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Abstract

Objectives

To examine potential gadolinium (Gd) accumulation in the brain of healthy mice after long-

term oral administration of Gd-containing food pellets and to investigate whether Gd leads

to adverse central nervous system (CNS) effects, specifically focussing on locomotor

impairment in Gd exposed compared to control animals.

Materials and methods

The local Animal Experimental Ethics Committee approved all procedures and applications.

Fifteen female C57Bl/6 mice were orally exposed to a daily intake of 0.57 mmol Gd chloride/

kg body weight over a period of 90 weeks from the age of 4 weeks on. Gd-free, but otherwise

equivalent experimental diets were given to the control group (N = 13). The animals were

monitored daily by animal caretakers regarding any visible signs of distress and evaluated

clinically every four weeks for the first 60 weeks and afterwards every two weeks for a better

temporal resolution of potential long-term effects regarding impairment of motor perfor-

mance and loss of body weight. The individual Gd content was measured using mass spec-

trometry in a sub-cohort of N = 6 mice.

Results

The absolute brain Gd levels of the Gd-exposed mice were significantly increased com-

pared to control mice (0.033± 0.009 vs. 0.006± 0.002 nmol Gd/ g brain tissue). Long-term

oral Gd exposure over almost the entire life-span did not lead to adverse CNS effects includ-

ing locomotor changes (rotarod performance, p = 0.1467) in healthy mice throughout the

study period. Gd-exposed mice showed less increased body weight compared to control
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mice during the study period (p = 0.0423). Histopathological alterations, such as hepatocel-

lular vacuolization due to fatty change in the liver and a loss of nucleated cells in the red pulp

of the spleen, were found in peripheral organs of both groups.

Conclusions

Low levels of intracerebral Gd caused by chronic oral exposure over almost the entire life

span of mice did not lead to alterations in locomotor abilities in healthy mice throughout the

normal aging process.

Introduction

Gadolinium (Gd) is a rare-earth lanthanides metal with strong paramagnetic properties.

According to extensive application of Gd-containing agents in biomedical fields, it will enter

the body through some administration routes such as oral or intravenous injections. Nowa-

days, Gd is widely utilized for various industrial and medical purposes, particularly as intreva-

nous contrast agent in magnetic resonance imaging (MRI) [1–3]. Gadolinium-based contrast

agents (GBCAs) are an essential tool in MRI diagnostics and, until recently, had been generally

considered to have an excellent safety profile, aside from the risk of nephrogenic systemic

fibrosis (NSF) in patients with end-stage renal failure and very infrequent cases of acute neuro-

toxicity [4–7]. The history of NSF and GBCAs is well documented [8]. Over recent years it has

become apparent that exposure to GBCAs can potentially result in gadolinium deposition

within different human tissues or organs (such as bone, liver, kidney) even in the presence of

normal renal function [1, 9–12]. Additionally, several recent studies have linked an increase in

signal on non-enhanced, T1-weighted MR images in certain areas of the brain to a prior his-

tory of GBCA-enhanced MR examinations. Furthermore, accumulation of Gd was observed in

brain tissue of small animals and in autopsy studies of humans [10, 11, 13–28]. This is a rela-

tively new and growing field of research primarily driven by concerns regarding unknown and

potentially harmful side effects of GBCAs due to brain accumulation. Currently, there is no

clear evidence linking Gd and its known brain accumulation with central nervous system

(CNS) toxicity or locomotor impairment [9].

Over the last few decades, rapid industrial development and the concomitant increase in

the clinical use of GBCAs for medical diagnostics in MRI resulted in a considerable increase of

the anthropogenic Gd content in aquatic ecosystems in industrialized regions, thus represent-

ing Gd as an emerging environmental contaminant [29, 30]. Prior studies investigating the

biodistribution after oral ingestion of Gd-containing nanotubes in rodents found that gadolin-

ium can accumulate in very low concentrations in a range of tissues and organs (skin, bone,

liver, kidney, muscle and spleen) [31], however, its brain accumulation was not assessed. Of

note, the uptake and distribution of intravenously administered GBCAs differs substantially

from those observed after oral exposure to gadolinium salts, and there are no data available

assessing brain accumulation after oral Gd exposure. Given the increasing environmental Gd

contamination, studies investigating potential adverse CNS effects of intracerebral Gd accu-

mulation after oral exposure are warranted. We therefore aimed to (i) measure the levels of

gadolinium present in the brain of mice after life-long oral exposure and (ii) to investigate

associated adverse CNS effects with focus on impairment of locomotor abilities due to chronic

oral exposure.
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Materials and methods

Animals and gadolinium administration

As part of a larger study, a cohort of 28 in-house bred female C57Bl/6 mice were used to inves-

tigate the effects of chronic oral Gd intake (N = 15) compared to reference diet (N = 13) on

general health, as indicated by impact on gain of body weight, on locomotor activity in the

rota rod motor performance test, and on histopathological alterations in the brain and periph-

eral organs, respectively. As mouse tissue was used for different analytical purposes in context

of a larger study, histopathological analysis as well as measurements of Gd accumulation in the

brain were performed on available subgroups of N = 9 or 8 mice (histopathological examina-

tion), and N = 6 per group (analysis of Gd brain levels). Analysis of progression of body

weight, as well as motor performance was conducted based on the data of the whole group

(N = 15 or 13) to strengthen the power of the statistical analysis. The Local Animal Experimen-

tal Ethics Committee of the government of Upper Bavaria approved all procedures and appli-

cations (reference number: 55.2-1-54-2531-32-08). Mice were housed in a specific pathogen-

free (SPF) animal facility with free access to food and water, the light and dark cycle was 12 h/

12 h and the temperature was kept constant at 22˚C. At the age of 4 weeks mice were random-

ized into two groups. Over a study period of 90 weeks one group (N = 15) received food pellets

containing 600 mg Gd-chloride/kg food (Ssniff, Soest, Germany) resulting in a daily intake of

approximately 0.57 mmol/ kg body weight, whereas the age-matched control group (N = 13)

received experimental diets low in metal ions containing only 60 mg Fe-chloride/ kg food to

prevent adverse clinical effects caused by iron deprivation [32]. The animals were monitored

daily by animal caretakers regarding any visible signs of distress and evaluated clinically every

four weeks for the first 60 weeks and afterwards every two weeks for a better temporal resolu-

tion of potential long-term effects. According to approved protocols mice were sacrificed after

reaching the maximum observation period of 90 weeks. Mice were sacrificed by cervical dislo-

cation and subsequently submitted to histopathological examination.

Assessment of locomotor abilities

Beginning at 20 weeks of age until reaching the maximum observation period of 90 weeks,

mice were additionally evaluated with standardized locomotor tests. For assessment of motor

performance, a rota rod advanced V4.1.1 (TSE Systems, Chesterfield, MO, USA) was used as

described previously [33–35]. Briefly, two days prior to the rota rod performance test, mice

were trained in three trial runs with an acceleration of the rod from 0 to 30 rpm over 180 s. On

the third day, the test consisted of three runs with an acceleration from 0 to 50 rpm over 300 s.

The latency between each trial run was at least 40 s. The average time on the rota rod and the

best performance out of three runs were evaluated. Runs lasting less than 10 s were defined as

invalid and repeated up to a maximum of three repeats per test day. Animals with a best run of

less than 20 s would be considered terminally ill and sacrificed.

Tissue processing and histopathological assessment

For histopathological investigation, the right brain hemisphere as well as the spinal cord and

peripheral organs (heart, lung, liver, spleen, kidney, and gastrointestinal tract) were fixed in

4% formalin and embedded in paraffin. 1 μm tissue sections were deparaffinized and stained

with haemalum for 10 min (Chroma Waldeck, Muenster, Germany). GFAP-stainings were

performed using a polyclonal rabbit antibody (Agilent Technologies, Waldbronn, Germany)

1:2000 for 32 min and a biotinylated secondary antibody swine-anti rabbit (Agilent) 1:150 for

20 min. Sections were washed in lukewarm Millipore water for 10 min, shortly incubated in
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70% EtOH and stained in eosin for 2 min (Sigma Aldrich, Taufkirchen, Germany). The left-

brain hemisphere of every animal was natively snap-frozen over liquid nitrogen and stored at

-80˚C until further analysis.

H&E- and GFAP-stained sections of the right brain hemisphere and the spinal cord on five

different heights as well as H&E-stained sections of all peripheral organs were used for histo-

pathological examination. Assessment was performed by a single experienced rater blinded to

the treatment of the individual animal using an Olympus BX 50 microscop and a UPlanFl 4x/

0.13 objective (Olympus, Hamburg, Germany). The rating included appropriate grading of

extent or severity of any neoplastic and non-neoplastic morphologic changes in the categories

absent, mild, moderate, or severe. These categories were further translated to values ranging

from 0 (no pathology) to 3 (severe pathology) to allow for analysis of group effects on histo-

pathological alterations. Therefore, a composite score was calculated by summing up the indi-

vidual values for histopathological alterations in all organs.

Measurement of intracerebral Gd-accumulation

Gd levels in the left brain hemisphere of 6 mice of both diet groups were determined by using

inductively coupled plasma–mass spectrometry (ICP-MS) randomized and blinded to the

treatment group. The tissue samples were homogenized with a scalpel and 3 aliquots of 20 mg

were mixed with 50 μl of a 100 nmol/ l solution of Zn(NO3)3 as internal standard. The samples

were dried at 90˚C under a laminar flow bench. To digest the tissue 50 μl nitric acid (65%) and

30 μl of hydrogen peroxide (25%) were added. The closed samples were heated in a microwave

oven for 30 min at 120˚C. The clear samples were then diluted with nitric acid (1%, containing

0.01% Triton-X 100). The measurement of Gd was performed on an ICP-MS (Agilent 7900,

Agilent) using commercial calibration standards (Merck Suprapur, Merck, Darmstadt, Ger-

many) which all contained 5 nmol Tb/ l as internal standard. Blanks were positioned between

the tissue samples to avoid carry over effects. The limit of quantification (LOQ) of this method

is 0.1 nmol Gd/ l in the final solution which is equivalent to 0.005 nmol Gd/ g wet tissue.

Statistical analyses

All statistical analyses were conducted by using GraphPad Prism software (GraphPad Soft-

ware, La Jolla, USA) and statistical significance was set to p< 0.05.

Mean accumulation of Gd in brain tissue as well as mean composite score of histopatholog-

ical alterations were analyzed using a two-tailed t-test. Survival of animals was analyzed using

the Log-Rank (Mantel-Cox) test. Gain of body weight, as well as motor performance were ana-

lyzed using mixed-effect model analyses due to missing values for mice being sacrificed before

the end of the study period, and corrected for multiple comparisons by Sidak’s multiple com-

parisons test.

Results

Gadolinium accumulates in the brain of healthy mice after long-term oral

exposure of gadolinium chloride

Gd-exposed mice showed an average Gd-concentration in the brain of 0.033± 0.009 nmol Gd/

g compared to 0.006±0.002 nmol Gd/ g brain tissue in control mice (Fig 1; mean± SD of 6

brain hemispheres per group; two tailed t-test, p = 0.0016). Of note, all values in reference tis-

sue were near (N = 3), or even below (N = 3) the limit of quantification (LOQ = 0.005 nmol/ g;

see Table 1 for detailed individual information).
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Fig 1. Accumulation of Gd in the brain. Oral exposure to Gd led to detectable levels of Gd in the brain of treated animals (N = 6) compared to control mice (N = 6),

where individual values were near or even below the LOQ (0.005 nmol/ g; dotted line) (A). Mean± SD of 3 replicate measurements per individual brain hemisphere of

Gd-treated animals (B). Oral exposure to Gd lead to a significantly increased accumulation of 0.033± 0.009 nmol/ g brain tissue compared to 0.006± 0.002 nmol/ g brain

tissue in control mice. Mean± SD of 6 brain hemispheres per group (two-tailed t-test, p = 0.0016; see Table 1 for detailed individual information).

https://doi.org/10.1371/journal.pone.0231495.g001
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Gadolinium exposed animals reveal mild adverse health effects with a

decrease in body weight gain, but do not reveal impairment in locomotor

behavior throughout the study period

To analyze the effects of oral Gd exposure on clinical outcome we investigated the motor per-

formance, gain of body weight, as well as the survival of Gd-treated compared to control mice.

The Gd-intake did not lead to motor impairment, as indicated by the best performance on

the rota rod that was not significantly different in Gd exposed and control mice, respectively

(Fig 2, p = 0.1467).

Regarding the gain of body weight as a marker for general condition, the Gd intake showed

a significant effect: starting with an almost directly comparable average weight the Gd exposed

group showed a decreased gain of body weight during the study period (Fig 3, p = 0.0423).

Furthermore, the survival was not significantly affected by the Gd intake (Fig 4, p = 0.1451).

However, two mice in the Gd exposed group died spontaneously after 86 weeks and 90 weeks.

Although the overall survival of the group was not significantly reduced, this is of note.

Histopathological findings

Histopathological examination revealed no gross signs of cellular alterations or gliosis in the

central nervous system of Gd-exposed and control animals as indicated by H&E and GFAP-

stainings. Only one animal per group showed mild gliosis in the hippocampus (Fig 5A and

5B). Peripheral organs such as heart and gastrointestinal tract showed no pathological alter-

ations, while cellular infiltrates could be found in lung and kidneys, however to a similar extent

in Gd-exposed, as well as control mice. Severe histopathological alterations as indicated by

hepatocellular vacuolization due to fatty changes in the liver and a loss of nucleated cells in the

red pulp of the spleen could also be found in both groups (Fig 5A and 5B). There were no his-

topathological alterations within organs of the GI tract in both groups. Overall, fewer mice in

the Gd-exposed group showed no histopathological alterations in peripheral organs compared

to the control group, but analysis of a composite score over all histopathological alterations

revealed no significant differences between both groups (Fig 5B and 5C; two-tailed t-test,

p = 0.6687; see Table 2 for detailed individual information).

Table 1. Summary of individual measured Gd concentration per gram wet brain tissue.

ID age [w] c (Gd) [nmol/g] SD remarks

Control 362 94.3 < 0.005 n.a. all 3 samples < LOQ

363 94.3 0.006 n.a. 2 of 3 samples < LOQ

364 94.3 0.005 n.a. 2 of 3 samples < LOQ

366 94.3 < 0.005 n.a. all 3 samples < LOQ

368 94.3 0.008 n.a. 2 of 3 samples < LOQ

476 94.9 < 0.005 n.a. all 3 samples < LOQ

mean 0.006 0.002

Gd-exposure 393 94.3 0.046 0.015

394 90.0 0.025 0.002

396 94.3 0.022 0.001

490 94.9 0.037 0.003

491 94.9 0.038 0.009

493 94.9 0.032 0.004

mean 0.033 0.009

Every value represents the average of three replicates. In three reference mice all replicates were below the limit of quantification (0.005 nmol Gd/ g brain tissue).

https://doi.org/10.1371/journal.pone.0231495.t001
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Discussion

Our study confirms the presence of low amounts of gadolinium in the brain of healthy mice

after chronic oral exposure of Gd containing food pellets without evidence of adverse CNS

effects or locomotor impairment. Due to its paramagnetic properties, gadolinium is used in a

variety of MRI contrast agents to enhance signal intensity. In order for gadolinium to be used

as an MRI contrast agent, it is first bound within a chelating agent to inhibit direct toxicity

from the free gadolinium ion. Gadolinium-based contrast agents (GBCAs) are administered

intravenously (i.v.). Whereas, i.v. exposure to gadolinium salts in rodents appears to affect the

liver [36, 37], i.v. administration of chelated GBCAs additionally affects bone and kidneys [38],

outlining differing toxicological properties of the two forms of gadolinium. In terms of the

administration route, the distribution and tissue availability of gadolinium from GBCAs

administered intravenously differs markedly from those of gadolinium taken up after oral

exposure. Chelating the gadolinium ion using multidentate organic ligands significantly

reduces the interaction of the metal ion with the biological system, thereby dramatically

decreasing the associated risk for gadolinium toxicity. To this point, the bone and kidneys

appear to be the target organ of i.v. GBCA administration in rodents with normal renal func-

tion [38], while the liver appears to be primarily affected by oral exposures to gadolinium salts

[39–41]. This is mainly because Gd is expected to be poorly absorbed through the gastrointes-

tinal (GI) tract [42]. Therefore, it is expected that the bioavailability of gadolinium for uptake

in the small intestine will be very limited and is, per se, not truly comparable to i.v. dosages.

Once orally absorbed, Gd was shown to be deposited in bone, liver, kidney, and lungs [42].

Fig 2. Motor performance. Gd intake had no significant effect on the motor performance phenotype as indicated by the best performance on the rota rod over the

study period compared to reference mice. Mean± SEM of 13 or 15 mice per group (mixed-effects analysis, p = 0.1467).

https://doi.org/10.1371/journal.pone.0231495.g002
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For gadolinium trichloride, a water-soluble gadolinium compound, gadolinium accumulation

was measured in different organs of rats repeatedly exposed via oral gavage to doses up to 1000

mg/kg/day for 28 days in total [40]. Gadolinium was reported to be accumulated in the liver,

kidney, spleen and bone in a dose dependent manner. In accordance to our study, histopatho-

logical assessment showed no obvious toxicity to liver, kidney, spleen, lung, blood, and heart

by oral administration, however, the potential brain accumulation after oral exposure was not

assessed.

Gd related toxicity following i.v. exposure has been recognized for at least 10 years, with the

initially described condition being nephrogenic systemic fibrosis (NSF) [43, 44]. In several

recent studies, Gd was shown to accumulate in the brain of mice and humans after i.v. applica-

tion of GBCAs irrespective of renal function and GBCAs stability class [9, 13, 20, 28]. Despite

the increasing evidence of Gd accumulation in the brain following i.v. GBCA administration

[11, 16, 25, 28, 45], knowledge about potential Gd associated CNS effects including locomotor

alterations is very limited both in the animal model and in humans. In a recent study, Gd was

retained in the brain of mice during postnatal development following GBCA administration to

pregnant mice [46]. Due to perinatal exposure, the retained Gd was suspected to lead to

impaired brain development in mice [46]. To date, no other recent study assessing Gd accu-

mulation in the brain has been associated with any severe clinical symptoms or adverse health

effects, especially in regard to brain toxicity. There is currently no clear evidence on mecha-

nisms, by which Gd may affect brain tissue (e.g. protein synthesis, axonal transport, and neu-

rotransmitter-related events).

Fig 3. Reduced gain of body weight. Mice orally exposed to Gd showed a significantly decreased gain of body weight over the study period compared to control mice.

Mean± SEM of 13 or 15 mice per group (mixed-effects analysis, p = 0.0423).

https://doi.org/10.1371/journal.pone.0231495.g003
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Previous studies reported Gd levels of 0.2–4.0 nmol/ g brain tissue in healthy rats after

repeated intravenous administration of linear GBCAs, resulting from a supraclinical dosing

regimen [16]. In the clinical setting, Gd levels in postmortem human brain specimens are typi-

cally similar (up to 0.1–6.0 nmol/ g brain tissue) across a range of linear and macrocyclic

GBCAs [11, 28, 45]. A recent study assessing brain accumulation of Gd and its partial clear-

ance in rats after 20 weeks, did not detect any treatment-related histopathologic findings in

rats over a study period of 20 weeks; the accumulation dose varied between 1.39± 0.20 nmol/ g

brain tissue vs. 2.49± 0.30 nmol/ g brain tissue (mean± SD) dependent on the administered

dose and was partially cleared in healthy rat brains up to 50% after 20 weeks, respectively [47].

Our study was performed to evaluate the long-term effects of Gd brain accumulation and

potential effects of this metal on general condition, weight loss, motor performance, as well as

survival in primarily healthy mice. We administered Gd-chloride via food pellets resulting in a

daily intake of approximately 0.57 mmol/ kg body weight over a study period of 90 weeks in

total to observe long-term effects of potential Gd associated toxicity over the almost entire life-

span of the investigated mice. Despite its low intracerebral accumulation, which cannot be

fully compared to the i.v. administration studies above, the chronic oral intake of Gd did not

result in significant adverse CNS effects on motor performance in our study. In contrast, there

might be an impact on general health status, as indicated by a significantly decreased gain of

body weight, however, histopathological examination revealed no significant cellular tissue

alterations in peripheral organs including the gastrointestinal tract of Gd-exposed and control

animals, respectively.

Fig 4. Survival analysis. Oral exposure to Gd did not lead to a significant decrease in survival of treated mice compared to reference mice (N = 13 or 15; Log-Rank

(Mantel-Cox) test, p = 0.1451). However, two mice in the Gd-exposed group died spontaneously during the late stage of the study period.

https://doi.org/10.1371/journal.pone.0231495.g004
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Interestingly, a prior study conducted by Haley et. al. [41] provides evidence for mild tissue

changes in the spleen and liver after chronic oral Gd exposure. The only significant exposure

related changes were perinuclear vacuolization of the parenchymal cells of the liver (which

were found in both groups of our study cohort) and a coarse granularity of the their cytoplasm

in rats exposed to 500 mg/kg-day body weight gadolinium chloride. Additionally, the most rel-

evant study yielding information on distribution and accumulation after oral exposure is the

repeated dose toxicity study for gadolinium trichloride in rats [40]. The effects of oral exposure

of animals to Gd were additionally evaluated in another short-term-duration study by Ogawa

et al. [39]. Here, Gadolinium exposure at 423 mg/kg-day resulted in concordance to our study

in decreased body weight gain in both males and females and microscopic lesions were

observed in the forestomach and submucosa of the stomach, consisting of hyperkeratosis and

eosinophil infiltration, respectively. Similar findings were evaluated by Barnhart et al. [48]

who intravenously injected gadolinium trichloride (at a dose of 100 μmol/kg, i.e. 26.36 mg/kg)

in rats. After injection, gadolinium was found primarily in liver and spleen. The results of the

Fig 5. Histopathological findings. Brain as well as peripheral organs such as lung, liver, spleen and kidneys showed pathological alterations to a different extent, absent

(-), mild (+), moderate (++), or severe (+++); representative GFAP- and H&E-stainings, (A; see Table 2 for detailed information). All levels could be found in both

groups of mice, Gd-exposed and control group, respectively. However, the number of animals without pathological alterations is reduced in Gd-treated mice (B).

Analysis of a composite score over all pathological alterations showed no significant difference betwenn Gd-exposed (Gd) and control mice (Ctrl) (C) Mean± SEM of 9

and 6 mice per group, respectively (two-tailed t-test, p = 0.6687).

https://doi.org/10.1371/journal.pone.0231495.g005
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study suggest that after gadolinium trichloride was injected it was subject to complexation

with proteins and colloid formation. The biodistribution of gadolinium trichloride was hence

mostly depending on uptake of the colloids by phagocytic cells of the reticuloendothelial sys-

tem and consequent storage of the material in organs that are part of this system, such as liver

and spleen. Although we did not assess Gd concentrations in peripheral organs, significant dif-

ferences in tissue alterations were absent on histopathology between both groups, especially

the GI tract did not show any remarkable tissue alterations. Of note, no prior study did focus

on Gd brain accumulation and its potential adverse CNS effects after oral administration.

Although the oral exposure to Gd chloride resulted in low, but significant brain accumula-

tion in healthy mice in our study group (up to 0.033± 0.009 nmol Gd/ g brain tissue) compared

to the control group (0.006± 0.001 nmol Gd/ g brain tissue) we found no clinically visible

adverse CNS effects (e.g. paralysis, seizures), impairment in locomotor activity, or gross cellu-

lar alterations in microglial activity (after GFAP stainings) in the brain of mice between both

groups.

Further, although the survival of the Gd-treated group was not significantly different com-

pared to the control group, two Gd-treated mice died spontaneously during the study even if

relatively late in regard to the overall lifespan of mice (90.0 and 93.7 weeks of age, respectively).

The lack of adverse CNS findings in the long-term setting of our study is in agreement with

findings in a previous study in rats [47]. However, the levels of Gd/ g brain tissue in our study

were markedly lower than those in previous rat and postmortem human studies after repeated

i.v.-administration of GBCAs [11, 16, 28, 45, 47] and after partial clearance of Gd as assessed

in rats after a time course of 20 weeks after repeated i.v.-administration of GBCAs [47].

Table 2. Summary of histopathological findings in Gd-treated and control mice (N = 9 and 8, respectively).

ID age [w] Brain heart lung liver spleen kidney GIT

control 360 94,3 - - - vvv - - -

361 94,3 - - - Vvv - ii -

362 94,3 - - - Vv c i -

363 94,3 - - - Vv c vascular pathology ii -

364 94,3 - hemorrhage in 4th ventricle - i Vvv c ii -

366 94,3 - - - Vvv - ii -

367 94,3 - - - Vvv - - -

368 94,3 - - - Vvv - - -

476 94,9 - mild gliosis (GFAP) - ii Vv cc iii -

Gd-exposure 389 93,7 autolytic

393 94,3 - - - hemorrhage Vvv c i -

394 90,0 autolytic

395 94,3 - - - Vv c i -

396 94,3 - - - Vvv c - -

490 94,9 - - ii Vv ccc i -

491 94,9 - - ii tumor vv cellular inflitrates cc i -

493 94,9 - mild gliosis (GFAP) - ii Vv - - -

In general, mice did not show pathological alterations in heart or gastrointestinal tract (GIT). No gross cellular alterations could be found in the CNS, despite two mice

(N = 1 within each group) showing mild gliosis in the hippocampus (g). Cellular infiltrates could be found in the lung and kidneys (i). The liver showed hepatocellular

vacuolization due to fatty change (v). A loss of nucleated cells could be found in the red pulp of the spleen (c). All pathological alterations could be found to a mild,

moderate, or severe extent, respectively (x, xx, xxx). Two mice died before the planned end point and could not be examined because of necrotic changes in nearly all

organs due to autolysis.

https://doi.org/10.1371/journal.pone.0231495.t002
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It is worth mentioning, that the uptake and distribution of intravenously administered

GBCAs differs substantially from those observed after oral exposure to gadolinium salts. In

contrast to prior studies, our study includes a chronic exposure to Gd via food pellets during

the almost entire life span of mice with proof of substantial brain accumulation and absence of

adverse CNS effects or changes in locomotor abilities, even though Gd exposed mice show

mild adverse health effects in the periphery as indicated by a less increase in body weight.

These observation strengthens the assumption that substantial Gd accumulation within the

body might not necessarily be related to CNS effects, even though the brain concentrations of

Gd were fairly low. The assessment of adverse health effects due to a chronic oral exposure of

Gd is especially highly relevant since Gd represents an emerging environmental contaminant

due to the increasing use of GBCAs in medical imaging [29, 30], as there is still relatively little

knowledge of the biogeochemical or anthropogenic cycles of Gd in the environment. Due to

their high stability, Gd complexes (such as Gd-(DTPA)) were shown not be sufficiently

removed by commonly used wastewater treatment technologies [30]. Although the measured

concentrations of anthropogenic Gd (shown for concentrations in San Francisco Bay [30])

were well below the threshold of ecotoxicological effects, the increasing presence of anthropo-

genic Gd as environmental contaminant cannot be disregarded. Our study may contribute to a

better understanding of potential adverse health effects after long-term oral exposure (e.g. due

to uptake of contaminated water) without detectable CNS effects.

Limitations

Our study has several limitations that need to be taken into account when interpreting the

data. First, the measured intracerebral Gd concentrations were comparatively low, since prior

studies in rats and postmortem human studies after repeated intravenous GBCA injections

reported higher intracerebral doses. Second, methodological limitations are present since no

toxicological end points and peripheral Gd concentrations were evaluated, making the adverse

significance of the decreased body weight gain difficult to interpret. Third, the distribution,

bioavailability and potential harmful effects of Gd depend substantially on the route of admin-

istration, and the chemical form of Gd. Thus, the oral application of Gd as a chloride-salt can-

not be fully compared to the intravenous injection of chelated Gd. Furthermore, our study did

not investigate the location of Gd in the brain of mice. We measured Gd levels in the entire left

cerebral hemisphere of each animal, which may underestimate potential peak concentrations,

e.g. in the dentate nucleus [13, 14, 18, 20, 28]. Several recent studies did investigate local Gd

distributions within the brain and the colocalization of Gd with other elements using ICP-MS.

Importantly, these studies did not find obvious alterations of brain tissues which is in accor-

dance with our study [49–51]. Additionally, our study did not specifically assess neurotoxicity

based on histopathology by using dedicated immunostainings. Although we did not detect any

adverse CNS effects or gross cellular alterations of brain tissue in healthy mice, this can cer-

tainly not be automatically assumed to hold true for all species, including humans, or for sub-

jects with underlying disorders. Last, the limited life-time of rodents is most likely not suitable

to simulate all long-term toxicology effects in humans.

Further studies are required to explore whether a higher oral dose of administered Gd

could induce adverse CNS effects or whether such effects may potentially occur in subjects

with underlying diseases or genetic predispositions. Results should be supported by a further

evaluation of biochemical parameters, including bioavailability and clearance of Gd at various

dosage levels and for various exposure times. Whether higher doses of Gd potentially affect

important biochemical pathways in the CNS, including enzymes or protein synthesis, remains

to be elucidated.
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Conclusion

Although the absorption and bioavailability of gadolinium after oral administration via food

pellets is expected to be very limited, it accumulates in the brain of mice after chronic oral

exposure to a low but significant amount. Our prospective study suggests that low levels of

intracerebral Gd do not lead to detectable CNS effects, and in particular do not impair locomo-

tor abilities in the healthy murine model, even over a very long exposure time. Gd exposure

had mild adverse effects on gain of body weight, however, survival was not affected following

life-long exposure in mice.
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