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Abstract: This paper proposes a duty-cycle electronically tunable triangular/square wave generator
using LT1228 commercially available ICs for capacitive sensor interfacing. The generator comprises
two LT1228s, a grounded resistor, and a grounded capacitor. The circuit provides two output signals
which are triangular and square waves. Both signals are regulated by adjusting the current bias.
Likewise, the amplitude of the triangular signal can be tuned electronically without affecting the
frequency. In addition, the square wave can independently control the linear duty cycle via tuning
the voltage. Experiment results confirm the performance of the proposed circuit that the amplitude of
the triangular wave, frequency, and duty cycle are linearly controllable via current or voltage, which
do not affect each other. The duty cycle, the amplitude of the triangular wave, and frequency have
maximum errors of ±1.60%, ±3.33%, and ±2.55%, respectively.
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1. Introduction

Many applications use a triangular and square wave generator, such as communication,
instrumentation, electrical and control, and electronic systems. In communication systems,
a triangular and square wave generator is used to generate carrier signals. Furthermore,
a triangular and square shape is applied in generated pulse width modulation (PWM) to
control motors, class-D amplifiers, and switching power supplies in electrical, control and
electronic systems [1–3]. Moreover, it is employed to measure capacitance and capacitive
sensor interfacing in instrumentation systems [4–8], as shown in Figure 1.

 
 

 

 
Sensors 2022, 22, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors 

Article 

Duty-Cycle Electronically Tunable Triangular/Square Wave 
Generator Using LT1228 Commercially Available ICs for  
Capacitive Sensor Interfacing 
Phamorn Silapan 1,*, Pawich Choykhuntod 1, Rapeepan Kaewon 1 and Winai Jaikla 2 

1 Department of Electrical Engineering, Faculty of Engineering and Industrial Technology, Sanam Chandra 
Palace Campus, Silpakorn University, Nakhonpathom 73000, Thailand;  
choychoykhuntod@gmail.com (P.C.); kaewon_r@su.ac.th (R.K.) 

2 Department of Engineering Education, School of Industrial Education and Technology, King Mongkut’s 
Institute of Technology Ladkrabang, Bangkok 10520, Thailand; winai.ja@kmitl.ac.th 

* Correspondence: silapan_p@su.ac.th 

Abstract: This paper proposes a duty-cycle electronically tunable triangular/square wave generator 
using LT1228 commercially available ICs for capacitive sensor interfacing. The generator comprises 
two LT1228s, a grounded resistor, and a grounded capacitor. The circuit provides two output sig-
nals which are triangular and square waves. Both signals are regulated by adjusting the current bias. 
Likewise, the amplitude of the triangular signal can be tuned electronically without affecting the 
frequency. In addition, the square wave can independently control the linear duty cycle via tuning 
the voltage. Experiment results confirm the performance of the proposed circuit that the amplitude 
of the triangular wave, frequency, and duty cycle are linearly controllable via current or voltage, 
which do not affect each other. The duty cycle, the amplitude of the triangular wave, and frequency 
have maximum errors of ±1.60%, ±3.33%, and ±2.55%, respectively. 

Keywords: electronically tunable; triangular/square wave generator; LT1228 
 

1. Introduction 
Many applications use a triangular and square wave generator, such as communica-

tion, instrumentation, electrical and control, and electronic systems. In communication 
systems, a triangular and square wave generator is used to generate carrier signals. Fur-
thermore, a triangular and square shape is applied in generated pulse width modulation 
(PWM) to control motors, class-D amplifiers, and switching power supplies in electrical, 
control and electronic systems [1–3]. Moreover, it is employed to measure capacitance and 
capacitive sensor interfacing in instrumentation systems [4–8], as shown in Figure 1. 
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Figure 1. The block diagram of a capacitive sensor interfacing [8]. 
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Figure 1. The block diagram of a capacitive sensor interfacing [8].

From capacitive sensor interfacing in [8], it is found that a square wave generator was
its main component. There are also a fast counter, a multiplexer, and a microcontroller. The
sensing element’s capacitance values are converted to a period modulated by the square
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wave generator. The counter counts the number of periods that have passed from the
beginning of the counter. The measured capacitance is selected by the multiplexer. The
microcontroller controls the external counter and multiplexer, which reads the data and
sends it to the PC through a data line interface.

Many triangular and square wave generators have been proposed in the literature.
Regarding technique design, these circuits are based on a Schmitt trigger with lossy and
lossless integrators [9–15]. The generator in [9] is a low-power circuit and works in the
MHz range. However, it consists of a Schmitt trigger with a lossy integrator that provides
only a square wave. In addition, the frequency cannot be tuned by the electronic method,
and the duty cycle cannot be adjusted. The construction of circuits in [10–15] uses the
Schmitt trigger cascade, a lossless integrator where the resulting outputs are a triangular
and square signal. A generator for instrumentation applications is proposed in [10]. It
is a low power circuit, tuning amplitude and frequency by current biases; however, it
cannot control the duty cycle. Additionally, the frequency control is non-linear. Thus, it
is not easy to control. In 2011 and 2016, square wave generators using OTAs and VDTA
were presented, respectively [11,12]. The advantages of these circuits include linearly
controlling amplitude and frequency via voltage. However, the duty cycle of [11,12] lacks
of electronic control. A CCI- and OTA-based triangular and square wave generator was
presented in 2019 [3]. This generator has features such as linear electronic controllability
of the frequency. However, it lacks adjustability amplitude and duty cycle of the output
signals. Using a Dual-X current conveyor transconductance amplifier (MO-DXCCTA) to
design a triangular/square wave generator, which can be implemented by commercially
available ICs (AD844 and LM13700) [13], it uses current bias to linearly control frequency,
amplitude, and duty cycle. Notwithstanding, controlling the frequency by current bias
affects the duty cycle. Then, the frequency can be adjusted independently by adjusting the
capacitor, which is difficult to control and non-linear. A dual-mode triangular/square wave
generator is implemented by three current feedback amplifiers (CFOAs) [14]. The CFOAs
employ commercial ICs, AD844. This circuit can operate for both current and voltage
modes. It also gives sawtooth, triangular, and square waves, which can electronically tune
the duty cycle, but the generator cannot adjust the frequency and amplitude. In particular,
the adjustable frequency with a resistor is non-linear, which makes it difficult to apply in
an automatic system.

In the field of analog signal processing, the use of analog function blocks (ABB) for the
synthesis and design of high-performance circuits has received considerable attention [15–20].
The topologies of analog circuits synthesized from analog function blocks are simple, with a
few active and passive elements. The synthesis procedures of circuits using analog function
blocks are also easier and more flexible than using transistor levels. With the high input
and low out impedance properties of voltage-mode ABB, as well as the low input and high
output impedance features of current-mode ABB, additional buffer devices at input and
output nodes of some ABB-based circuits are not required. In-circuit design for specific
applications, using the commercially available ABB, is more convenient and cheaper than
the CMOS or BJT-based ABBs. Although the CMOS-ABB-based circuits provide high
circuit performances with small size, low voltage, and low power, the cost is still high for
monolithic integrated circuit implementation. Therefore, the prospect of analog circuits
using commercially available ABB is frequently proposed [21–26]. LT1228 is a popular
commercially available ABB. It is the combination of the operational transconductance
amplifier (OTA) and current feedback amplifier (CFA). This IC has several advantageous
features such as electronic controllability, wide bandwidth, high voltage input impedance,
high current output impedance, low voltage output impedance, and a wide range of
applications, etc. With these advantageous features, the LT1228-based analog circuits can
be found in the open literature [27–31].

From the previous, this research aims to synthesize a triangular/square signal genera-
tor employing LT1228 commercially available ICs, which are linearly tunable in amplitude,
frequency, and duty cycle, using an electronic method. The paper is classified into six
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sections. The first section is the introduction. The ideal concept of synthesizing a duty
cycle adjustable triangular/square wave generator is expanded in Section 2. The essential
operation and saturation mode of LT1228 are described in Section 3. Section 4 clarifies the
notion of Schmitt trigger and triangular/square wave generator. Section 5 concerns the
performance of the circuit, which is confirmed by the experimental results. Finally, the
conclusion is in Section 6.

2. Idea of Synthesize of Duty Cycle Adjustable Triangular/Square Wave Generator

Synthesizing the block diagram is shown in Figure 2. It aims to create a triangu-
lar/square wave generator that electronically controls the square wave’s duty cycle without
affecting amplitude and generated frequency. The cycle adjustable triangular/square wave
generator consists of a current-mode inverting Schmitt trigger, a lossless integrator, an
inverting amplifier, and a comparator. The output frequency can be found to be

fo =
k|IS|

4IHLτ
, (1)
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Where k, IS, ITH and τ are gain of the amplifier, the output amplitude of the Schmitt
trigger, the current hysteresis of the Schmitt trigger, and the time constant of the lossless
integrator. From (1), the frequency control of the system ( fo) can be tuned by k or IHL. The
triangular wave amplitude can be calculated below:

|VTRI | = k|IS|, (2)

The duty cycle of the triangular/square wave generator can be expressed as

D =
1
2

(
1−

Vre f

|VTRI |

)
× 100%, (3)

where Vre f is the reference voltage. It can be concluded that the duty cycle can be adjusted
by Vre f .

3. Off-the-Shelf IC (LT1228)

The LT1228 is an off-the-shelf IC using BJT technology. It implements the current-gain
control with an operational transconductance amplifier (Voltage Differencing to Current),
whose gain is a direct variation to an externally bias current. The output current is converted
to a voltage by an external resistor. The CFA (Current Feedback Amplifier) amplifies the
voltage into an 8 port, as shown in Figure 3.
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Testing LT1228, it is found that the OTA’s output current (Iy) is given by,

Iy = IBtanh
(

V+ −V−
3.87VT

)
, (4)

where V− and V+ are the voltages of pin 2 and 3, respectively. VT is the thermal voltage. IB
is the externally bias current of terminal 5. The Maclaurin series of the hyperbolic tangent
is as follows [33]:

tanhx = x− x3

3
+

2x5

15
− 17x7

315
+ ..., (5)

If x � 1, the tanhx term shown in (5) can be estimated as tanhx ≈ x. From (4), its
first-order approximation can be derived to be

tanh
(

V+ −V−
3.87VT

)
=

V+ −V−
3.87VT

, (6)

Therefore, using (6), Iy can be rewritten to be

Iy =
IB(V+ −V)−

3.87VT
, (7)

it is seen that Iy conforms to the datasheet of the LT1228, where IB
3.87VT

is a transconductance
amplifier (gm). VT at a temperature of 27 degrees Celsius is about 26 mV. Finally, Iy is
approximately obtained:

Iy = 10IB(V+ −V−). (8)

From the above, the relationship of voltage and current for each LT1228’s pin is
I+
I−
Iy
Vx
Vw

 =


0 0 0 0 0
0 0 0 0 0

gm −gm 0 0 0
0 0 1 0 0
0 0 0 ZT 0




V+

V−
Vy
Ix
Iw

, (9)

where Vw, Vx, and Vy are the voltage of pin 6, 8, and 1, respectively. Iw and Ix are the
current of pins 6 and 8, respectively. Generally, CFA has 4 terminals: y, x, z, and w, as
shown in Figure 4. However, the pin z of CFA is inside the LT1228, and this pin is floated.
The trans-resistance gain of the pin z is ZT , which is ideally about infinity. From the LT1228
test, it is found that ZT is approximately 190 kΩ. Then, (9) can be rewritten as follows:

I+
I−
Iy
Vx
Vw

 =


0 0 0 0 0
0 0 0 0 0

gm −gm 0 0 0
0 0 1 0 0
0 0 0 190 k 0




V+

V−
Vy
Ix
Iw

, (10)
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4. Concept of the Duty Cycle Tunable Triangular/Square Wave Generator
4.1. Concept of Schmitt Trigger

Designing the Schmitt trigger uses the LT1228’s saturation mode, which is both internal
OTA and CFA. The OTA operation condition in the saturation region is the input voltage
differencing (V+ −V−) more than 150 mV or less than −150 mV. Thus, the output current(

Iy
)

can be found in OTA’s saturation region to be

Iy =

{
IB
−IB

i f
i f

V+ −V−
V+ −V−

≥ 150 mV
≤ −150 mV

, (11)

From Figure 5, the +, −, and y ports are floated. The CFA operates in saturation mode
when Ix(190k) ≥ 0 or Ix(190k) ≤ 0. So Vw is expressed as

Vw =

{
VSAT
−VSAT

i f
i f

Ix(190 k) ≥ 0
Ix(190 k) ≤ 0

=

{
VCC
VEE

i f
i f

Ix(190 k) ≥ 0
Ix(190 k) ≤ 0

, (12)

where VSAT and −VSAT are the positive and negative saturation voltages; VCC and VEE
are the positive and negative supply voltages, respectively. Using LT1228’s saturation
mode, the Schmitt trigger is shown in Figure 6, which consists of two LT1228s and a
grounded resistor.
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At the initial time, the triangular wave is the input signal of LT1228-1’s pin x, which
Vw1 is about Iin(190 k). From Figure 6, it is found that the Vw1 equals V− of LT1228-1 (V1−)
and LT1228-2 (V2−). Thus, OTAs of LT1228-2 operates in saturation mode; LT1228-2’s
Iy
(

Iy2
)

is −IB2. At the same time, V1− = Iin(190 k), while V1+ = RIy1. Then, V1+ − V1−
is much more than |150 mV|, where LT1228-1 is saturation mode operational. OTAs of
LT1228-1 and LT1228-2 operate in saturation mode; LT1228-1’s Iy(Iout) and LT1228-2’s
Iy
(

Iy2
)

are approximated −IB1 and −IB2, respectively. Iout equals −IB1 until Iin is lower
than −IB2. Iout is changed from −IB1 to IB1 while Iy2 is equal to IB2. Iout is returned to be
−IB1 again when Iin is higher than IB2, as illustrated in Figure 7.
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Hence, the output current (Iout) can be obtained by,

Iout =

{
−IB1
IB1

i f
i f

Iin
Iin

≥ IHL
≤ ILH

, (13)

where IHL and ILH are the high and low hysteresis currents, which can be found to be

IHL = IB2 and ILH = −IB2. (14)

Using (14), Iout can be recalculated to be

Iout =

{
−IB1
IB1

i f
i f

Iin
Iin

≥ IB2
≤ −IB2

, (15)

where IB1 and IB2 are the external current bias of LT1228-1 and LT1228-2, respectively. The
external bias current linearly controls the output and hysteresis currents of the Schmitt
trigger, which are IB1 and IB2. Additionally, they are insensitive to temperature. From (13)
and (14), the DC characteristic of the Schmitt trigger is displayed in Figure 8. It is seen that
it is a noninverting Schmitt trigger.
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4.2. Concept of Triangular/Square Wave Generator

The duty cycle tunable triangular/square wave generator using LT1228s is explained
in this section. Using the Schmitt trigger in Section 4.1, the capacitor and resistor are
replaced by the resistor and the input signal at LT1228-1’s y and x terminals, respectively,
as shown in Figure 9, which operates as a triangular wave generator.
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Figure 9. The duty cycle tunable triangular/square wave generator using LT1228s.

Using properties of LT1228, Vy1 = Vx1 = VTRI , thus the amplitude of the triangular
wave (VTRI) can be found to be

|VTRI | = R|IB2|. (16)

Using Figure 10, the period of the signal depends on the amplitude of the triangular
wave; therefore, it can be expressed as,

T
2
=

C
iC

vC∫
−vC

dvC =
C
|IB1|

RIB2∫
−RIB2

dvC, (17)

and

T =
4RC|IB2|
|IB1|

. (18)
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1
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Independently controlling the frequency can be archived by the current bias of LT1228-
1 (IB1). In addition, since (19) is without VT term, the frequency is not sensitive to tem-
perature variation. The open-loop voltage gain of LT1228’s internal CFA is high, which
is about 55 dB [30], so the LT1228-2’s CFA is used as a voltage comparator. The inputs of
the comparator are the DC voltage reference

(
Vre f

)
. and the triangular signal (VTRI). The

resulting output is a square signal. The output amplitude can be

VSQ = Vw2 =

{
VSAT
−VSAT

i f
i f

VTRI ≥ Vre f
VTRI ≤ Vre f

. (20)

As demonstrated in Figure 11, the rise time and fall time depend on Vre f , and it can
be seen that VSQ equals VSAT until VTRI(t) or RIB2(t) less than Vre f . The amplitude of the
square wave is changed VSAT to −VSAT . It becomes VSAT again when VTRI(t) is upward
Vre f . From the relationship mentioned above, It is the period when VTRI(t) goes up and
then equals Vre f and where VTRI(t) goes down and is equal to Vre f , which is the pulse
width (∆t2).
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It is discovered that ∆t2 or T1 is the difference between T
2 and ∆t1 + ∆t3; it can be

written as follows:
∆t2 = T1 =

T
2
− ∆t1 − ∆t3, (21)

where ∆t1 and ∆t3 are the duration times of addition VTRI(t) from 0 to Vre f , and the
decrease VTRI(t) from Vre f to 0, respectively. Using the straight-line equation, the positive
and negative slopes of the triangular signal are given by

m =
2VTRI

T
2

=
4R|IB2|

T
and−m = −2VTRI

T
2

= −4R|IB2|
T

(22)

Therefore, ∆t1 and ∆t3 are obtained:

∆t1 =
VTRI(t1)−VTRI(t0)

m
=

Vre f − 0
m

=
Vre f

m
, (23)

and

∆t3 =
VTRI(t3)−VTRI(t2)

−m
=

0−Vre f

−m
=

Vre f

m
. (24)



Sensors 2022, 22, 4922 9 of 15

By Substituting (22) in (23) and (24), ∆t1 and ∆t1 can be rewritten by

∆t1 = ∆t3 =
Vre f T

4R|IB2|
, (25)

(24) and (25) can be substituted in (21), ∆t2 can be obtained by

∆t2 = T1 =
T
2
−

Vre f T
4R|IB2|

=
T
2

(
1−

Vre f

2R|IB2|

)
. (26)

Using (18) and (26), the duty cycle (D) is as follows:

D =
T1

T
× 100% =

1
2

(
1−

Vre f

2R|IB2|

)
× 100%. (27)

From (16), (19), (20) and (26), it is established that the triangular/square wave generator
is slightly affected by temperature changes. The current biases have the ability to control
the amplitude of the triangular wave and the frequency. Additionally, the frequency can
be independently tuned without affecting the triangle wave’s amplitude by IB1. Vre f can
control the duty cycle of the square signal.

4.3. Non-Ideal Case of LT1228 on Saturation-Mode

The non-ideal effect of LT1228 in the saturation-mode region on the operation of
the proposed triangular/square wave generator is expanded in this part; the current and
voltage’s relationship of LT1228 on saturation mode in non-ideal is given as follows:

Vy = βxVx, Iy =

{
αIB
−αIB

i f
i f

V+ −V−
V+ −V−

≥ 150 mV
≤ −150 mV

, (28)

and

Vw =

{
VSAT
−VSAT

i f
i f

Ix(190 k) ≥ 0
Ix(190 k) ≤ 0

=

{
βVCC
βVEE

i f
i f

Ix(190 k) ≥ 0
Ix(190 k) ≤ 0

, (29)

where α, βx, and β are the current error outputs, voltage gain transfer at x pin error, and
voltage error output, respectively. Taking into account the non-idealities of LT1228 on the
saturation region, so the non-ideal amplitude of the triangular and square wave, frequency,
and duty cycle can be recalculated by

|VTRI | = α2R|IB2|, (30)

VSQ =

{
β2VCC
β2VEE

i f
i f

VTRI ≥ Vre f
VTRI ≤ Vre f

, (31)

f =
1
T

=
α1|IB1|

4α2βx1RC|IB2|
, (32)

and

D =
T1

T
× 100% =

1
2

(
1−

Vre f

2α2βx1R|IB2|

)
× 100%, (33)

where α1 and α2 respectively, are the current error outputs of LT1228-1 and LT1228-2;
βx1 is the voltage gain transfer at the x pin error of LT1228-1; β2 is LT1228-2’s voltage
error output. It is found that the imperfections of LT1228 affect how well the proposed
triangular/square wave generator works; applied in the capacitive sensor interface by
plugging in the capacitive sensor instead of the capacitor. For example, HCH-1000 has a
capacitance value of 310 pF to 350 pF [34]. The capacitance of this sensor can overcome the
parasitic capacitance at the Y and + terminals, which are 6 pF and 3 pF, respectively [35].
For the accurate readout value, it can be calibrated via the bias currents IB1 or IB2. There
are two ways to achieve this: manually and automatically. Manually, it is an IB1 or IB2
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adjustment through the bias resistors, RB1 or RB2, as shown in Figure 12. Automatically, the
bias currents IB1 or IB2 are tuned via the control voltages VC1 and VC2, which is a convenient
electronic method controlled by the microcontroller unit (MCU), as shown in Figure 13.
However, IB1 or IB2 depend on the temperature and negative power supply voltage (VEE).
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5. Experimental Results 
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5. Experimental Results

This section shows the experimental results to ensure the efficiency of the triangu-
lar/square wave generator using LT1228s. RIGOL DS1054Z (RIGOL Technologies Co.
Ltd, Beijing, China) is the measuring instrument that was utilized. In the experiment,
IB1 = 800µA, IB2 = 200µA, R = 1 kΩ, C = 0.1µF, ±9 V supply voltage was used.

Figure 14a shows the experimental setup, consisting of one RIGOL DS1054, a bread-
board, two DC power supplies, and two ×10 oscilloscope probes. The first DC power
supply is MCP MODEL: M10-TP3005H which is ±9 V supply voltage. Vre f uses MCP
MODEL: M10-TP3003L for DC supply, which is set to 168 mV at the moment. The ac-
tual triangular/square wave generator implementation is displayed in Figure 14b. It is
composed of five main parts: R = 1 kΩ, C = 0.1µF, two LT1228s, Rbias1 = 10.62 kΩ,
and Rbias2 = 42.3 kΩ, where Rbias1 and Rbias2 are resistors for the current bias of pin 5 of
LT1228-1 and LT1228-2, respectively.
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Figure 14. The real implementation of a triangular/square wave generator (a) the setup for the
experiment (b) The actual triangular/square wave generator implementation.

Designing the frequency and duty cycles of the proposed circuit are 10 kHz, 90%, 50%,
and 10%, which Vre f is varied −160 mV, 0 mV, and 160 mV; the amplitude of triangular
and square waves, respectively, are 200 mVp and 9 Vp. Figure 15 displays the triangular
and square waves with the frequency of 10.42 kHz when Vre f is varied −168 mV, 0 mV,
and 168 mV; the duty cycles are 90%, 50%, and 10%; Triangular and square waves have
amplitudes of 211 mVp and 7.596 Vp, respectively. This error is due to the non-ideal case of
LT1228, which was discussed in Section 4.3. The results are plotted, as shown in Figure 16;
it is the amplitude of the triangular signal, which is controlled by IB2.
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when 2BI  is 0–1 mA. The peak amplitude deviates from the theory analyzed by ±3.33%. 
The test modulates the frequency by adjusting 1BI , which found that its dynamics change 
linearly, as demonstrated in Figure 17. 

  

Figure 16. The plot of the magnitude of the triangular signal while adjusting IB2.

Linear controlling the triangular signal’s amplitude is varied in the range of 0–1.03 V
when IB2 is 0–1 mA. The peak amplitude deviates from the theory analyzed by ±3.33%.
The test modulates the frequency by adjusting IB1, which found that its dynamics change
linearly, as demonstrated in Figure 17.
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The magnitude of the triangular and square signals is likewise unaffected by fre-
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tronic technique. The maximum error of the square wave’s duty cycle is ±1.60%. 

  

Figure 17. The plot of the frequency when tuning IB1.

The magnitude of the triangular and square signals is likewise unaffected by frequency
modulation. The results obtained have a maximum error of about ±2.55%. The matter of
the values of α1, α2, and βx1 deviating from one, as shown in (32) The plot is illustrated in
Figure 18; it is the comparison between the duty cycle and Vre f change from −200 mV to
200 mV. It is confirmed that Vre f linearly controls the duty cycle by the electronic technique.
The maximum error of the square wave’s duty cycle is ±1.60%.
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6. Conclusions

Off-the-shelf IC LT1228 designs the proposed triangular/square wave generator for
capacitive sensors, which comprises two LT1228s, and a grounded capacitor and resistor.
The circuit can be electronically/linearly tuned for the duty cycle, the magnitude triangular
wave, and the frequency, which are achieved by Vre f , IB2, and IB1, respectively. The
amplitude of the triangle signal is not affected by frequency control using IB1, which is
another advantage of this method. The proposed circuit’s functional test, when IB1, IB2, R
and C are assigned equally to 800µA, 200µA, 1 k and 0.1µF, respectively. The experimental
results show that the circuit has a frequency of 10.42 kHz, and when Vre f is −168 mV,
0 mV, and 168 mV, the duty cycle is equal to 90%, 50%, and 10%, respectively; the duty
cycle is varied by Vre f , it is changed between −200 mV and 200 mV. The amplitude of the
triangular wave can be adjusted from 51 mV to 1.03 V, with IB2 in the range from 50µA to
1 mA. The available frequencies are in the range of 0–12.4 kHz, which IB1 is about 0–1 mA.
The maximum errors of the duty cycle, triangular wave’s magnitude, and frequency are
±1.60%, ±3.33%, and ±2.55%.
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