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SUMMARY

Compared to traditional methods, using machine learning to assess or predict the odor of molecules can
save costs in various aspects. Our research aims to collect molecules with coffee odor and summarize the
regularity of these molecules, ultimately creating a binary classifier that can determine whether a mole-
cule has a coffee odor. In this study, a total of 371 coffee-odor molecules and 9,700 non-coffee-odor mol-
ecules were collected. The Knowledge-guided Pre-training of Graph Transformer (KPGT), support vector
machine (SVM), random forest (RF), multi-layer perceptron (MLP), and message-passing neural networks
(MPNN)were used to train the data. Themodel with the best performancewas selected as the basis of the
predictor. The prediction accuracy value of the KPGT model exceeded 0.84 and the predictor has been
deployed as a webserver PredCoffee.

INTRODUCTION

Smell is the perception of volatile compounds by people. It occurs when volatile compounds combine with odorant molecules on the nasal

epithelial cells, which in turn activate olfactory sensory neurons distributed in the olfactory epithelium through receptors expressed on those

neurons. Olfactory neurons transmit information to the olfactory cortex located in the cerebral cortex. This pathway allows for the processing

and interpretation of olfactory signals, leading to the formation of olfactory perception in animals.1–3 The sense of smell allows individuals to

gather substantial information about the external environment.4 Typically, people label odors based on their subjective assessment. Howev-

er, for certain odors, it may be difficult to provide a complete judgment or identify the type of odor. There are many kinds of odors that we

come into contact with daily, such as fruit, tea, alcohol, coffee, wood, and so on. However, under the influence of some external factors, peo-

ple cannot accurately identify certain odors according to their subjective perception. Moreover, for the same odor, different results will be

identified due to different ages, gender, sensitivity, and some other personal factors.5,6 The precise identification of odors is a crucial require-

ment in various industries including perfumery, flavoring, and the food industry.

As the pace of life gets faster, coffee is a very popular drink.7 The popularity of coffee is mainly attributed to some of its properties and its

unique smell. Studies have proved that moderate daily coffee consumption can reduce the occurrence of chronic diseases such as cardiovas-

cular disease and diabetes.8–10 The innovation and improvement of the odor of coffee drinks is a major selling point for merchants to sell

products. Some individuals are unable to consume coffee due to their intolerance to caffeine or other components found in coffee. As an

alternative, they opt for coffee-scented beverages that are caffeine-free. In addition to coffee, other natural product components have

been identified to possess a coffee aroma, such as the extraction from chicory roots.11–13 Natural products with coffee odor are important

sources for making coffee odor beverages.

With the rapid advancement of the Internet and computer technology, utilizing data analysis and statistical methods has become highly

practical and convenient for us to identify and summarize connections and variations within sample data especially in the fields of biology and

medicine.14 In the field of biological and chemical research, machine learning and data analysis are frequently employed for statistical analysis

of substance structures and properties. These techniques aid in extracting meaningful insights and patterns from complex datasets, facili-

tating the understanding and prediction of various substance characteristics.15 At present, many studies have applied computational model

methods to conduct structural analysis and feature induction for a variety of odors or one odor and then formed a classifier.16 These classifiers

can make objective judgments on the odor of molecules better, or make odor predictions for molecules with unknown odors so that people

do not have to go through the wet experiment process to identify the odor of a molecule, which greatly saves manpower and material costs

and reduces time. The recent study has used graph neural networks (GNN) to generate a principal odor maps (POM) that retain perceptual

relationships and are capable of odor quality prediction for previously uncharacterized odors.17

In this study, we collected 371 coffee-odor molecules and 9,700 non-coffee-odor molecules and performed data cleaning and balancing

on these data. The information about these molecules can be obtained on the webserver (https://hwwlab/webserver/predcoffee). The
1Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China
2Department of Electrical Engineer and Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
3These authors contributed equally
4Lead contact
*Correspondence: hefe@missouri.edu (F.H.), luhan@jlu.edu.cn (L.H.), weiweihan@jlu.edu.cn (W.H.)
https://doi.org/10.1016/j.isci.2024.110041

iScience 27, 110041, June 21, 2024 ª 2024 The Author(s). Published by Elsevier Inc.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

1

https://hwwlab/webserver/predcoffee
mailto:hefe@missouri.edu
mailto:luhan@jlu.edu.cn
mailto:weiweihan@jlu.edu.cn
https://doi.org/10.1016/j.isci.2024.110041
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2024.110041&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/


Figure 1. The workflow of our study

ll
OPEN ACCESS

iScience
Article
coffee odor dataset used in our study was sourced from some databases, including the LRI and Odor Database, and Leffingwell PMP 2001

and the training data provided by Phil Mennell during the ‘‘Learning Odors Challenge’’. Five models, KPGT,18 SVM, RF,19 MLP, and

MPNN20 that is one kind of GNN,21 are used to predict and summarize the structure and property characteristics of coffee odor molecules.

These algorithm models of machine learning are widely used in data analysis and processing in biology, medicine, and other industries,

providing reliable data model support.22–26 The optimal model is selected to build a binary classifier for predicting coffee odor, and it is

used as the basis for building a website (Figure 1). This study provides a binary classification method, which provides a reliable basis for

judging whether a molecule has coffee odor. This will provide a reference for the relation between molecular structure and biological ac-

tivity or toxicity.

RESULTS AND DISCUSSION

Data

After the data cleaning, we got 271 coffee-odor molecules. We performed cluster analysis on 271 coffee-odor molecules, and it can be seen

from Figure 2 that these 271 molecules are divided into different groups. By filtering out groups with fewer than 20 molecules, 205 of the 271

molecules were divided into four groups, and they were the 2-isopropyl-5-methylpyrazine group, (S)-2-methyl butyraldehyde group, difurfuryl

disulfide group, hexahydrophenol group.We can see that themolecules grouped into the same groupmostly have similar structural features.

Next, we analyzed the specific structural characteristics of each group.

Difurfuryl disulfide is a chemical compound that belongs to the furan derivative group. It is composed of two furan rings connected by a

disulfide bridge. Difurfuryl disulfide can exist in different forms, including derivatives such as ketones, ethers, and ester compounds. Some

molecules within this group may also contain sulfur atoms or sulfhydryl groups. Compounds in the 2-isopropyl-5-methylpyrazine group

are characterized by five-membered or six-membered ring structures. Most contain aliphatic side chains, including esters, ethers, and ke-

tones. This group can be divided into two categories. The first is a compound with pyrazine as the skeleton, such as 2, 3-dimethyl-5-

isopentylpyrazine, 2, 6-dimethylpyrazine, acetylpyrazine, 2,3-dimethylpyrazine, etc. The second category is thiazole-based compounds,

such as benzothiazole, 2, 4-dimethylthiazole, 2, 4, 5-trimethylthiazole, etc.

(S)-2-methylbutyraldehyde group, which is the group containing the most molecules. This group mainly consists of two types of com-

pounds, one of which is the non-cyclic chain compounds, including 3-mercapto-1-hexanol, 5-methyl-2-hepten-4-one, 4,6,9-trimethyl-

3,5,8,10-tetraoxadodecane, etc. The other is cyclic compounds including dicyclohexyl disulfide, 3-mercapto-5-methyl-4, 5-dihydr-o-

2(3H)-thio -phenone, etc. Most of the compounds in this group contain carbonyl, hydroxyl, or sulfhydryl groups. The hexahydrophenol

group has a relatively uniform structure, with a benzene ring or thiophene as its structural skeleton, including benzyl mercaptan,

2-thiophenemethanethiol, and others.

Molecule structure and docking

We analyzed the interactions between the molecules (ligands) of the four clustered groups and protein (receptors), resulting in

a heatmap (Figure S3). We found that the difurfuryl disulfide group, 2-isopropyl-5-methylpyrazine group, and hexahydrophenol

group predominantly interact with the protein receptors through electrostatic and aromatic face-to-face interactions, while the
2 iScience 27, 110041, June 21, 2024



Figure 2. Clustering analysis of 271 coffee odor molecules

The light gray circles represent the threshold radius of molecules (1/48 of the distance between the farthest two molecules), and two molecules with intersecting

radii are divided into a group. The different colors of the molecules represent different categories, groups containing fewer than 7 molecules are shown in gray,

and groups containing more than 7 molecules are shown in color.
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hexahydrophenol group mainly interacts with the protein receptor through hydrophobic interactions. During the interaction process

between the molecular ligands of these four groups and the protein receptors, several amino acid residues such as Y197, T200, and

A201 were involved in forming interactions, indicating that coffee flavor molecules primarily bind to the receptor through these

amino acid residues.
Difurfuryl disulfide group

The HOMOand LUMOof difurfuryl disulfide are shown in Figure 3A, Difurfuryl disulfide has a furan ring on each side. TheHOMOof themole-

cule falls on the carbon-carbon double bond and the disulfide bond in the middle of the furan ring, indicating that the molecule has strong

reducibility and may lose electrons and form new chemical bonds. The molecule’s LUMO falls on the carbon atoms on the left and right sides

of the disulfide bond, which are each connected to two hydrogens, can receive foreign electrons, and has a certain oxidation property. Fig-

ure 4A shows the interaction of difurfuryl disulfide with the protein receptor OR51E2, PDB: 8F76. L185 is an alkaline amino acid that forms

covalent bonds with the disulfide bond of the molecule. In addition, L192, M184, and V195 are hydrophobic amino acids that provide a hy-

drophobic environment for the binding of molecular ligands to protein receptors.
2-Isopropyl-5-methylpyrazine group

2-Isopropyl-5-methylpyrazine is the representative compound of its group, which contains a pyrazine ring with threemethyl groups in the side

chain (Figure 3B). The pyrazine ring has two carbon atoms attached to one hydrogen each, and these two carbon atoms can either gain elec-

trons or lose electrons, both oxidizing and reducing. From the binding of this molecule to OR51E2 (Figure 4B), it can be seen that M184 and

L185 can interact with methyl groups on their side faces to form covalent bonds, V195 interacts with the pyrazine ring in the form of Pi bonds,

and T191 forms hydrogen bonds with nitrogen atoms on the pyrazine ring. Hydrogen bond is a common bond formed by the interaction be-

tween the pyrazine ring and protein receptor.27
(S)-2-Methyl butyraldehyde group

(S)-2-methyl butyraldehyde is an aldehyde with a relatively simple structure and no ring structure. From the HOMOorbit (left) and LUMOorbit

(right) of this molecule (Figure 3C), it can be seen that the aldehyde group has both reducing and oxidizing properties. It can be oxidized to

carboxylic acid or reduced to alcohol. From the interaction between (S)-2-meth-yl butyraldehyde and protein receptor, it can be seen that it

interacts with T191 in the formof hydrogenbond, and V195, L185, andA187 also play an important role in the interaction between (S)-2-methyl

butyraldehyde and protein.
iScience 27, 110041, June 21, 2024 3



Figure 3. HOMO and LUMO of the four representative molecules

(A) Difurfuryl disulfide.

(B) 2-Isopropyl-5-methylpyrazine.

(C) (S)-2-methyl butyraldehyde.

(D) Hexahydrophenol.
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Hexahydrophenol group

Hexahydrophenol is the representative molecule of this group. The chemical reaction occurs mainly in the phenolic hydroxyl group. In the

process of its interaction with protein receptors, M184, and L185 have Alkyl, and A262 has hydrogen bond interactions with phenolic hydroxyl

groups on small molecules.
Models

We tested the four selectedmodels and represented the results in the form of a confusionmatrix (Figure S2), about 45 molecules of the KPGT

model were predicted to be coffee-odor molecules during the validation, the same as the real label, and about 9 non-coffee-odor molecules

were predicted to be coffee-odor molecules. Similarly, it can be seen that the number of prediction errors in the remaining three models is

between 10 and 20. In contrast, the prediction error of KPGT is less, indicating that its accuracy is better.

The performance of these fivemodels in six metrics is shown in Figure 5, which shows each score of these four models (more details can be

seen in Table S5). The KPGT had an accuracy of 0.84, which are significantly higher than that of the other fourmodels, indicating that the KPGT

has a good prediction effect on our data and is more suitable for being a prediction model.

Morgan fingerprints of molecules are easily visualized. To explore which Morgan fingerprints MLP learned were key to the molecule’s cof-

fee flavor, we analyzed the model using SHapley Additive exPlanations (SHAP). In Figure 6, we show theMorgan fingerprint substructure with

the largest SHAP value with the largest number of 4 groups of coffee flavor molecules in the cluster (Figure 2). It is clear that the MLP model

learns important structural features differently for different classes ofmolecules. Formolecules in the Hexahydrophenol group (Figure 6D), the

dominant Morgan fingerprint substructure is the conjugated structure on the phenyl group. For the Difurfuryl disulfide group (Figure 6A), the

MLP considers the oxygen and carbon atoms of the furan group to be important. For themolecules of the 2-Isopropyl-5-methylpyrazine group

(Figure 6B), it is important to have six-membered heterocyclic structures containing two nitrogen atoms,mainly pyrimidine and pyrazine struc-

ture in this group of molecules is crucial for coffee odor recognition. MLP believed that the oxygen atomor sulfhydryl group in themolecule of

(S)-2-methyl butyraldehyde group and the surrounding carbon atomenvironment were the key substructural characteristics to distinguish cof-

fee odor (Figure 6C). In summary, the MLP model learned key substructural features for each of the four classes of molecules that may be

important for odor receptors to recognize coffee flavor molecules.
4 iScience 27, 110041, June 21, 2024



Figure 4. Molecular docking results of OR51E2 and four representative molecules

(A) Difurfuryl disulfide docking with OR51E2 and active residues around it.

(B) 2-Isopropyl-5-methylpyrazine docking with OR51E2 and active residues around it.

(C) (S)-2-methyl butyraldehyde docking with OR51E2 and active residues around it.

(D) Hexahydrophenol docking with OR51E2 and active residues around it.
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Difference analysis

We performed a factor analysis of 208 properties of coffee/non-coffee odor molecules. Factor 1 and factor 2 explain 72% of the total variance in

our dataset (Table S2). The value of logP28mainly characterized the hydrophobicity ofmolecules. As can be seen fromFigure 7A, factor 1, factor 2

and factor 3 have higher eigenvalues, andwe choose these three factors as common factors. Figure 7B shows the factor loadingmatrix of factor 1,

factor 2, and factor 3 on 12 descriptors (Table S3). It can be seen that factor 1 predominantly contributes to 7 properties, such as Heavy AtomMol
iScience 27, 110041, June 21, 2024 5



Figure 5. Performance of 5 models on 6 performance metrics
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Wt and MW, while factor 2 primarily influences 3 properties, including the Morgan fingerprint of molecules. Factor 1 reflects the basic physical

and chemical properties of molecules, such as size, shape, and electronic structure, which are fundamental factors that determine the behavior

and function of molecules. Factor 2 represents the molecular fingerprint density, reflected the structural complexity and diversity of molecules,

especially the potential for molecular recognition and intermolecular interactions. Factor 3 represents the lipid solubility of themolecule and is a

measure of the lipid solubility of the molecule. We can see the correlation between the three common factors and the 12 descriptors (Table S3),

the darker the color and the larger the value, the higher the correlation (Figure 7C). The performance of coffee odor and non-coffee odor mol-

ecules in 12 properties was normalized (Figure 7D), where 0 represents non-coffee odor molecules and 1 represents coffee odor molecules.

Specific numerical comparisons were made between coffee odor molecules and non-coffee odor molecules in 12 specific properties (Fig-

ure 8), and p-value <0.05 proved that coffee and non-coffee molecules were different in the corresponding properties. As can be seen from

Figure 8, the p-values of coffee odor molecules and non-coffee odor molecules in 12 properties are all less than 0.05, indicating that there are

significant differences between coffee and non-coffee molecules in these properties. Coffee-odor molecules have smaller molecular weights

and volumes, more FpDensityMorgan 1–3, and are less hydrophobic than non-coffee odor molecules.

Webserver

Based on the selected KPGT model, we built a website named PredCoffee with the URL https://hwwlab.com/webserver/predcoffee. By

entering the SMILES format of the molecule you want to query in the prediction option on the homepage of the website (Figure 9), you

can find out whether the molecule is coffee-odor.

Our research outcomes are effectively disseminated through the platform of this website, offering enhanced practical utility and societal

impact. This approach significantly economizes on human resources and material costs, considering the substantial investment of time, en-

ergy, and financial resources required to cultivate proficient odor assessors. Moreover, the inherent constraint of finite human labor hours, in
6 iScience 27, 110041, June 21, 2024
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Figure 6. Most important Morgan fingerprint substructure that MLP learned of molecules

(A) Difurfuryl disulfide group.

(B) 2-Isopropyl-5-methylpyrazine group.

(C) (S)-2-methyl butyraldehyde group.

(D) Hexahydrophenol group. Blue highlight indicated that the atomic or molecular fragment corresponds directly to the activated bit in Morgan’s fingerprint.

Yellow highlight was used to indicate atoms that are adjacent to blue highlighted atoms or that contribute to the generation of fingerprint sites but do not

directly determine their activation. Uncolored atoms did not contribute directly to generating the Morgan fingerprint bit of the current focus.
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contrast to the ceaseless operational capacity of machines, underscores the efficiency and advantage of utilizing our classifier for odor pre-

diction. Additionally, the classifier’s capability to transcend temporal and spatial restrictions contributes to its convenience and efficacy in

odor assessment applications.

Limitations of the study

The binary classification machine learning for coffee odor molecules is based on ligand-based algorithms. In the future, consideration will be

given to using receptor-based algorithms. Additionally, the scale of the coffee odor dataset trained in this study is too small, and efforts will be

made to expand the coffee odor dataset.

Conclusions

In this study, cluster analysis andmolecular docking analysis were carried out on 271 coffee odor molecules, corresponding datamodels were

selected to predict coffee odor and non-coffee odor molecules, the most suitable model for the data in this study is KPGT, and a binary clas-

sifier was constructed. The prediction of whether a molecule has coffee odor has a high accuracy, which reached 0.84. Coffee-odor molecules

have smaller molecular weights and volumes, more Morgan fingerprints 1–3, and are less hydrophobic than non-coffee odor molecules. The

odor prediction of molecules is realized.
iScience 27, 110041, June 21, 2024 7



Figure 7. Factor analysis of the coffee/non-coffee dataset

(A) The scree plot for eigenvalue with factor.

(B) The radar chart of the screened descriptors contributing to 3 factors.

(C) The heatmap of factor loading matrix.

(D) Normalized 12 molecular properties of coffee and non-coffee.
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The binary classifier constructed using machine learning methods not only predicts the odor of molecules but also estimates the

intensity of the odor. It can efficiently perform odor prediction for a large number of molecules in a short period of time, which is

difficult to achieve artificially. This improves the accuracy and efficiency of odor identification. Additionally, we have identified
8 iScience 27, 110041, June 21, 2024



Figure 8. Significant difference analysis of 12 properties of coffee and non-coffee molecules

The p-value indicates the difference between two samples, the smaller the p-value, the more significant the difference.
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characteristic structures of molecules with coffee aroma, providing a predictive basis and theoretical foundation for industries such as

flavor formulation. For example, by predicting and screening certain components in plants, it is possible to formulate beverages with

coffee odor but without caffeine, promoting product development in the food industry. It can also predict the odor of a molecule

with a known chemical formula without the need for time-consuming wet lab experiments such as synthesis from scratch, significantly

saving manpower and resources. The enhanced ability of AI in odor analysis holds significant value and significance in the fields of

food, medicine, and chemical engineering.
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Figure 9. Webserver of PredCoffee

(A) Website homepage of PredCoffee.

(B) Submit page of PredCoffee.

(C) Result page of PredCoffee.

(D) Chemical space of coffee molecules.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Receptor for molecular docking RCSB PDB Code: 8F76 https://www.rcsb.org/structure/8F76

Molecualar dataset This paper https://hwwlab.com/webserver/predcoffee/dataset

Source Code This paper https://github.com/heyigacu/predcoffee

All data This paper https://zenodo.org/records/11067667

Software and algorithms

KPGT Li et al.1 https://github.com/lihan97/KPGT

MPNN DGL-LifeSci https://arxiv.org/abs/2106.14232

SVM and RF sklearn 1.4.2 https://scikit-learn.org/stable/index.html

MLP pytorch 2.1.2 + cuda 11.8 https://pytorch.org/

tSNE-CSN Istyastono et al.2 https://github.com/heyigacu/DsitanceClustering

Vina Eberhardt et al.3 RRID:SCR_011958; https://vina.scripps.edu/

Gaussian16 Gaussian16 RRID:SCR_014897; https://gaussian.com/gaussian16/

GaussView6 GaussView6 https://gaussian.com/gaussview6/

PyPLIF-HIPPOS Istyastono et al.2 https://github.com/radifar/PyPLIF-HIPPOS

RDKit RDKit 2023.9.5 RRID:SCR_014274; https://www.rdkit.org/docs/index.html

Open Babel Open Babel 3.0.1 RRID:SCR_014920; https://openbabel.org

SHAP SHAP-0.45.0 RRID:SCR_021362; https://github.com/shap/shap

PyMOL PyMOL 3.0 RRID:SCR_000305; https://pymol.org/
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Weiwei Han (weiweihan@jlu.

edu.cn).
Materials availability

This study did not generate new unique reagents.
Data and code availability

Coffee-odor molecular dataset can be downloaded from https://hwwlab.com/webserver/predcoffee/dataset. All data reported in this paper

will can be available at https://zenodo.org/records/11067667. All of the code in this article, including machine learning and analysis, is avail-

able at https://github.com/heyigacu/predcoffee. Any additional information required to reanalyse the data reported in this paper is available

from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

This study is computational, so we omit this section.
METHOD DETAILS

The workflow of the study

Our workflow is shown in Figure 1. We collected coffee and non-coffee odor molecules from the databases, and then cleaned and balanced

them to get the training dataset. The processed dataset was used to train the 5 models (KPGT, SVM, MLP, RF, MPNN) and select the best

model for deployment to the website. At the same time, clustering, difference analysis, factor analysis, quantum chemistry calculation,

and molecular docking were also carried out on the dataset.
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The dataset processing

As shown in Figure S1, we collected 371 coffee-odor molecules and 9,700 non-coffee-odor molecules from the databases. The data cleaning

included removingmolecules that were not recognized by RDKit29 and DGL and deleting duplicate molecules with canonical SMILES respec-

tively in coffee and non-coffee odor molecules, resulting in 271 coffee and 5,758 non-coffee odor molecules. To balance the dataset, 5758

non-coffee odor molecules were stratified and upsampled to 270 molecules to ensure that the ratio of coffee and non-coffee was about

1:1. The final coffee/non-coffee dataset was cross-validated with 5-folds and repeated 10 times.

The models for coffee odor prediction

We used the four models for training coffee odor predictors, detailed information of the models is as below.

(1) KPGT (Knowledge-guided Pre-training of Graph Transformer) is a self-supervised learning framework that can learn generalizable and

robust molecular representations. The code for KPGT can be obtained at https://github.com/lihan97/KPGT, and it has been pre-

trained on 2 million molecules. Here, we are using the odor dataset of coffee/non-coffee for fine-tuning.

(2) We constructed MLP with PyTorch (https://pytorch.org/). Firstly, the molecules of the dataset are converted into Morgan fingerprints

with a radius of 2 and a length of 2048 bits by RDKit (https://www.rdkit.org/), and batch size was set to 1/16 of the total number of the

molecules. Then the fingerprints was input into the MLP with the input layer containing 256 neurons, the hidden layer of 256 neurons,

and the output layer of 2 neurons (refer to theMLP schematic diagram in Figure 1). Between each layer, there is a ReLU activation func-

tion and a 0.1 dropout. The trainer used the cross-entropy loss function, Adam optimizer, and a learning rate of 0.001, and the early

stop strategy was used to stop the training when the number of times the loss no longer drops accumulates to 7.

(3) The SVMmodel was constructedwith scikit-learn (https://scikit-learn.org/). The input for the SVM is the same as for theMLP above. The

optimal parameters of the SVMwere determined using a 5-fold cross-validated grid searchmethod. The optimal parameters are {"C":

1, "gamma": 0.1, "kernel": "rbf", "probability": True}.

(4) The input for the RF model is the same as for the SVM above. The optimal parameters of the RF were determined using a 5-fold

cross-validated grid search method. The optimal parameters are {"max_depth": 6, "max_features": "log2", "min_samples_leaf":

50, "min_samples_split": 2, "n_estimators": 100, "probability": True}.

(5) Webuilt theMPNNwithDGL-LifeSci (https://lifesci.dgl.ai/). The input for theMPNN is theDGLgraphs of themolecules, and batch size

was set to 1/16 of the total number of the molecules. Node feature and edge feature embedding using canonical atom and bond fea-

turization that generated 74 one-hot coding features for atoms and 12 one-hot coding features for bonds (Table S4). The node output

dimension and edge output dimension of MPNN were set to 64 and 128 respectively, and other parameters were set to default.

Training parameters like early stopping, learning rate, loss function, and optimizer are the same as MLP.
Clustering of the coffee odor molecules

RDKit was used to calculate the Morgan fingerprint vector with a length of 2048 and a radius of the molecule, and then used t-Distributed

Stochastic Neighbor Embedding (t-SNE) to reduce dimensionality to two-dimensional space. This space represents the chemical space of

astringent molecules. Compared with the K-means method, we chose another clustering method that can clearly distinguish the margins

of different classes, which considers that if the distance between two molecules is less than 1/24 of the distance between the farthest two

molecules in the entire molecular set, it is considered a group, and then all the molecules are traversed to complete the clustering.

We visualize the chemical space network (CSN)30 based on Matplotlib (https://matplotlib.org/) after clustering, including visualizing the

node radius to characterize the distance cutoff and edge thickness to represent the Dice similarity coefficient between 2molecules, the above

clustering code can be obtained at https://github.com/heyigacu/DistanceClustering.

Factor analysis and difference analysis

We select 208 molecular property descriptors based on the computational chemistry package RDKit (https://www.rdkit.org) for factor anal-

ysis, about the meaning of those descriptors is shown in Table S5. After passing the KMO and Bartlett spherical tests, select the appropriate

common factor number to obtain the component matrix and calculate the score of the descriptor. Descriptors with factor loading values

greater than 0.75 in the component matrix are selected to test whether A and B are significantly different in distribution.

Regarding the significance difference test, first, use the Shapiro-Wilk test to check whether the two samples are normally distributed, and if

not, use the Mann-Whitney U-test to directly test whether the two samples are different. If both samples conform to normality, we use the

Levene test to check whether the two samples are homogeneous with variance, and if the variance is homogeneous, we carry out an inde-

pendent T-test, otherwise, we use Welch T-test to determine whether there is a difference between two samples. The above test analysis

applies to all of the significance difference tests in this paper, which are performed with SciPy (https://scipy.org/) and under p-value %0.01.

Molecular docking and quantum chemistry calculations

Themolecule with a higher value of proximity centrality is consideredmore representative of the entire group. To identify representativemol-

ecules, we focus on the four clusters with the highest number of molecules. From each of these clusters, we select the molecule with the high-

est closeness centrality as the representative for that specific group (Table S1). Subsequently, we can proceed withmolecular docking work to
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investigate the interactions between these representative molecules and target protein. We chose a human olfactory receptor, OR51E2 (PDB

code 8F76), as the receptor. The structure of OR51E2 is relatively conserved in the evolutionary process, and it is widely expressed in human

olfactory cells, which is representative.31 Most human olfactory receptors belong to G protein-coupled receptors.32–34 The transmembrane

structure of this protein is composed of seven alpha helices, and it is at this site where each molecule binds to it. Protein-ligands interaction

fingerprints were constructed by PyPLIF HIPPOS.35

Next, we did molecular docking.36 We use Autodocktools to process the small molecule ligands and protein receptors, find out the bind-

ing sites, and performmolecular docking through Autodovk vina software. After that, PyMOL and Discovery Studio were used to analyze the

molecular docking results.

We used Gaussian16 (https://gaussian.com) to perform quantum chemistry calculations for the above molecules, and Multiwfn37 to visu-

alize the LUMO and HOMO orbitals.
Webserver

The front-endof thewebsite uses the front-end language React (https://react.dev/) and user interface (UI) library Antd (https://ant.design), the

back-end uses Django (https://www.djangoproject.com/) based on the model-view-controller (MVC) framework, and the server is real-time

responsive.
QUANTIFICATION AND STATISTICAL ANALYSIS

Regarding the significance difference test, first, use the Shapiro-Wilk test to check whether the two samples are normally distributed, and if

not, use the Mann-Whitney U-test to directly test whether the two samples are different. If both samples conform to normality, we use the

Levene test to check whether the two samples are homogeneous with variance, and if the variance is homogeneous, we carry out an inde-

pendent T-test, otherwise, we use Welch T-test to determine whether there is a difference between two samples. The above test analysis

applies to all of the significance difference tests in this paper, which are performed with SciPy (https://scipy.org/) and under p-value %0.01.
ADDITIONAL RESOURCES

PredCoffee webserver can be available at https://hwwlab.com/webserver/predcoffee.
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