines, further assessment of folate

metabolism in pancreatic cancer, (e.g. determination of methyl-THF, SAM and SAH levels)

appears warranted.

While the MTHFR A222V, MTRR H595Y, and TYMS 3Rc SNPs have previously been

shown to be associated with pancreatic cancer [18,20], the studies did not include measure-

ments of serum or RBC folate levels. In our study, we evaluated gene polymorphisms involved

in the uptake, transmethylation and transulfuration pathways of folate metabolism (Fig 1) for

their association with pancreatic cancer risk as well as association of folate levels with these

gene polymorphisms. The MTHFR A222V polymorphism results from a nucleotide change at

position 677 from C to T. Individuals heterozygous (CT) or homozygous (TT) for the C677T

polymorphism exhibit lower enzymatic activity, 65% and 30% respectively, compared to CC

homozygous individuals [9]. Decreased activity of MTHFR exhibited by the TT genotype is

thus predicted to result in DNA hypomethylation and indeed, expression of the VV allele has

been associated with decreased DNA methylation compared to the AA allele [31]. DNA hypo-

methylation, which may lead to aberrant expression of proto-oncogenes or overexpression of

proteins involved in cancer progression, has been shown previously in pancreatic cancer [32].

Li et al. reported a 2-fold increased risk for pancreatic cancer for individuals with the MTHFR

677 TT versus the CC/CT polymorphisms while Wang et al. reported increased odds ratios of

2.6 and 5.1 for the CT and TT genotypes, respectively, versus the wild-type CC polymorphism

[16,18]. While we did not observe an association of the MTHFR A222V or MTRR H595Y

polymorphism with pancreatic cancer, we found that expression of the homozygous variant

allele results in lower RBC folate levels (Table 5). Our results are consistent with other studies

that observed lower RBC folate levels in individuals with the AV and VV alleles in the MTHFR

A222V SNP [31,33,34]. In contrast, individuals with the EA and AA variants of the MTHFR

E429A SNP had higher mean RBC folate concentrations as compared to the referent EE geno-

type. This is consistent with previous observations, in that the ancestral and more common
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alleles of the MTHFR A222V and MTHFR E429A polymorphisms exhibited opposite effects

on RBC folate levels [35]. While we did not find statistically significant associations of pancre-

atic cancer with either of the MTHFR SNPs, the percentage of pancreatic cancer patients with

the VV genotype in the A222V SNP, with the lowest RBC folate levels, is almost double that of

unrelated control subjects (16% vs 9%, respectively; Table 3), and the percentage of pancreatic

cancer patients with the EE genotype of the E429A SNP, with lower RBC folate levels, is also

greater than that of unrelated control subjects (54% vs 44%, respectively; Table 3). A study by

Keku et al. found that the AA genotype of the E429A SNP, that is associated with high RBC

folate levels, was only protective when dietary folate was low, but not when folate intake was

high, suggesting that determination of the genotype of an individual alone may not adequately

assess risk [36]. Rather, other factors, such as dietary intake of folate, need to be considered

along with genotype. As dietary folate intake data was not collected in our study, we cannot

perform these same correlations in this study group. We have observed that the SHMT1

L474F, MTR D919G, and PEMT V175M polymorphisms display significant differences in

serum folate levels among the alleles (Table 5). The variant alleles of the SHMT 1 L474F and

MTR D919G polymorphisms have been implicated in increased risk of certain cancers [37–

39]. We found that individuals expressing the LF allele of the SHMT1 L474F SNP exhibited

significantly higher serum folate levels compared to those carrying the referent LL allele; how-

ever, serum folate levels in FF homozygous individuals did not significantly differ from those

with the LL allele. These results are consistent with previous findings that individuals with the

LL genotype exhibited lower plasma folate levels than those of the LF genotype [40]. SHMT1

catalyzes the reaction for generation of methylene-THF, which can either be utilized in thymi-

dylate or methionine biosynthesis. While the amino acid change of leucine to phenylalanine

does not appear to alter enzymatic activity, it impairs nuclear transport of SHMT1 resulting in

cytosolic accumulation of the altered SHMT1 where it is not able to facilitate thymidylate syn-

thesis [41–43]. As such, one might predict that expression of this SNP would confer a protec-

tive effect against development of pancreatic cancer; however, expression of a cytoplasmic

isozyme of SHMT2, SHMT2α, appears to functionally compensate for lack of wild-type

SHMT1 protein [41].

The enzyme MTR catalyzes the remethylation of homocysteine to methionine (Fig 1). The

functional impact of the MTR D919G polymorphism is not known, however it has been postu-

lated to alter enzyme activity [38]. The presence of the G allele in the MTR D919G SNP has

been associated with lower plasma homocysteine levels and higher folate concentrations as

compared to DD genotype in the Physicians Health Study (PHS) [44]. In contrast, we found

that the G allele was associated with significantly lower serum folate levels compared to that of

the DD genotype (Table 5). This could be due to the difference in the mean serum folate ranges

observed in these studies, as the PHS study was conducted before folate fortification in the US.

PEMT is a key enzyme in the choline metabolic pathway converting phosphatidylethanol-

amine (PE) to phophatidylcholine (PC) which is further converted to choline. Choline is the

substrate for betaine synthesis which in turn provides the methyl group for methionine synthe-

sis (Fig 1). PEMT therefore, plays a key role in the methylation cycle of the folate metabolic

pathway. The amino acid substitution of methionine for valine at position 175 in PEMT

(V175M) results in production of an enzyme with reduced activity [45]. In our study, we

found that individuals with the VV genotype of the V175M PEMT SNP exhibited significantly

lower serum folate levels than those with the MM genotype. In concordance with these find-

ings, women with the rarer VV genotype were more likely to have a child with a neural tube

defect [46].

Our study is the first to report a significant association between the L78R CHDH SNP and

the risk of pancreatic cancer, where we found that the LL genotype of the polymorphism L78R
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CHDH was significantly protective (OR = 0.29; CI 0.12–0.76) against pancreatic cancer when

compared with the referent RR allele. The CHDH enzyme catalyzes the synthesis of betaine from

choline. In addition to 5,10 methylene THF, betaine is an alternative substrate for methionine syn-

thesis, which would aid in maintaining sufficient pools of SAM for DNA methylation reactions.

While detailed investigation of the effect of this SNP on CHDH enzyme activity has not been con-

ducted, several studies suggest that the L78R substitution results in a functional change of the pro-

tein. Expression of the minor T allele, which codes for expression of leucine, has been associated

with development of clinical symptoms of choline deficiency [47]. In addition, infertility linked to

altered sperm function was found in men with the GT or TT genotype, which was attributed to

decreased ATP production by dysmorphic mitochondria [48]. Further, CHDH protein levels in

sperm and hepatocytes in individuals with either the GT and TT genotype was decreased in com-

parison to that of the GG individuals [48]. As folate levels were not different among genotypes in

the L78R SNP (Table 5), the mechanism by which the TT allele confers protection against pancre-

atic cancer is likely not due to modulation of folate metabolism. CHDH has recently been found

to stimulate mitophagy, a form of autophagy, following mitochondrial damage [49]. As autophagy

has been shown to promote pancreatic cancer [50], we postulate that the inability of the L78 form

of CHDH to stimulate autophagy may lead to protection against pancreatic cancer development.

Further studies are required to validate this hypothesis.

One limitation of our study is the small size of the study population, which may have

affected the statistical power of our study and may explain inconsistencies seen with previous

larger epidemiological studies. Another limitation is the lack of information on lifestyle factors

such as smoking, alcohol consumption, and dietary folate intake which can influence folate

status. In conclusion, in this study, we have explored several SNPs in genes in the folate path-

way for their association with both folate status and pancreatic cancer, and have identified that

the LL variant of the L78R SNP in CHDH is associated with a decreased risk for pancreatic

cancer. Further studies are needed to verify and extend these findings in larger pancreatic can-

cer cohorts.
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