
Interaction of Liberibacter Solanacearum with Host Psyllid
Vitellogenin and Its Association with Autophagy

Poulami Sarkar,a Murad Ghanima

aDepartment of Entomology, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel

ABSTRACT Candidatus Liberibacter solanacearum (CLso) haplotype D, transmitted
by the carrot psyllid Bactericera trigonica, is a major constraint for carrot production
in Israel. Unveiling the molecular interactions between the psyllid vector and CLso
can facilitate the development of nonchemical approaches for controlling the dis-
ease caused by CLso. Bacterial surface proteins are often known to be involved in
adhesion and virulence; however, interactions of CLso with carrot psyllid proteins
that have a role in the transmission process has remained unexplored. In this study,
we used CLso outer membrane protein (OmpA) and flagellin as baits to screen for
psyllid interacting proteins in a yeast two-hybrid system assay. We identified psyllid
vitellogenin (Vg) to interact with both OmpA and flagellin of CLso. As Vg and
autophagy are often tightly linked, we also studied the expression of autophagy-
related genes to further elucidate this interaction. We used the juvenile hormone
(JH-III) to induce the expression of Vg, thapsigargin for suppressing autophagy, and
rapamycin for inducing autophagy. The results revealed that Vg negatively regulates
autophagy. Induced Vg expression significantly suppressed autophagy-related gene
expression and the levels of CLso significantly increased, resulting in a significant
mortality of the insect. Although the specific role of Vg remains obscure, the findings
presented here identify Vg as an important component in the insect immune
responses against CLso and may help in understanding the initial molecular
response in the vector against Liberibacter.

IMPORTANCE Pathogen transmission by vectors involves multiple levels of interactions,
and for the transmission of liberibacter species by psyllid vectors, much of these interac-
tions are yet to be explored. Candidatus Liberibacter solanacearum (CLso) haplotype D
inflicts severe economic losses to the carrot industry. Understanding the specific interac-
tions at different stages of infection is hence fundamental and could lead to the devel-
opment of better management strategies to disrupt the transmission of the bacteria to
new host plants. Here, we show that two liberibacter membrane proteins interact with
psyllid vitellogenin and also induce autophagy. Altering vitellogenin expression directly
influences autophagy and CLso abundance in the psyllid vector. Although the exact
mechanism underlying this interaction remains unclear, this study highlights the impor-
tance of immune responses in the transmission of this disease agent.
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The carrot psyllid Bactericera trigonica is the main insect vector that transmits
Candidatus Liberibacter solanacearum Haplotype D (CLso) in Israel (1–3). Similar to

Candidatus Liberibacter asiaticus (CLas), the causative agent of the devastating citrus
greening disease (4), Ca. L. solanacearum is a phloem-limited Gram-negative bacte-
rium, transmitted by psyllids in a persistent, propagative manner (3, 5–8). Several
Liberibacter effectors like Sec-delivered effector-1 (9) and Lso-HPE-1 (10) have been
identified to act as virulence factors in plants. In addition, few studies have addressed
the biological and epidemiological relationships between Liberibacter species and
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psyllid vectors (11–17). However, little attention has been given to the molecular inter-
actions and the functional validation of Liberibacter and insect proteins that aid in the
transmission process. Recently, several reports have unraveled at the transcriptional
response of whole psyllids and organs to the acquisition and retention of Liberibacter
species (3, 18–21). These studies have shown that the acquisition of different
Liberibacter species, by their respective psyllid vectors, induced significant immune
responses (22–25). Genome and transcriptome sequencing results have further shown
that psyllids do not bear a complete immune response system as has been described
in model insects such as Drosophila (14, 26, 27). Psyllids lack the adaptive immunity
and the immune deficiency (Imd) pathway, which generally respond to invasion by
Gram-negative bacteria, thus leading for example to the ability of Liberibacter species
to invade tissues in psyllids where they are able to replicate (21, 23, 28). Such findings
raise the hypothesis that psyllids use alternative immune responsive mechanisms for
combating with the effects of invasion by the bacterium into host cells. On the other
hand, psyllids bear an innate defense mechanism against pathogens, which involves
both cellular and humoral immune responses (23, 28, 29). Cellular responses include
phagocytosis, and humoral responses involve secretion of several antimicrobial pep-
tides (23, 28, 30). The first line of defense involves recognition of conserved elicitors,
molecules, or essential structures often known as microbe- or pathogen-associated
molecular patterns (MAMPs or PAMPs) by host pattern-recognition receptors (PRR).
Bacterial outer membrane proteins (Omp), flagellins, and pili appendages are some of
the known bacterial virulence factors involved in pathogenesis that elicit immune
responses in the host (31–33). OmpA is a major unique integral transmembrane pro-
tein with amphipathic b-barrels which is often involved in cell adhesion and virulence
(34–37). OmpA also has a direct role in virulence upon infection in the host cells for
several human-pathogenic bacteria (36, 38) such as Escherichia coli (39, 40), Salmonella
enterica (41), Leptospira interrogans (42, 43), and Neisseria gonorrhoeae (44). The fat
body in insects is one of the major immune-responsive organs, where host PRRs
against bacterial virulence factors are produced and then directly released into the
hemolymph (45). Additionally, hemocytes act as macrophages that have phagocytic
activity but also require the presence of PRRs for presenting the pathogen to these
macrophages.

One of the major known PRRs is apolipoprotein or vitellogenin (Vg) which belongs
to the large lipid transfer protein (LLTP) superfamily having opsonin activity (46–48).
LTTPs consist of a large phosphoglycolipoprotein and a major egg yolk protein precur-
sor (YPP) in insects. They are large molecules (200 kDa) synthesized in the fat bodies
and midguts, transported through the hemolymph and sequestered by ovaries with
the help of vitellogenin receptors (VgR) via receptor-mediated endocytosis, and are
subsequently cleaved to generate the nutrient yolk protein vitellin required for the
developing oocytes (49–51). Although Vg was initially considered a female-specific
protein, males and sexually immature animals have also been shown to express Vg
indicating several roles beyond the nourishment of developing oocytes (50, 52, 53). It
provides host innate immunity with multifaceted functions during several extraneous
factors, including chemical exposure, nutritional stress, and infection (47, 54). Insect Vg
often acts as a pattern recognition molecule to recognize pathogens, enhances macro-
phage phagocytosis and autophagy, neutralizes viruses by creating cross-links
between virions, and often kills bacteria by interacting with the lipopolysaccharides
and lipoteichoic acid present in bacterial cell walls (49, 51, 53, 55, 56). For instance, silk-
worm apolipoproteins inhibits Staphylococcus aureus by binding to cell surface lipotei-
choic acids (57, 58). Mosquito Vg has been reported to have antiparasitic response
against plasmodium (59). Bacterial membrane proteins, flagella, and pili often serve as
PAMPs and immune elicitors that interact with Vg and act as PRRs which induce
autophagy and transgenerational immune priming (36, 60–65).

In this study, we show that OmpA and flagellin of CLso interact with Vg of B. trigon-
ica and induce autophagy in the psyllid cells. While both Vg and autophagy are
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important in the immune response against CLso, each seems to negatively regulate
the other, and both are important for regulating CLso titers, in addition to oocyte de-
velopment, oviposition, and egg viability. The described immune responses in this
study are crucial for CLso persistence in the insect and seem to be part of a larger
mechanism regulated by both the insect and CLso for maintaining the balance
between the vector and the pathogen.

RESULTS
Liberibacter surface proteins interact with the von Willebrand factor type D

(VWD) domain of host vitellogenin. As OmpA contains a surface antigen domain,
while Flg acts as a virulence factor (31), Liberibacter OmpA and Flg were used to screen
for interacting proteins in the psyllid vector. A cDNA expression library was prepared
using whole psyllids and was mated with the full-length CDS of OmpA/Flg expressed as a
fusion protein with GAL4-DNA binding domain in Y2HGold that binds to promoters of
four reporter genes (AUR1C, HIS3, ADE2, and MEL1). Around 54 isolated colonies were
obtained in QDO plates for OmpA and 62 for Flg which were restreaked on QDO/Xgal
and QDO/X-gal/Aba plates for confirmation of b-galactosidase activity. Four out of all the
colonies for OmpA and three for Flg were identified as parts of VWD domain of Vg after
DNA sequencing (Fig. S3). To verify the Y2H interaction, VWD domain of Vg was amplified
separately from psyllid DNA, cloned into pGAD-T7 vector, and screened against OmpA/
Flg once again which also showed strong b-galactosidase activity (Fig. 1A).

Interaction between Vg and OmpA/Flg was further confirmed using a pulldown
assay using OmpA as a bait. A band of approximately 48 kDa was observed in SDS-
PAGE as well as Western blots using a monoclonal Anti-polyHistidine antibody pro-
duced in mouse (Sigma-Aldrich, Israel) when OmpA and Vg were included in the assay
(Fig. 1B) or when Flg and Vg were used (Fig. 1C). No band was detected when GST con-
trol was used as bait, indicating a specific interaction between OmpA/Flg and Vg-VWD.

FIG 1 Interaction between Liberibacter membrane proteins and host vitellogenin. (A) Yeast two-hybrid assay showing
strong interaction between Vg-VWD domain and bacterial OmpA (1a, 1b) and Flagellin (2a, 2b) in QDO1Xgal (a) and
QDO1Xgal1Aba plates (b). Subsets 3a and 3b show negative control showing no interaction between empty pGADT7
vectors with bacterial proteins. (B) and (C) Detection of Vg-VWD with N-terminal His-tag after pulldown assay using GST-
tagged OmpA (B) and Flg (C) as baits by SDS-PAGE (a) and Western blot (b) using anti-His antibody. (D) Immunostaining
of Ca. L. solanacearum1 midguts with anti-Vg antibody (green) and anti-Ca. L. solanacearum antibody (red) showing
spatial colocalization of the two (yellow) under confocal microscopy.
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To further confirm the interaction, spatial localization of Vg was confirmed in dissected
midguts from Ca. L. solanacearum infected psyllids using immuno-localization with
specific antibodies for Vg and Ca. L. solanacearum. The signal observed in the midgut
indicated a partial overlap in the fluorescent signals of Vg and Ca. L. solanacearum,
which indicated a physical proximity in midgut cells (Fig. 1D). Vg localization and
expression profile in Ca. L. solanacearum-infected and Ca. L. solanacearum-free males
and females are shown in Fig. S4.

In silico analyses. Only one Vg homolog was identified from the psyllid transcrip-
tome (3). The coding sequence was validated by cloning and sequencing. Structural
analysis of Vg revealed three major domains, which include Lipoprotein_N-terminal
domain (LPD_N), a 1943 domain (DUF1943) of unknown function, and C-terminal von
Willebrand factor type D domain (VWD) that are usually found in conventional Vgs/
LLTPs (Fig. 2A and B). Phylogenetic analysis showed that the carrot psyllid Vg clustered
in the same clade as two other psyllids with 90.7% identity with the potato psyllid
Bactericera cockerelli. It also clustered in a separate clade formed by other hemipterans
in the group (Fig. 2C).

Amino acid sequences of all known Liberibacter OmpA and Flg were aligned for
sequence identity. Despite an overall high level of identity, conservation of sequences
were found to be scattered for both OmpA and Flg. Domain analysis for OmpA
revealed four polypeptide transport-associated domain (POTRA) and a bacterial surface
antigen. Homology modeling also revealed a three-dimensional structure for OmpA
with all the major domains (Fig. S5). Similar analyses for flagellin revealed a signaling
domain and a polymerization domain and show minor heterogeneity when aligned
with conserved sequences (Fig. S6).

Ca. L. solanacearum induces vitellogenin and autophagy-related genes in psy-
llids. Differential expression profiles of Vg and autophagy related genes were studied
in Ca. L. solanacearum-free and Ca. L. solanacearum-infected psyllids. Immunostaining

FIG 2 Structure and domain architecture of vitellogenin. (A) Vg contains three conserved domains; Lipoprotein LPD_N-terminal
domain, DUF1943, and VWD domain. (B) Three-dimensional structure of psyllid Vg, modeled by iTasser with highest C-score of
0.32 shows the two major domains: LPD_N (red) and VWD (blue). (C) Phylogeny of amino acid sequences of all known psyllid Vg
proteins showing clustering within Hemipteran clade with T. evansi used as an outgroup.
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revealed higher expression of Vg in the Ca. L. solanacearum-infected midguts and its
expression was upregulated in Ca. L. solanacearum-infected psyllids compared with
control Ca. L. solanacearum-free psyllids by 5.9-fold changes in whole body samples (in
both males and females) and by 1.75-fold changes in the midguts (Fig. 3A and B).

Cathepsin-B and Caspase-I, known immunity genes involved in lysosomal functions
against several pathogen invasions, were found to be upregulated in Ca. L. solanacea-
rum-infected psyllid whole body and midguts. Additionally, the expression of autoph-
agy genes Atg16, Atg2, and Atg5 involved in autophagosome formation was also
upregulated in both midguts and whole psyllids (Fig. 3A). Higher lysosomal activity in
Ca. L. solanacearum-infected midguts (Fig. 3C) and ovaries (Fig. 3D) compared with Ca.
L. solanacearum-free psyllids was observed when guts and ovaries were stained with
Lysotracker, which specifically binds to acidic organelles, indicating higher formation
of autolysosomes. The intensity of the Lysotracker signal in Ca. L. solanacearum-
infected midguts were 3.12 6 1.2 times more than Ca. L. solanacearum-free as vali-
dated using integrated intensity in ImageJ software.

Inducing vitellogenin impairs autophagy and vice versa. Vg expression was meas-
ured following psyllid treatment with the JH-III hormone, which is the main regulator of Vg
production during oogenensis. After 16 h of exposure to JH-III, significant elevation of Vg
expression was observed in whole bodies and midguts of both male and female with sig-
nificantly higher induction in females (Fig. 4A). Female psyllids in which Vg was induced
also had increased number of fat bodies as seen during dissection (data not shown).
Induction of Vg also induced Liberibacter titer in the midguts as well as in the hemolymph
as measured by qPCR and immunostaining (Fig. 4B to D), where elevated autolysosomal

FIG 3 Expression profiles of vitellogenin (Vg) and the autophagy-related (Atg) genes CaspaseI, Cathepsin B, Atg16, Atg2, and Atg5 in Ca. L. solanacearum
uninfected and infected psyllids. (A) Relative expression using real-time PCR showing upregulated gene expression of Vg and Atg-genes in Ca. L.
solanacearum1 whole bodies and midguts compared to Ca. L. solanacearum-psyllids (*, P , 0.05; ***, P , 0.001). (B) Higher expression of Vg (green) in Ca.
L. solanacearum-infected midguts compared with Ca. L. solanacearum-free as seen using immunostaining. (C, D) Staining of acidic compartments
(lysosomes and autolysosomes) using LysoTracker Green showing higher lysosomal activity in Ca. L. solanacearum1 midguts (C) and in ovaries (D)
compared with Ca. L. solanacearum-psyllids.
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activities were also observed (Fig. 3). Vg and Ca. L. solanacearum were seen to mostly
colocalize in midguts and ovaries as validated by Pearson’s correlation coefficient (R
.0.75). Induction of Vg expression, however, caused a significant downregulation of the
autophagy-related genes in whole females (Fig. 5A) midguts (Fig. 5B) and ovaries (Fig. 5C).
The presence of autolysosomes was almost negligible in the JH-III treated psyllid midguts
(Fig. 5D) and ovaries (Fig. 5E) compared with the control treatments.

Interestingly, application of thapsigargin, that specifically inhibits autophagy, reduced
the expression of Vg along with all other autophagy genes, while causing an increase in Ca.
L. solanacearum levels, as seen in qRT-PCR (Fig. 6A) and immunostaining (Fig. 6C). On the
other hand, using the specific autophagy inducer rapamycin significantly induced autoph-
agy and autophagy related genes and reduced the expression of Vg and Liberibacter titers
in the psyllid midguts (Fig. 6B and C).

Induction of Vg impairs egg development, oviposition, and viability. Because
Vg has an important role in oogenesis and egg development, we investigated its
induction following JH-III treatment on mortality, oviposition, and fertility, compared
with induction as a result of the presence of Ca. L. solanacearum. No significant mortal-
ity was observed in the JH-III exposed female psyllids compared to the controls.
However, a significant reduction in the number of eggs laid by Vg induced female psy-
llids was obtained (Fig. 7A). JH-III application further induced oocyte development in
female psyllids post-48-h treatment with higher number of mature oocytes that was
observed compared with that of control females (Fig. 7B). Moreover, only 3% of the
eggs laid by JH-III exposed females hatched compared with 83% viability in Ca. L. sola-
nacearum-infected control eggs (Fig. 7C), with observed malformations and develop-
mental defects in the laid eggs following JH-III treatment (Fig. 7D).

FIG 4 Effect of JH-III hormone on Vg and Ca. L. solanacearum. (A) Relative expression of Vg in male and female whole body, midguts, and in ovaries
showing induced expression of Vg throughout with females showing much higher expression than in males, upon JHIII application than in control (L1C) (*,
P , 0.05; ***, P , 0.001). (B) Relative titer of Ca. L. solanacearum (Omp) in female whole bodies, midguts, and in ovaries after JH-III application (P # 0.05).
(C) Elevated Ca. L. solanacearum titer in the hemolymph of JH-III treated psyllids (*, P , 0.05; ***, P , 0.001). The fold change for each gene is mentioned
beside the bars. (D, E) Immunostaining of Vg and Ca. L. solanacearum showing induction of Vg (green) expression and increase in Ca. L. solanacearum titer
(red) upon JH-III application along with their colocalization. The colocalization was validated using ImageJ with Pearson’s correlation coefficient (R value) of
0.75 and 0.89 for guts and ovaries, respectively.
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Absence of transovarial transmission. Because JH-III significantly induced Ca. L.
solanacearum titers and ovary development in the psyllids, we tested whether these
effects may cause the bacterium to be transferred to the developing oocytes by transo-
varial transmission. One out of 25 hatched nymphs that developed from eggs laid by
Ca. L. solanacearum-infected females that were reared on Ca. L. solanacearum-free
leaves tested positive for Ca. L. solanacearum, indicating very low or negligible transo-
varial transmission. Newly hatched nymphs that developed from eggs laid by Ca. L. sol-
anacearum1 females that were reared on Ca. L. solanacearum leaves, were completely
viable and efficiently acquired Ca. L. solanacearum when fed on Ca. L. solanacearum-

FIG 6 Effect of Thapsigargin and Rapamycin on Vg, Ca. L. solanacearum, and autophagy. (A) Relative gene expression of Vg, autophagy genes and Ca. L.
solanacearum titer in the psyllid midguts upon Thapsigargin application (P , 0.05). (B) Relative gene expression of Vg, autophagy genes, and Ca. L.
solanacearum titer in the psyllid midguts upon Rapamycin application (P , 0.05). (C) Staining of lysosomes (green) and nuclei (blue) showing disintegrated
nuclei and absence of autophagy upon Thapsigargin application (b), and increase in lysosomal activity upon Rapamycin application (c) compared with the
control midguts (a). Lower panel showing decrease in vitellogenin and increase in Ca. L. solanacearum titer upon Thapsigargin application (e) and lower
Ca. L. solanacearum abundance upon Rapamycin application (f) compared with control midguts (a). *, P , 0.05; ***, P , 0.01.

FIG 5 Effect of JH-III on autophagy. Relative expression of lysosomal and autophagy genes in whole bodies (A), midguts (B), and ovaries (C) showing
downregulation of all the known genes upon JH-III application (P # 0.05). (D, E) Representative images showing reduction of autophagy and lysosomes in
the JH-III applied psyllids. Staining of the midguts (D) and ovaries (E) with DAPI (blue) and lysosomes (green) with b and d showing magnified images of
the insets in a and c, respectively. *, P , 0.05; ***, P , 0.01.

Liberibacter Interacts with Vitellogenin Microbiology Spectrum

July/August 2022 Volume 10 Issue 4 10.1128/spectrum.01577-22 7

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.01577-22


infected leaf flush. Interestingly, ovaries dissected from Ca. L. solanacearum-infected
females treated with JH-III all tested positive for Ca. L. solanacearum (Fig. S7); however,
the eggs laid were 100% unviable (Fig. 7C and D), suggesting that JH-III treatment
indeed accelerates Ca. L. solanacearum penetrance into ovaries; however, this treat-
ment is fatal for the eggs as it impairs autophagy.

DISCUSSION

Bacterial membrane proteins have virulence properties and often act as pattern rec-
ognition molecules which induce host immune response (32, 61). In this study, we
used Liberibacter outer membrane protein (OmpA) and flagellin (Flg) as baits to screen
for specific insect host proteins that interact with OmpA and Flg. Because both of these
bacterial proteins bear an important role in adhesion and virulence, we expected that
both proteins will interact with psyllid proteins either for adhesion during the transmis-
sion process or for bypassing the host immunity. Yeast two-hybrid assays using OmpA/
Flg as baits revealed their interaction with the host Vg-VWD domain when screened
against psyllid cDNA library (Fig. 1A). Because OmpA has a transmembrane domain,
we used OmpA as a prey and used Vg-VWD as a bait to revalidate the interaction.
Pulldown assays and spatial coimmunolocalization using confocal microscopy also
indicated specific interactions between both bacterial proteins and Vg (Fig. 1B and C).
The reason behind this spatial localization of Vg is that Vg is a secretory protein which
is produced in cells and is often translocated to the midgut lumen and hemolymph.
However, presence of Vg in the midgut epithelial cells help in pathogen movement
across the midgut cells and in some cases opsonization (66–68). Further studies are
needed to confirm the interaction in the lumen or in the hemolymph which can help
us with a better rationale behind CLso-Vg interaction. In the Asian citrus psyllid
Diaphorina citri, the expression of Vg is reported to be induced in response to CLas
infection (69), similar to its induction in the potato psyllid upon CLso infection (18). Vg
has also been reported to act as a pattern recognition molecule against pathogens

FIG 7 Effect of JH-III on egg development and viability. (A) JH-III application reduces oviposition (*, P , 0.001). (B) Representative images showing
increased number of ovarioles developing in ovaries dissected from females that were exposed to JH-III. (C) Number of hatched eggs (fertility) is
significantly reduced upon JH-III treatment compared with control psyllid eggs. (D) Representative image showing a nymph hatching from Ca. L.
solanacearum1 control egg and a dehydrated egg laid by JH-III treated females. White arrow shows the egg shell from which the nymph hatched.
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and it has been shown to mediate their degradation by hemocytes through phagocy-
tosis (59, 60, 70, 71). Both bacterial proteins also carry immune elicitors and are able to
induce immunity in subsequent generation through the process known as transge-
nerational immune priming (TGIP) (30, 62, 72, 73). In this study, only one Vg homolog
was identified from the carrot psyllid transcriptome (3) and the full-length coding
sequence was assembled and cloned. It has two major domains: apolipoprotein do-
main (LPD_N), which helps in lipid transport; and VWD domain, a multifunctional do-
main involved in maintaining homeostasis (74, 75). Based on phylogenetic analysis, Vg
clustered with the other two psyllid Vgs that clustered within the hemipteran clade
(Fig. 2). The surface antigen region of OmpA (Fig. S5) and hypervariable region of flag-
ellin (Fig. S6) are reported to possess adhesion-like properties and they often act as
microbe-associated molecular pattern (MAMP) inducing virulence (35–37, 39, 76).

The known interaction between Vg and bacterial membrane proteins was a trigger
to investigate the role of Vg in Liberibacter pathogenesis and host immunity response.
The function of vitellogenin is often known to accompany programmed autophagy
during development and under stress conditions, and a tight link between the two has
been reported in various studies (56, 77, 78). In this study, we investigated the gene
expression profiles of autophagy-related genes (available from the transcriptome) and
the presence of autolysosomes in Ca. L. solanacearum1 psyllid midguts and ovaries as
a result of Vg induction. The results showed a significant upregulation of Vg along with
the autophagy-related genes (Atg2, Atg5, and Atg16) in Ca. L. solanacearum1 whole
body as well as in midguts of carrot psyllids (Fig. 3A and B). The midgut, being the first
barrier for Ca. L. solanacearum, is the major organ important for transmission and the
first cellular organ to meet the pathogen where it invades intracellularly and activates
immune responses. Thus, it is the most suitable organ for studying the interaction
between the bacteria and psyllid proteins. Although the immune system is activated in
the whole body, the molecular interactions in the midgut are expected to be more
intense and possibly prime other responses in other parts of the body. In the midgut,
the pathogen activates machineries for adhesion, cell invasion, and crossing the basal
lamina to reach the hemolymph while avoiding the psyllid defenses (3, 16). Cathepsin
B and caspase I involved in lysosomal activity were also upregulated in Ca. L. sol-
anacearum1 psyllids (Fig. 3B). The presence of lysosomal bodies and autolysosomes
were evidently higher in Ca. L. solanacearum1 psyllid midguts and ovaries (Fig. 3C
and D). A higher number of lysosomes indicates higher lysosomal activity, and higher
autophagy as autophagosomes delivers cytoplasmic materials or cellular debri to the
lysosomes for degradation. These results explain the joint and orchestrated function of
both Vg and autophagy-related genes upon Liberibacter infection for maintaining ho-
meostasis, and the crucial role of these functions for maintaining the cell viability.
However, when Vg expression was induced with the application of JH-III hormone
(Fig. 4), there was a drastic reduction in autophagy and lysosomal activity (Fig. 5), and
the expression of autophagy-related genes and lysosomal proteases were significantly
downregulated (Fig. 4 and 6). Moreover, Vg induction drastically reduced oviposition
and egg viability (Fig. 7). JH-III is a well-known regulator of vitellogenesis (79, 80). It is
known that overexpression of Vg induces ageing and impairs the induction of autoph-
agy and lysosomal genes required to maintain longevity (78) and autophagy is induced
during the synthesis phase of Vg in the fat body to maintain developmental switches,
regulate immunity, and recycle cellular components during development (77, 81, 82).
On the other hand, upon autophagy arrest by thapsigargin, Vg expression was reduced
along with the autophagy-related gene expression in the psyllids (Fig. 6A and C). This
was surprising to us although the result is in congruence with previous reports where
it has been shown that cellular calcium plays a basal regulatory role in Vg production
independent of mTOR pathway which is the major regulator for autophagy as well as
for Vg expression. Thapsigargin acts as calcium mobilizing agent while blocking
autophagy, while inducing both ER stress and apoptosis (83–86). This induction of apo-
ptosis is also known to activate Perk-eIF2 pathway and Ire-1 dependent decay (RIDD)
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of mRNA, which results in reduced synthesis and degradation of Vg mRNA, respectively
(83, 87). Additionally, Liberibacter titers increased significantly, and its signal was seen
to be diffused in the psyllid midguts treated with thapsigargin. This experiment helped
us solely to understand the effects of reduced autophagy on CLso abundance. Further
studies can be done to silence specific autophagy-related genes to understand how Vg
and autophagy process are connected. Interestingly, inducing autophagy and blocking
the mTOR pathway by applying rapamycin, reduced Vg expression as well as
Liberibacter in the psyllid midguts. The reduction in Liberibacter titer is believed to be
a result of increased autophagy. This result is in correspondence with new findings in
ticks where vitellogenesis is delayed by the application of rapamycin and is regulated
by autophagic mTOR pathway (88). Overall, we know that Vg induction is mostly regu-
lated by mTOR than by a calcium-regulated pathway. Disrupting these two pathways
independently have similar effects on Vg, although, the negative effects of autophagy
on CLso remains constant. As programmed autophagy is crucial for proper cell devel-
opment, it will be interesting to study how Vg and autophagy regulate each other dur-
ing egg maturation in psyllids. This indicates that both vitellogenesis and autophagy
are important for cell survival and are integral parts of developmental process, which
help in maintaining cellular homeostasis. Any imbalance between the two may disrupt
the homeostasis and may lead to cell death (77, 78, 89, 90).

The results of this study also show elevated titers of Liberibacter in the JH-III-treated
midguts as well as in the hemolymph in the absence of autophagy (Fig. 4 and 6).
Higher abundance of Liberibacter titer in the midguts and hemolymph suggests a role
of Vg in presenting Liberibacter to the cells inducing autophagy, whose absence
results in higher titers of the pathogen in the system. There might also be a role for Vg
in transgenerational immune priming in Ca. L. solanacearum-infected psyllids and a
possibility of transovarial transmission in the absence of autophagy. We could not
detect Ca. L. solanacearum in viable ovaries and laid eggs, which indicates the absence
of transovarial transmission. Nymphs developing from eggs laid by Ca. L. solanacea-
rum-infected females that hatched and fed on Ca. L. solanacearum leaves were also
negative for Ca. L. solanacearum. This implies that nymphs acquire Ca. L. solanacearum
by feeding only on infected leaves with Ca. L. solanacearum, and not by transovarial
transmission. Surprisingly, ovaries dissected from Ca. L. solanacearum1 females which
were treated with JH-III tested positive for Liberibacter in the absence of autophagy.
However, induction of Vg reduced egg viability although vitellogenic development in
the oocytes and the number of ovarioles was greater compared with the control Ca. L.
solanacearum1 psyllid ovaries (Fig. 7). This possibly happened due to the lack of
autophagy, which disrupted proper cellular development. These results suggest that
the ovaries tested positive for Ca. L. solanacearum because of Vg induction or reduc-
tion in autophagy. These results suggest a role for Vg in the defense mechanism and
might be involved in TGIP, although an exact mechanism remains unknown. Although,
the correlation between Vg and autophagy was tested in females with respect to ovi-
position and egg viability, it will be interesting to see if this interrelation and variability
in expression is similar in the males. It will also be exciting to compare the immune
response and liberibacter transmission competence between the male and the female
psyllids following liberibacter acquisition.

In summary, the results presented in this study reveal that both vitellogenin and
autophagy are essential in regulating Ca. L. solanacearum levels and possibly its per-
sistence, transmission, and generated stress responses in the psyllid cells. Although the
role of autophagy in CLso abundance seems to be inversely proportional, the exact
role of Vg remains unclear. We believe one of the reasons behind CLso-Vg interaction
is to regulate autophagy for easy pathogen persistence which also helps in maintain-
ing a homeostasis between vitellogenesis and autophagy for host survival. It will be
interesting to study how Vg interacts with autophagosomes or autophagy-related tar-
gets upon binding with CLso. This will further explain the relationship between vitello-
genesis and autophagy process in psyllids upon CLso infection. Future studies are
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imperative to investigate whether Liberibacter interacts with vitellogenin to manipu-
late the host immune response for its survival, or it is a host defense mechanism
against Liberibacter to reduce cellular stress and maintain homeostasis.

MATERIALS ANDMETHODS
Maintenance of psyllid and Liberibacter. Ca. L. solanacearum-infected and Ca. L. solanacearum-

free psyllids were maintained on 2 months old Parsley (Petroselinum crispum) in separate rooms, under
14-h photoperiodic light at 256 2°C. The plants as well the psyllid population were tested for Ca. L. sola-
nacearum routinely.

Plasmid vectors. For protein expression studies, we used pRSET-A and pFN2A Flexi vectors (Thermo
Scientific) with competent BL21(DE3) and DH5a cells (NEB, USA). pGAD-T7 Rec (Clontech) was used for
the cDNA library preparation, pGADT7-AD (Clontech) as prey vector for one to one assays, and were
then transformed in Y2H Gold yeast cells. pGBKT7 (Clontech) was used as a bait vector (DNA-BD) and
was transformed into Y187 yeast cells.

Yeast two-hybrid bait constructs. Sequences of Liberibacter Outer membrane protein (OmpA) and
Flagellin (Flg) were derived from the full genome sequence of Candidatus Liberibacter solanacearum (Haplotype
D) with accession PKRU02000006.1 (91). Full-length coding sequence of OmpA and Flg were amplified from
Liberibacter infected (CLso1) psyllids using Q5 DNA polymerase (NEB, USA), cloned into the bait vector-pGBKT7
(EcoRI/BamHI) using In-Fusion HD cloning kit (TaKaRa) and screened for positive recombinants in DH5a cells.
Recombinant OmpA-pGBKT7 and Flg-pGBKT7 were finally transformed into yeast two-hybrid Gold yeast strain
separately using Yeastmaker yeast transformation system (TaKaRa, Clontech).

Psyllid library construction. Total RNA was extracted from around 100 CLso1 psyllids using TRIzol
(Sigma) and purified using RNAeasy kit (Qiagen). First-strand cDNA was synthesized with 3.6 mg of total
RNA using Make your own “mate & plate” library system (TaKaRa, Clontech) according to the manufac-
turer’s instruction. The first-stranded cDNA was next amplified to produce double-stranded cDNA in 20
amplification cycles by long-distance PCR using the Advantage 2 polymerase mix (TaKaRa, Clontech) fol-
lowing the manufacturer’s instructions. The double-stranded cDNA was purified using Chroma Spin1TE-
400 to eliminate any products below 200 bp. The purified ds cDNA was finally cotransformed with
pGAD-T7 Rec into competent Y187 using Yeastmaker yeast transformation system (TaKaRa, Clontech)
and plated on SD-Leucine agar media. The plates were incubated at 30°C for 3 to 5 days. Around 2.6 mil-
lion independent cDNA clones were obtained and the colonies were pooled using YPDA freezing media
and stored in aliquots in 280°C.

Y2H assays. The two baits, OmpA-pGBKT7 and Flg-pGBKT7, were tested for self-activation and were
further screened against the psyllid library individually, following Matchmaker Gold yeast two-hybrid
user manual (TaKaRa, Clonetech). A culture of the bait (Y2HGold) was allowed to mate with psyllid library
for 24 h, and after mating, the cells were plated on QDO (SD-ATLH) media and incubated at 30°C for 8 to
10 days. Developed colonies were restreaked onto QDO/X-gal1 plates to screen for the development of
blue color for the b–galactosidase activity, and finally the blue colonies were further streaked onto
QDO/Xgal/Aureobasidin (40 mg/mL). Plasmids were isolated from the colonies as previously described
(92) and sequenced for identity.

RNA extraction, qRT-PCR analysis, and Liberibacter abundance. Single psyllids/guts/ovaries were
used for RNA and DNA extraction, both from the same sample using CTAB (93) and as previously
described (94). Males (1 week old) were only used for testing the expression of Vg. Females were used
for all other experiments. The guts and ovaries were washed three times with PBS to remove any con-
taminants from the hemolymph before proceeding with RNA/DNA extraction. Final eluted nucleic acid
was divided into two aliquots, one for RNA and one for DNA. DNA contaminations from the total RNA
were removed with DNase I (Thermo) and used for cDNA synthesis using Verso cDNA synthesis kit
(Thermo) following manufacturer’s instructions. RNA was removed from the DNA sample using RNase I
(Thermo) and was used to measure relative Liberibacter titer using qPCR. Real-time analyses were carried
out using 2x Absolute Blue SYBR mix (Thermo) and 1 mL of diluted cDNA in a final volume of 20 mL.
Threshold Ct values were calculated in StepOne real Time PCR system (Applied Biosystems) and normal-
ized using the housekeeping genes (elongation factor). PCR efficiencies of all new primers were tested
using a standard curve, and differential gene expression were analyzed using 22DDCT quantitation meth-
ods (95). The primers used in this study are listed in Table 1. Statistical analyses of all qRT-PCR data were
conducted by one-way ANOVA with Tukey’s post hoc test (P , 0.05). The accumulation of Ca. L. solana-
cearum in the hemolymph was also quantified with the method previously described (94) using a
Nanoliter 2010 injector (World Precision Instruments, Sarasota, FL, USA). The hemolymph was diluted in
10 mL of water and was used directly for qPCR analysis with OmpA-specific primers. Statistical analysis
was done using Student's t test (P, 0.05).

Recombinant protein expression, in vitro translation, and pulldown assay. (i) Prey (vitellogenin).
Full-length coding sequence for VWD domain of Vg was cloned into pRSET-A, and finally transformed
into competent E. coli BL21(DE3) cells to express 6�His-Vg-VWD. The transformed clones were grown
overnight in liquid LB at 37°C with agitation (200 rpm). A fresh media of 5 mL was seeded with 200 mL
of this culture and grown for 4 h or until it reaches 0.6 optical density. At this point, a final concentration
of 1 mM IPTG was added and was incubated with agitation at 30°C for additional 5 h. The cells were
finally harvested at 6,000 rpm followed by protein extraction. The cells were resuspended in 200 mL of
B-PER along with 1 mg of Lysozyme (Sigma-Aldrich) and DNase (Thermo), incubated for 15 min with
shaking at room temperature and centrifuged at a high speed for 10 min. The supernatant was collected
as purified protein and was used for further protein assays.
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(ii) In vitro translation of Bait protein. Full-length CDS of OmpA/Flg was cloned into pFN2A (GST)
Flexi vector separately for in vitro translation. Briefly, Liberibacter OmpA was amplified using SgfI and
PmeI restriction sites (Table 1) and was digested using Flexi Enzyme Blend (Promega). Similarly, pFN2A
was also digested and finally ligated to OmpA/Flg using T4 ligase (Thermo). The ligation mixture was
used to transform E. coli DH5a for screening a positive recombinant pFN2A-OmpA/pFN2A-Flg vector.
Following this, the recombinant plasmid was isolated and sequenced for confirmation. For in vitro trans-
lation, we used TNT Quick coupled transcription/Translation System (Promega) following the manufac-
turer’s instructions.

(iii) Pulldown and Western blot assay. The vector pFN2A was genetically modified to remove the
Barnase gene and to express just the GST as control (Fig. S1). For pulldown assays, we used Magne-GST Pull-
Down Systems (Promega, USA). The bait, pFN2A-OmpA/pFN2A-Flg, and control GST was immobilized onto
Magne-GST particles following the manufacturer’s instructions. Total soluble fractions from prey protein
lysate (6�His-Vg-VWD) was incubated with the bait immobilized to Magne-GST particles for capture. After
washing, the bound proteins were finally eluted by boiling in 1 � SDS buffer, separated on 10% SDS-PAGE
for analysis and detected by Western blot using monoclonal anti-polyHis antibody produced in mouse
(Sigma-Aldrich, Israel).

(iv) Homology modeling and in silico studies. The open reading frames of the sequences derived
from the yeast two-hybrid assays were annotated using BLASTp and NCBI Conserved Domain Database
search (96) databases and checked for in-frame reading sequences. Structural analysis for domain identifica-
tion for was done by Pfam (97) and NCBI-CDD. Full-length VWD domain of Vg was amplified from carrot psy-
llids and was used for all further studies. For phylogenetic studies, Ca. L. solanacearum full-length Vg
sequence was aligned with 20 other insect Vgs in Mega 7.0 software with arachnid Vg as an outgroup. The
phylogenetic relationship was assessed in CIPRES gateway using Mr.Bayes XSEDE tool with fixed LG1G sub-
stitution model and 1 million generation. The tree was finally edited in Figtree program v1.4.4 (http://tree.bio
.ed.ac.uk/software/figtree). Three-dimensional model structure for Vg was generated by iTasser (98) with the
highest C-score. All known full-length sequences of OmpA/Flg from Liberibacter species were aligned in
Mega7.0 (99) and similarity scores with consensus sequences were obtained in ESPript 3.0 (100). Three-
dimensional model structure for OmpA was generated by Swiss-Model Tool (101) and the server Orientations
of Proteins in Membranes (OPM) (https://opm.phar.umich.edu/) and for Flg by Swiss-Model.

JH-III hormone treatment. JH-III (Sigma, Israel), which is the principle regulator of Vg synthesis in
Hemipterans (79, 102), was dissolved in ethanol at a concentration of 5 mg/mL. This concentration and
application protocol was optimized after trying three different concentrations adapted from different
reports. The one with low lethal activity and high effects on gene expression was chosen (103–107). To
induce the expression of vitellogenin, JH-III was applied to a flush of parsley in an incubation box with
20 adult female psyllids (up to 1 week old with unknown mating status) for 16 h. Ethanol was used in
the control set of experiment. The psyllids were collected and were used for oviposition, DNA/RNA isola-
tion, and immunostaining analyses. The experiments were done in triplicate with minimum of six sam-
ples each for qRT-PCR/q-PCR.

Induction and repression of autophagy. Autophagy was induced by treating the psyllids with
Rapamycin (Sigma, Israel) (a potent mTORC1 inhibitor). The experiment was set up similar to the dsRNA
experiments as mentioned previously (94). Fresh leaf flush was placed in a microcentrifuge tube, applied
with 10 mM Rapamycin (dissolved in ethanol). This concentration was again optimized based on low le-
thal effects. Twenty adult female psyllids (up to 1 week old) were released into each jar containing the
leaf flush and were allowed to feed for 24 h. Similarly, Thapsigargin (Enco, Israel) was used for autophagy
inhibition at a concentration of 10 mM and the application was similar to that of JH-III. Ethanol was used
as control. DNA/RNA was extracted from the psyllids, midguts, and ovaries for qPCR and qRT-PCR analy-
ses. Midguts were also used for immunostaining. Each experiment was conducted three times with a
minimum of six samples each time for a total of minimum 18 samples.

Immunolocalization. Immunostaining for Vitellogenin, Liberibacter, and auto-lysosomes were done
according to the protocol described previously (94). Psyllid midguts/ovaries were dissected out in PBS, fixed
in 4% paraformaldehyde, treated with TritonX-100 and incubated in 1.5% blocking buffer for 1 h. Following
this, the guts/ovaries were incubated with rabbit-polyclonal Anti-Vg antibody (Abcam) or Anti-OmpB anti-
body produced in rabbit (GenScript Corp., USA) (108) for 1.5 h followed by secondary antibody conjugated
with Cy3/Cy5 counterstained with DAPI. The colocalization of Liberibacter and Vg was validated using the
Colocalization Finder plugin of ImageJ with Pearson’s correlation coefficient (R value) using five different
images (https://imagej.nih.gov/ij/plugins/colocalization-finder.html). LysoTracker Green DND-26 (Invitrogen)
was used to locate auto-lysosomes according to the manufacturer’s instructions. At least eight midguts were
used for each immunolocalization experiments to confirm the consistency of the results obtained. The differ-
ences in the signals for auto-lysosomes in Ca. L. solanacearum-free and Ca. L. solanacearum-infected midguts
were validated using ImageJ software with area integrated intensity and mean gray value. A minimum of 10
images were used for measurement for each ImageJ analysis.

Oviposition and egg hatching. After JH-III treatment, the insects were released on fresh leaf flush
for 72 h and the number of laid eggs (oviposition) by 10 female psyllids was counted on each leaf flush
and were monitored for hatching (fertility). Eggs from Ca. L. solanacearum1 psyllids treated with etha-
nol were used as a control. To test the presence of transovarial transmission, the leaf flush (for control
and JH-treatment) along with oviposited eggs were washed for 2 min in 0.05% bleach followed by 50%
alcohol and finally washing in sterile distilled water thrice. The eggs were then carefully separated from
the leaves from the pedicel with a sterile blade under a magnifying glass and placed on sterile Ca. L. sol-
anacearum-uninfected leaves on a Petri dish (Fig. S2) and then incubated in the plant growth room. The
newly hatched nymphs were allowed to feed on the uninfected leaves and were tested for Ca. L.
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solanacearum in the third instar stage. For control experiments, the eggs were placed on sterile Ca. L.
solanacearum-infected leaves. The differences were analyzed by Student’s t test (P , 0.05).
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