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Abstract
Background Colorectal cancer (CRC) is the third most common type of diagnosed cancer in the world and has the second-
highest mortality rate. Meanwhile, South Korea has the second-highest incidence rate for CRC in the world.
Objective To assess the possible influence of ethnicity on the molecular profile of colorectal cancer, we compared genomic 
and transcriptomic features of South Korean CRCs with European CRCs.
Methods We assembled a genomic and transcriptomic dataset of South Korean CRC patients (KOCRC; n = 126) from previ-
ous studies and European cases (EUCRC; n = 245) selected from The Cancer Genome Atlas (TCGA). Then, we compared 
the two datasets in terms of clinical data, driver genes, mutational signature, gene sets, consensus molecular subtype, and 
fusion genes.
Results These two cohorts showed similar profiles in driver mutations but differences in the mutation frequencies of some 
driver genes (including APC, TP53, PABPC1, FAT4, MUC7, HSPG2, GNAS, DENND5B, and BRAF). Analysis of hallmark 
pathways using genomic data sets revealed further differences between these populations in the WNT, TP53, and NOTCH 
signaling pathways. In consensus molecular subtype (CMS) analyses of the study cases, no BRAF mutations were found in 
the CMS1 subtype of KOCRC, which contrasts with previous findings. Fusion gene analysis identified oncogenic fusion of 
PTPRK-RSPO3 in a subset of KOCRC patients without APC mutations.
Conclusions This study presents insights into the genomic landscape of KOCRCs and reveals some similarities and differ-
ences with EUCRCs at the molecular level.

Keywords Colorectal cancer · South Korea · European · Genomic landscape · Ethnicity

Introduction

Colorectal cancer (CRC) is the third most commonly diag-
nosed cancer in the world and has the second-highest mor-
tality rate, accounting for about 1 out of 10 cancer mor-
talities worldwide. Moreover, the global burden of CRC is 
expected to increase by 60% to more than 2.2 million new 
cases and 1.1 million deaths by 2030 (Arnold et al. 2017). 
Notably, in this regard, South Korea has a CRC rate of 44.5 
(age-standardized rate per 100,000), which was the second-
highest global rate in 2018 (Bray et al. 2018).

Over the past three decades, molecular genetic studies 
have provided important genomic insights into the patho-
genesis of both sporadic and hereditary CRC (Fearon 2011). 
Alterations in oncogenes and tumor suppressor genes are 
closely related to CRC subsets, and a larger collection 
of pathway genes has also been defined for these tumors 
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(Fearon 2011). Various targets have been subsequently 
explored concerning personalized treatments, and these tar-
geted therapies are regarded as a novel approach to improv-
ing individual survival outcomes in CRC patients (Xie et al. 
2020).

According to prior large-scale genomic investigations 
(Cancer Genome Atlas Network 2012; Lu et  al. 2019; 
Nagahashi et al. 2016), well-known driver gene mutations 
including APC, TP53, SMAD4, PIK3CA, and KRAS, are sig-
nificantly involved in the tumorigenesis of CRC. Further-
more, the cancer genome atlas (TCGA) has revealed the role 
of several new driver genes and potential target pathways 
in these cancers (Cancer Genome Atlas Network 2012). 
However, the genomic knowledge of CRC has mainly been 
acquired from European cohorts, and little information is 
available on the genomic landscape in Asian CRC popula-
tions, including Korean CRC cohorts (KOCRC). Multiple 
genomic studies have revealed new therapeutic approaches 
to CRC (Ellis and Perou 2013; Horibata et al. 2020; Naga-
hashi et al. 2016), uncovering the specific genomic and 
molecular profiles of KOCRC cohorts will likely assist 
with the tailoring of diagnostic and therapeutic modalities 
for Korean cases.

The present study aimed to identify specific molecu-
lar and genetic features of KOCRCs using an integrated 
approach that combined clinical data comparisons with a 
well-defined European CRC population (EUCRC).

Materials and methods

Dataset establishment and public data processing

Genomic and transcriptomic data sets of KOCRC patients 
(n = 126) were obtained from three previous studies(Kim 
et al. 2016, 2019, 2014) by the Korea Research Institute of 
Bioscience and Biotechnology (KRIBB, Daejeon, Repub-
lic of Korea) and Asan Medical Center (Seoul, Republic of 
Korea). Whole exome sequencing (WES) of normal sam-
ples was carried out using normal tissues or blood samples 
(n = 42 and n = 84, respectively). All patients provided vol-
untary written formal consent to be included in the study. 
The study protocol strictly conformed to the Declaration 
of Helsinki and was approved by the Institutional Review 
Board of Asan Medical Center (registration numbers: 
2009–0091, 2014–0150, 2018–0087). The data sets used in 
this study are available from GEO (GSE50760, GSE107422, 
GSE132024) and KoNA (PRJKA210050).

To examine possible ethnic differences in the molecular 
profiles of CRC between our Korean cases and a European 

cohort, we downloaded a CRC dataset from The Cancer 
Genome Atlas (TCGA), and exclusively selected Cauca-
sian cases for our present analyses (EUCRC; n = 245) as 
the European ancestry cohort. The information for our 
EUCRC cases, including MAF, gene expression count, and 
clinical data, were acquired from the TCGA colon adeno-
carcinoma (TCGA-COAD) and TCGA rectum adenocarci-
noma (TCGA-READ) project through the GDC Data Portal 
(Cancer Genome Atlas Network 2012). We used MAF files 
as an alternative to bam files for WES data and gene expres-
sion count files as an alternative to raw RNA sequencing 
(RNA-seq) fastq files. For further information about sample 
collection, histology method, library preparation, and bioin-
formatics analysis of both cohorts, please see Supplementary 
Table 1.

Identification of somatic SNVs, indels, and gene 
fusion events

In the KOCRC cohort, exome sequencing reads were 
mapped to the human reference genome GRCh38 (primary 
assembly) using bwa-mem (version 0.7.17-r1188) with 
default parameters, followed by sorting of the bam files 
with samtools (version 1.10). As the TCGA databases had 
been preprocessed using GATK (McKenna et al. 2010), our 
databases were processed following GATK best practices 
(GATK version 4.1.4.0). PCR duplicates were removed via 
Picard MarkDuplicates (version 2.21.2), and base recali-
bration was conducted using GATK BaseRecalibrator & 
ApplyRecalibration. Candidate variants were called via 
GATK Mutect2 and filtered using GATK FilterMutectCalls. 
ANNOVAR (Wang et al. 2010) was used for the annotation 
steps.

Fusion genes and positions were predicted using STAR-
Fusion (version 1.9.1). We used trimmed KOCRC RNA-seq 
fastq files as the input. We filtered and determined fusion 
genes identified in 4-time repeats in a sample. Fusion genes, 
including non-coding RNA or immunoglobulin-related 
genes, were excluded from the final selection. The reported 
and non-reported fusion genes were distinguished using pre-
vious reports.

Driver gene and mutational signature identification

MutSigCV (Lawrence et al. 2013) (version 1.3.5) software 
was used to detect driver genes in our CRC subjects. Briefly, 
the KOCRC cases were lifted from GRCh38 to GRCh37 
via the CrossMap (version 0.3.8) for MutSigCV process-
ing. The maftools (Mayakonda et al. 2018) R package (ver-
sion 2.6.0) was consecutively used to prepare MAF files for 
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the MutSigCV analysis, which was finally completed on 
the GenePattern (Reich et al. 2006) online platform using 
default settings.

The nonnegative matrix factorization (NMF) R package 
(version 0.23.0) and maftools R package (version 2.6.0) were 
used to identify de novo mutation signatures. The number of 
signatures was estimated based on a cophenetic correlation 
matrix. Mutational signatures were then extracted from the 
trinucleotide context and decomposed into the designated 
number of signatures.

Gene set enrichment analysis (GSEA) and consensus 
molecular subtyping

Transcriptomic data from the KOCRC and EUCRC cases were 
used to conduct GSEA. Trimmed RNA-seq fastq files were 
mapped to GRCh38 (primary assembly) on STAR (Dobin et al. 
2013) (version 2.7.3a), concurrently estimating the expression 
counts. The edgeR (Robinson et al. 2010) R package (version 
3.32.0) was used to obtain log2 fold-changes in gene expres-
sion between normal and tumor tissues. The fgsea (Korot-
kevich et al. 2021) R package was used to perform GSEA 
with the 50 hallmark gene set (v7.2) from MSigDB (Liberzon 
et al. 2015). Significantly enriched gene sets were filtered and 
acquired based on a cutoff level at q < 0.01. Enriched known 
oncogenic pathways were examined on a maftools R pack-
age. Oncogenic signaling pathways were derived from TCGA 
cohorts. The values of “fraction mutated samples” were used 
to compare the influence in oncogenic pathways between the 
KOCRC and EUCRC cohorts.

To identify consensus molecular subtypes (CMS) of CRC 
samples, we used the CMSclassifier R package (Guinney 
et al. 2015). Transcriptomic data was initially normalized to 
counts per million bases (CPM). Log transformations were 
subsequently conducted by adding one pseudo-count trans-
formed into a  log2 scale. A random forest classifier method 
was used to arrange the KOCRC and TCGA samples into four 
CMS classes. The ambiguous subtypes were designated as 
‘unspecified’.

Statistics

A Wilcoxon signed-rank test was used to determine differences 
between two dependent samples with unknown distribution, 
while continuous variables were compared using paired Stu-
dent’s t-tests. The chi-square test was used to compare clinical 
datasets on oncogenic pathways, whereas mutational frequen-
cies between KOCRC and EUCRC gene sets were compared 
with a Fisher’s exact test. All statistical analyses were per-
formed using the limma (Ritchie et al. 2015) R package (ver. 

3.48.0), with a two-sided p < 0.05 defined as statistically 
significant.

Results

General clinical features of the KOCRC and EUCRC 
cohorts

This study was designed to enable genomic compari-
sons of CRC patients of Korean and European descent, 
i.e., KOCRC and EUCRC cohorts (Fig. 1a). The clini-
cal features of these cases were also compared, includ-
ing cancer stage, primary tumor site, and patient demo-
graphics (Fig. 1b). The gender ratios were similar between 
the cohorts (p = 0.1), but differences were evident in the 
cancer stage, primary site, and age (p = 0.004, 0.001, and 
3.86 ×  108, respectively). Age differences were particu-
larly noticeable, with the KOCRC cohort having a median 
age of about 58, which was ten years younger than of the 
EUCRC patients.

We estimated the tumor mutation burden (TMB) of 
the two cohorts (Fig. 1c) and found a median TMB per 
megabase (TMB/MB) of 2.65 and 2.76, respectively, for 
the KOCRC and EUCRC populations. It appeared from 
our analyses that the higher proportion of rectum ade-
nocarcinoma (READ) in the KOCRC cohort may have 
affected the median TMB/MB (the READ proportions for 
the KOCRC and EUCRC groups were about 47.6% and 
29.8%, respectively) but this was not statistically signifi-
cant (p = 0.13).

Mutation analysis centered on driver genes

Using the driver detecting software, MutSigCV, we found 
six previously well-known CRC driver genes (APC, TP53, 
KRAS, FBXW7, SMAD4, and AMER1) common between 
the two cohorts. In contrast, three putative novel CRC 
driver genes (MUC7, PABPC1, and B2M) were identified 
in the KOCRC cohort at a false discovery rate (FDR) of 
0.05. Additionally, we adopted well-known CRC driver 
genes from Integrative Onco Genomics (Martinez-Jimenez 
et al. 2020) (intOgen) and other previous studies for these 
comparative analyses (Hanna et al. 2013; Lu et al. 2019). 
A gene set of 25 driver genes was used in further analyses 
(Fig. 2a).

The most frequently mutated driver genes in the 
KOCRC cohort were APC (53%), TP53 (42%), KRAS 
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(37%), PABPC1 (21%), and PIK3CA (21%) (Fig. 2a). In 
terms of mutation frequency, most of the driver genes 
showed similar tendencies between the two cohorts, except 
for APC, TP53, PABPC1, FAT4, MUC7, HSPG2, GNAS, 
DENND5B, and BRAF (Fig. 2b, c and Supplementary 
Fig. 1). Mutations in the APC, TP53, FAT4, and BRAF 
genes were more frequent in the EUCRC cases, whereas 
those of PABPC1, MUC7, HSPG2, GNAS, and DENND5B 
were more frequent in the KOCRC series (Fig. 2b, c). 
Regarding the three putative novel drivers identified in the 
KOCRC cohort, MUC7, PABPC1, and B2M were mutated 
in 19, 27, and 7 samples, respectively, out of the 126 total 
KOCRC samples.

Mutational signature analysis

We used the NMF algorithm to identify mutational signa-
tures in the KOCRC and EUCRC patients and calculated 

cosine similarities against single base substitution (SBS) 
COSMIC (Tate et al. 2019) signatures to identify the best 
matches (Fig. 3a, b). We thereby identified ‘defective DNA 
mismatch repair (dMMR)’ (COSMIC Signature 6), ‘POLE’ 
(COSMIC Signature 10), ‘unknown’ (COSMIC Signature 
5), and ‘sequencing artifact’ (COSMIC Signature 45) in 
the KOCRC cohort, and ‘aging’ (COSMIC Signature 1), 
‘dMMR’, and ‘POLE’ signatures in the EUCRC popula-
tions. Both cohorts have ‘dMMR’ and ‘POLE’signatures, 
which have also been verified in many other cancer types. 
The ‘unknown’ signature, COSMIC Signature 5, also arises 
in all cancer types but remains to be verified.

GSEA and oncogenic pathways

Using transcriptomic data, we conducted GSEA using 50 
hallmark gene sets from MSigDB. To identify significantly 

Fig. 1  Workflow and clinical data comparisons. (a) Workflow of 
this study. (b) Clinical data comparison between the KOCRC and 
EUCRC cohorts. Asterisks are labeled according to the p-values cal-
culated. The p-values for stage, primary site, gender, and age were 
0.004032, 0.001053, 0.09634, and 3.86e-08, respectively (KOCRC: 

n = 126, EUCRC: n = 245). (c) TMB comparisons. The first plot 
shows a direct comparison between the KOCRC and EUCRC popula-
tions, and the next two plots compare each cohort with TCGA-COAD 
and TCGA-READ
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enriched gene sets, we applied an FDR cutoff of 0.01 
(Fig. 4a). The results indicated that seven hallmark gene 
sets were significantly enriched in both cohorts, whereas 
another 12 and 5 were exclusively enriched only in the 
KOCRC and EUCRC groups, respectively (Fig. 4b). The 
12 gene sets enriched and up-regulated only in the KOCRC 
cohort were ‘mitotic spindle’, ‘G2M checkpoint’, ‘adipogen-
esis’, ‘myogenesis’, ‘interferon gamma response’, ‘unfolded 
protein response’, ‘PI3K/AKT/mTOR signaling’, ‘MYC 
targets v2’, ‘epithelial mesenchymal transition’, ‘inflamma-
tory response’, ‘IL2 STAT5 signaling’, and ‘peroxisome’. 

The five gene sets enriched and down-regulated only in the 
EUCRC cohort were ‘TNFα signaling via NFκB’, ‘protein 
secretion’, ‘apical surface’, ‘oxidative phosphorylation’, and 
‘reactive oxygen species pathway’.

We used ten canonical oncogenic signaling pathways 
derived from TCGA cohorts (Sanchez-Vega et al. 2018) 
(Fig. 4c) to perform pathway analysis. Pathway analyses 
were performed using genomic data. In most pathways, the 
frequencies of affected samples were similar in both cohorts. 
However, in the β-catenin/WNT and p53 signaling pathways, 
significantly more fractions of samples were affected in the 
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EUCRC cohort, whereas the Notch signaling pathway had 
a higher fraction of affected samples in the KOCRC cohort.

CMS classification

A prior study established four CMSs for CRC and devel-
oped a tool named ‘CMSclassifier’ (Guinney et al. 2015). To 
investigate how well our data fitted with existing findings, 
we utilized ‘CMSclassifier’ to analyze our transcriptomic 
data from both the KOCRC and EUCRC cohorts.

We first compared the proportions of each CMS in the two 
cohorts after deducting the ‘unspecified’ subtype (Fig. 5a, 
b, Supplementary Fig. 2). The prevalence of CMS1-4 for 
the KOCRC cohort were 11.3%, 30.0%, 13.8%, and 45.0%, 
respectively. For the EUCRC cohort, these percentages were 
13.1%, 30.6%, 19.7%, and 36.6%, respectively (p = 0.5215).

We next compared the reported features of each CRC 
CMS with our current data (Fig.  5a, Supplementary 
Fig. 2). CMS1 is known as an MSI high and BRAF muta-
tion enriched subtype (Guinney et al. 2015). In the EUCRC 
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cohort, CMS1 samples (n = 24) showed this expected high 
MSI and BRAF mutation rate (62%), whereas the KOCRC 
CMS1 samples (n = 9) showed MSI high features but no 
BRAF mutations. CMS3 is known to have a high fre-
quency of KRAS mutation (Guinney et al. 2015). This fact 
was also found in our cohort, in which CMS3 samples 
showed the highest KRAS mutation frequencies of the 
four subtypes. The KRAS mutation frequency was 55% 
for KOCRC CMS3 (n = 11) and 61% for EUCRC CMS3 
(n = 36) (Fig. 5c). Additionally, even though some varia-
tion may be anticipated because of the limited number of 
samples, CMS4 samples for both of our present cohorts 
tended to have higher proportions of cancer stage IV cases 
than other subtypes (Fig. 5d).

Fusion genes in the KOCRCs patients

We used STAR-Fusion software to identify fusion genes 
in the KOCRC cohort present in at least four patients. 
Four intrachromosomal fusion genes (SEPTIN7P2-PSPH, 
OR51S1-TP53I11, PTPRK-RSPO3, and PMS2P6-CCDC146 
in 47, 20, 7, and 7 cases, respectively) and two interchromo-
somal fusion genes (YAF2-RYBP and FBXO25-SEPTIN14 
found in 13 and 6 patients, respectively) were thereby 
identified.

We then examined whether these six fusion genes had 
any effects on gene expression. The samples harboring a 
PTPRK-RSPO3 fusion showed a dramatic increase in 
RSPO3 expression (Wilcoxon test, p = 2.0357 ×  10–5; Sup-
plementary Fig. 3, Fig. 6a). We observed two different kinds 
of PTPRK-RSPO3 fusions that contained either exon1 or 
exon7 of PTPRK and exon2 of RSPO3 (Fig. 6b). Further-
more, the PTPRK-RSPO3 fusion showed a mutually exclu-
sive pattern with the APC mutation (Fig. 6c).

Discussion

By comparing large cohorts and establishing the genomic 
landscape of KOCRCs, the commonalities and differences 
between CRC patients of Korean and European ancestry 
could be identified and discussed. In the comparative analy-
ses of the clinical data for these populations, it was notable 
that the KOCRC and EUCRC cohorts showed significant 
age differences, with a median age of about 58 and 68, 
respectively. The lower median age of the KOCRC patients 
is likely to be related to the higher prevalence of this cancer 
in Korea and the national health checkups for all Korean 
citizens over the age of 50. These checkups include a CRC 

screen using a stool occult blood test and a colonoscopy, 
which can improve the early diagnosis of CRC.

The KOCRC and EUCRC cohorts in our present study 
showed differences in the mutation frequencies in several 
driver genes. Of note, the lower mutation frequency of the 
BRAF gene in our Korean subjects is consistent with another 
study of CRCs from distinct ethnic groups that also found 
variations in the BRAF mutation frequency (Hanna et al. 
2013). In addition, the higher mutation frequencies observed 
in the GNAS and DENND5B genes in our KOCRC cases is 
supported by another study that identified 13 loci that were 
significantly associated with the risk for CRC in Asians. 
Two of these 13 loci were located inside or near the protein-
coding regions of GNAS and DENND5B (Lu et al. 2019).

We additionally identified three new putative driver genes 
(MUC7, PABPC1, B2M) in our KOCRC population. MUC7 
has often been associated with other cancer types, particu-
larly bladder cancer, and its expression levels have been 
assayed in many tumor types (Retz et al. 1998). However, the 
significance of MUC7 mutations in CRC remains uncertain. 
PABPC1 (poly A binding protein cytoplasmic1) is known to 
play a role in the post-transcriptional control of mRNA and 
may be involved in tumorigenesis (Takashima et al. 2006). 
In addition, several studies have revealed that this gene has 
important roles in tumor progression and carcinogenesis in 
both esophageal and gastric cancer (Takashima et al. 2006; 
Zhu et al. 2015). B2M mutations are often reported in high-
level microsatellite instability (MSI-H) CRCs (Tikidzhieva 
et al. 2012). Robust evidence is available that correlates B2M 
variations and immune escape in CRC (Grasso et al. 2018; 
Ozcan et al. 2018), and this gene also acts as a driver in dif-
fuse large B cell lymphoma (DLBC) (Fan et al. 2020).

The most frequently mutated genes in our EUCRC cohort 
were APC, TP53, FAT4, and BRAF. These four genes are 
involved in major carcinogenesis pathways, including the 
Wnt, Hippo, and MAPK signaling pathways. Of the genes 
most frequently mutated in the KOCRC cohort, the activat-
ing mutation in GNAS has been reported previously in APC 
deficient mice to promote intestinal tumorigenesis by acti-
vating the Wnt and ERK1/2 MAPK pathways (Wilson et al. 
2010). In another prior study, the GNAS mutation functioned 
as an alternative activator of the Wnt/beta-catenin signaling 
pathway in gastric adenocarcinoma (Nomura et al. 2014). 
These results suggest that the Wnt/beta-catenin pathway is 
activated in Korean CRC patients by a GNAS-mediated alter-
native pathway and a canonical APC pathway. We speculate 
that this alternative mechanism of Wnt pathway activation 
by GNAS may partially explain the lower mutational fre-
quency of the APC gene in the KOCRC compared to the 
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EUCRC cohort in our current study. However, we predict 
that the PTPRK-RSPO3 fusion gene likely plays a role in an 
alternative mechanism of Wnt pathway activation. The Wnt-
dependent endogenous Rspo2 and Rspo3 chromosomal rear-
rangements can initiate and maintain colorectal carcinogen-
esis (Han et al. 2017). Another previous study has suggested 
a role for the PTPRK-RSPO3 fusion gene in activating Wnt/
beta-catenin signaling because it showed a mutually exclu-
sive pattern with APC or beta-catenin mutations (Hao et al. 
2016), which is in line with our present data indicating its 
mutual exclusiveness with APC mutations. Taken together, 
the cumulative evidence now suggests that two alternative 
pathways, including GNAS-mediated and PTPRK-RSPO3 
fusion-mediated mechanisms, may play an important role in 
the activation of Wnt/beta-catenin signaling in place of APC 
mutations in Korean CRC lesions. Additionally, DENND5B, 
a guanine nucleotide exchange factor that activates RAB39A 
and RAB39B, was previously identified as one of 13 loci sig-
nificantly associated with risk for CRC in Asians (Lu et al. 
2019). Further studies are needed to determine the roles of 
DENND5B in colorectal carcinogenesis.

Our current mutational signature analysis results sug-
gested that KOCRCs and EUCRCs are very similar except 
for the unknown signature (COSMIC Signature 5), indi-
cating that the major mutational signatures are conserved 
among these two cohorts. The aging signature (COSMIC 
Signature 1) was evident in EUCRC cases which were not 
surprising since the median age of the EUCRC cohort was 
older than that of the KOCRC cohort. POLE has a crucial 
role in chromosomal DNA replication due to its proofread-
ing capacity and is known to be mutually exclusive with 
dMMR. Somatic mutations in the proofreading domains 
of POLE have been identified in relation to microsatellite 
instability (MSI), which has been found to occur in CRC 
due to a dMMR system with key MMR genes inactivated by 
various mechanisms (Domingo et al. 2016; Kim et al. 2013). 
Moreover, mutations in polymerase proofreading–associated 

syndrome involving POLE and POLD1 constitute 0.3–0.7% 
of familial cancer cases when only CRC and polyposis are 
considered (Mur et al. 2020).

In our GSEA and pathway analysis for mutated genes, we 
identified significant differences in some hallmark gene sets 
and pathways between the KOCRC and EUCRC patients. 
These results indicate that Korean CRC cases may require 
different therapeutic approaches than the current conven-
tional methods. Among the gene sets enriched in KOCRC 
were upregulated immune-related gene sets such as ‘inter-
feron gamma response’, ‘inflammatory response’, and ‘IL2 
STAT5 signaling’, indicating the possibility that immuno-
therapy-based approaches could be effective in these cases.

In the CMS analysis we conducted in our present series, 
we assessed the previously established four CRC subtypes 
(CMS1-4) (Guinney et al. 2015). CMS1 is the MSI immuno-
genic type, CMS2 is the canonical type, CMS3 is a metabolic 
type and CMS4 is a mesenchymal type. CMS1 was enriched 
for MSI tumors and BRAF-mutations. CMS2 tumors had 
epithelial characteristics with marked WNT and MYC sign-
aling augmentation and a high CIN. CMS3 cancers also had 
epithelial features but a lower CIN, were enriched for KRAS 
mutations and presented with evident metabolic dysregula-
tion. The CMS4 grouping was the mesenchymal subtype 
with prominent TGF-β activation, stromal invasion, angio-
genesis, and an inflammatory, immunosuppressive pheno-
type. CMS analyses of CRCs is a new modality that includes 
knowledge of molecular factors, tumor stroma, and signaling 
pathways to facilitate personalized, patient-orientated sys-
temic treatments, i.e., precision medicine (Ten Hoorn et al. 
2021). In our present study, the proportions of each subtype 
in the two cohorts did not show differences, implying that 
they are conserved among different ethnic groups. Addition-
ally, the conserved proportions of each subtype indicated 
no fundamental differences in the molecular carcinogenesis 
processes between the two cohorts.

Since gene fusions are closely associated with specific 
tumor phenotypes, they represent ideal targets for anticancer 
treatments and risk stratification. A previous study reported 
that the fusion of NAV2 and TCF7L1 is a new marker for 
aggressive CRC and has an important role in MYC-directed 
transcriptional activation and repression (Cancer Genome 
Atlas Network 2012). We identified several new fusion genes 
that may become oncogenic candidates for CRC in this pre-
sent study. A previous report identified a PTPRK-RSPO3 
fusion gene in CRC and demonstrated that targeting RSPO3 

Fig. 4  Analyses of gene sets and pathways among the different CRC 
cohorts. (a) Heat map of the GSEA results for hallmark gene sets. 
The heatmap was drawn according to normalized enrichment scores 
(NES). Asterisk labeling is based on FDR values. (b) Venn diagram 
of enriched hallmark gene sets in the KOCRC and EUCRC cohorts. 
(c) Comparison of the mutation frequency of genes in 10 hallmark 
pathways across the KOCRC and EUCRC patient subjects. Asterisks 
indicate significant differences based on a chi-square test. The p-val-
ues for the WNT, NOTCH, and TP53 pathways were 1.64e-09, 4.88e-
06, and 0.011, respectively

◂
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in PTPRK-RSPO3 fusion-positive human tumor xenografts 
inhibited tumor growth and promoted differentiation (Storm 
et al. 2016). Although the precise functions of the fusion genes 
found in CRC remain to be defined, our current data in two 
ethnically different cohorts suggest that gene fusion events 
may contribute to tumorigenesis in this cancer type.

Overall, we suggest from our present analyses that further 
studies involving larger populations of Korean CRC cases are 
needed to validate our current data. In addition, as the data 
from the KOCRC and EUCRC cohorts in our series were 

processed using partially different computational procedures, 
caution should be exercised in interpreting our results which 
may have been affected by this. However, the effect would be 
trivial, as we followed most of the computational procedures 
as GDC Data Portal stated (Supplementary Table 1). Notwith-
standing these limitations, our present study suggests that dis-
tinct molecular and genomic differences exist between Korean 
and European CRCs, and our analyses provide an important 
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reference point for the future genetic testing of cancer risk and 
potential targeted treatments in Korean CRC patients.
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