
ll
OPEN ACCESS
iScience

Article
The value of longitudinal clinical data and paired
CT scans in predicting the deterioration of COVID-
19 revealed by an artificial intelligence system
Xiaoyang Han, Ziqi

Yu, Yaoyao Zhuo,

..., Fei Shan,

Tingying Peng,

Xiao-Yong Zhang

shanfei@shphc.org.cn (F.S.)

tingying.peng@tum.de (T.P.)

xiaoyong_zhang@fudan.edu.

cn (X.-Y.Z.)

Highlights
COVID-19 patients with

341 longitudinal CT scans

and paired clinical data

included

A new AI model for the

prediction of COVID-19

progression was

developed

CT scans show significant

add-on value over clinical

data for the prediction

Day 6–8 after the onset of

COVID-19 symptoms is an

ideal time window for a CT

scan

Han et al., iScience 25, 104227
May 20, 2022 ª 2022 The
Authors.

https://doi.org/10.1016/

j.isci.2022.104227

mailto:shanfei@shphc.org.cn
mailto:tingying.peng@tum.de
mailto:xiaoyong_zhang@fudan.edu.cn
mailto:xiaoyong_zhang@fudan.edu.cn
https://doi.org/10.1016/j.isci.2022.104227
https://doi.org/10.1016/j.isci.2022.104227
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2022.104227&domain=pdf


ll
OPEN ACCESS
iScience
Article
The value of longitudinal clinical data and paired
CT scans in predicting the deterioration of COVID-19
revealed by an artificial intelligence system

Xiaoyang Han,1,2,11 Ziqi Yu,1,2,11 Yaoyao Zhuo,3,4,11 Botao Zhao,1,2 Yan Ren,5 Lorenz Lamm,6,7 Xiangyang Xue,8

Jianfeng Feng,1,2 Carsten Marr,6 Fei Shan,4,* Tingying Peng,7,* and Xiao-Yong Zhang1,2,9,10,*
1Institute of Science and
Technology for Brain-
Inspired Intelligence, Fudan
University, Shanghai 200433,
China

2Key Laboratory of
Computational Neuroscience
and Brain-Inspired
Intelligence, Ministry of
Education, Shanghai 200433,
China

3Department of Radiology,
Zhongshan Hospital, Fudan
University, Shanghai 200032,
China

4Department of Radiology,
Shanghai Public Health
Clinical Center, Fudan
University, Shanghai 201508,
China

5Department of Radiology,
Huashan Hospital, Fudan
University, Shanghai 200433,
China

6Institute of AI for Health,
Helmholtz Zentrum
München, Ingolstädter
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SUMMARY

The respective value of clinical data and CT examinations in predicting COVID-
19 progression is unclear, because the CT scans and clinical data previously used
are not synchronized in time. To address this issue, we collected 119 COVID-19
patients with 341 longitudinal CT scans and paired clinical data, and we devel-
oped an AI system for the prediction of COVID-19 deterioration. By combining
features extracted from CT and clinical data with our system, we can predict
whether a patient will develop severe symptoms during hospitalization. Com-
plementary to clinical data, CT examinations show significant add-on values
for the prediction of COVID-19 progression in the early stage of COVID-19,
especially in the 6th to 8th day after the symptom onset, indicating that this is
the ideal time window for the introduction of CT examinations. We release
our AI system to provide clinicians with additional assistance to optimize CT us-
age in the clinical workflow.

INTRODUCTION

During COVID-19 pandemic, fast and accurate prediction of disease progression in the early stage is crucial

for clinical decision-making and optimal medical resource allocation. Chest computed tomography (CT)

plays an important role in evaluating COVID-19 patients by showing specific image features such as

ground-glass opacification and consolidation (Wong et al., 2020). Based on CT images or clinical data or

both artificial intelligence (AI)-based methods have shown advantages in disease diagnosis and progres-

sion prediction (Shi et al., 2020; Wong et al., 2020; Roberts et al., 2021; Zhu et al., 2021). However, most of

these AI studies focused on CT or clinical data acquired at a single time point during COVID-19 progres-

sion, which limits the prediction accuracy. To address this issue, the evaluation of both longitudinal CT im-

ages and clinical data is desirable, because it can help to better understand dynamical changes of pneu-

monia lesions during COVID-19 deterioration as well as the progression process following therapy, thus

resulting in more accurate prognostication of patient outcomes (Feng et al., 2020; Huang et al., 2021).

Longitudinal measurements can provide temporal information that comprehensively reflects dynamic

changes of COVID-19 deterioration. So far, only a few studies explored temporal information from longi-

tudinal CT or clinical measurements using deep learning (DL)-based methods (Fang et al., 2021; Kim et al.,

2021; Pu et al., 2021; Wang et al., 2021a; Shamout et al., 2021). Zhou et al., (Zhou et al., 2021) used clinical

features only to predict COVID-19 severity. Pu et al. (Pu et al., 2021) and Kim et al. (Kim et al., 2021) regis-

tered longitudinal CT scans and visualized the difference in diseased vs. healthy areas between scans and

found that the CT-based biomarkers may be used to monitor the development of the infection process in

COVID-19. Another work (Fang et al., 2021) extracted features directly from sequential CT scans without an

extra registration step and is therefore more practical using a recurrent neural network to predict the ma-

lignant progression of COVID-19. Shamout, at al., (Shamout et al., 2021) provided visually intuitive saliency

maps to help clinicians interpret the model predictions of risk (Heagerty and Zheng, 2005) of deterioration

over different time horizons, ranging from 24 h to 96 h with combination of Chest X-rays images and

routinely collected clinical variables at only one time point. Wang Robin et al. (Wang et al., 2021a) devel-

oped an AI system to predict future deterioration to clinical illness in COVID-19 patients using chest CT and

clinical data and proved that the combination of CT and clinical data improves the performance of disease

progression prediction.
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Figure 1. The workflow of our study

CT images and paired clinical data were collected at the same time point. Based on these data, we have developed an AI system to derive a pneumonia

progression score by volumetric segmentation of lung (transparent) and COVID-19 lesions (red) and to combine with clinical features to predict whether the

patient will progress to a severe status, and thus to reveal the respective value of clinical data and parallel CT scans for comprehensive prediction of COVID-

19 progression.
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Although the aforementioned studies provided important information for the prediction of COVID-19 pro-

gression, the respective values of clinical data and parallel CT scans remain unclear, because longitudinal

time points of previously used clinical data and CT scans were limited and not paired. To address this issue

based on well-designed longitudinal-paired CT scans and clinical data, we developed a new AI model to

predict whether the patient will progress to a severe status and thus to reveal the respective value of clinical

data and parallel CT scans for comprehensive prediction of COVID-19 progression reflecting its dynamic

deterioration changes (Figure 1).

RESULTS

Characteristics of the study cohort

The 119 patients with 341 longitudinal CT scans and clinical data collected from Shanghai Public Health

Clinical Center were divided into two patients’ groups (Figure 2): 90 non-progression patients with 273 lon-

gitudinal CT scans who were discharged from the hospital in common subtype and 29 progression patients

with 68 longitudinal CT scans who progressed into severe or critically ill or died. We summarized the char-

acteristics of clinical data including patient demographics, medical history, presenting signs and symp-

toms, and laboratory tests of COVID-19 patients (Table 1). The median age of progression patients was

higher than that of non-progression patients (63 vs. 55 years, p < 0.01). The median number of days

from symptom onset to hospital admission was four days (Range: 0–20 days).

Automatic quantization of CT images with BCL-Net

To automatically quantify lung CT images, we designed a deep learning model, termed BCL-Net (Fig-

ure 3A). BCL-Net uses a share-weighted convolution operator in the encoding and decoding paths of

2D U-Net to extract intra-slice features. In addition, a bidirectional convolutional LSTM (BC-LSTM) module

is applied to integrate cross-plane context. Based on the features extracted from CT images and clinical

data, we developed an AI system to predict the progression of COVID-19 using an ensemble learningmod-

ule (Figure 3B).

Because accurate pneumonia lesion segmentation is the key step for disease progression prediction, we

evaluated lesion segmentation performance of BCL-Net along with four state-of-the-art methods on
2 iScience 25, 104227, May 20, 2022



Figure 2. Flowchart of patient selection

A total of 119 with 341 CT scans out of 218 patients were selected for disease progression prediction. See also Figure S1.
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four datasets (Table 2) which are summarized in Table 3. Annotations of lung and COVID-19 lesions of the

Coronacases dataset and parts of the Radiopedia dataset are publicly available (Ma et al., 2021), which we

used to train our model and to evaluate it with a five-fold cross-validation. We annotated the remaining

data by two experienced radiologists and used it only for testing.

In all four datasets, BCL-Net achieved better DC of 0.840 (95% CI 0.813–0.867) than other methods for

lesion segmentation (Figure 4A and 4B; Table 3), suggesting that BCL-Net is robust for variations in lesion

size, CT image intensities, and slice thickness. By contrast, the performance of a full 3D convolution dete-

riorates with increasing slice thickness (Figure S2) and could completely fail when the information of slice

thickness is missing and the interpolation along the z-axis is not properly done (Figure 4B, nnUNet3D).

Moreover, compared to other methods, BCL-Net is three times faster than the second fastest method, Sen-

sor3D, and hundreds of times faster than nnUNet (Figure 4C; Table 1). This is an important advantage, as

local hospitals generally face enormous time pressure when a COVID-19 wave hits a region.

The CT features quantified from lung and pneumonia lesion segmentation are summarized in Table S2. The

z-position of progression patients is significantly higher than non-progression patients (53.70 vs 47.05,

p < 0.001), consistent with previous studies (Yu et al., 2020).
Prediction of COVID-19 progression using CT and clinical data

To accurately predict the progress of COVID-19 based on a combination of features extracted from CT

scans and paired clinical data, we implemented an ensemble learning method to assess whether the pa-

tient will develop a severe state (Figure 5) and achieved a prediction with an AUC of 0.900 (95% CI

0.891–0.909) (Figure 5A) in a five-fold cross-validation. If we use only the CT data or clinical data, lower

AUCs are achieved of only 0.857 (95% CI 0.846–0.868) and 0.844 (95% CI 0.833–0.856) for CT scan-only

model and clinical data-only model, respectively. Practically, wemay use the prediction of disease progres-

sion as guidance for hospital triage to distribute the limited hospital beds to patients who are predicted to

have a severe disease progression. For interpretation, the 10 most features that contribute to the predic-

tion were listed (Figure 5B). In addition to CT-related features and clinical data, age was found to be a key

factor leading to different disease progression patterns, consistent with previous studies (Huang et al.,

2020; Wang et al., 2020). The detailed comparison of performance on disease progression prediction is

summarized in Table 4.

We visualized the progression of pneumonia in individual patients by plotting the PLV and the average tra-

jectory of three clinical data (including CK, NLR, and LDH) over time (Figures 5C and 5E) with normal range

in orange dotted lines (Zhou et al., 2021). The progression of pneumonia lesions of a progression patient

and a non-progression patient are visualized in Figure 5D. Although individual differences are large,
iScience 25, 104227, May 20, 2022 3



Table 1. The patient characteristics included in the COVID-19 progression prediction data set

Characteristic

All patients

(n = 119, s = 341)

Severe group

(n = 29, s = 68)

Non-severe group

(n = 90, s = 273) p values

Age, year 56 [23-84] 63 [30-84] 55 [23-79] 0.0028

Sex, n (%) 0.0977

Male 60 (50.4) 19 (65.5) 41 (45.6)

Female 59 (49.6) 10 (34.5) 49 (54.4)

Days from symptom onset to hospital

admission, d

4 [0-20] 4 [2-20] 4 [0-20] 0.0916

Comorbidities, n (%)

Diabetes 9 (7.6) 1 (3.4) 8 (8.9) 0.5756

Hypertension 34 (28.6) 10 (34.5) 24 (26.7) 0.5660

CHD 13 (10.9) 6 (20.7) 7 (7.8) 0.1104

Cerebrovascular disease 1 (0.8) 0 (0.0) 1 (1.1) 0.5488

Hepatitis B 2 (1.7) 0 (0.0) 2 (2.2) 0.9833

Chronic renal disease 1 (0.8) 0 (0.0) 1 (1.1) 0.5488

COPD 3 (2.5) 1 (3.4) 2 (2.2) 0.7529

Total comorbidities number, n (comorbidities

per patient)

63 (0.53) 18 (0.62) 45 (0.50) 0.1948

Signs and symptoms, n (%)

Fever 76 (63.9) 23 (79.3) 53 (58.9) 0.0770

Cough 45 (37.8) 16 (55.2) 29 (32.2) 0.0459

Productive cough 26 (21.8) 10 (34.5) 16 (17.8) 0.1021

Chest tightness 9 (7.6) 1 (3.4) 8 (8.9) 0.5756

Dyspnea 11 (9.2) 5 (17.2) 6 (6.7) 0.1798

Baseline laboratory examinations

Neutrophil count, 310^9/L 3.05 [0.70–16.59] 3.97 [1.40–16.59] 2.92 [0.70–8.43] 1.4e-6

Lymphocyte count, 310^9/L 1.20 [0.30–5.48] 0.82 [0.33–5.48] 1.33 [0.30–4.00] 1.8e-8

NLR 2.38 [0.58–41.47] 3.96 [0.67–41.47] 2.10 [0.58–25.58] 1.0e-12

Lactate dehydrogenase, U/L 249.00 [22.00–911.00] 351.00 [190.00–911.00] 236.00 [22.00–552.00] 4.0e-15

Direct bilirubin, umol/L 4.50 [1.40–24.50] 5.00 [1.70–21.70] 4.30 [1.40–24.50] 0.0058

Creatine kinase, U/L 67.00 [19.00–2925.00] 152.00 [31.00–2925.00] 61.00 [19.00–1398.00] 8.4e-11

Clinical data including patient demographics, medical history, signs and symptoms, and laboratory tests are collected from the Hospital Information System (HIS)

at the same time as theCT scan time. The time point of the onset of symptoms and the start time of the severe/critical phase are also recorded for further selection

of available CT scans. See also Table S2.
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patients who progress to a severe state usually show a sharp increase in the PLV, CK, and LDH in the first

week of hospitalization, peaking at around 7–10 days, and then slowly recover in the following days. In

contrast, patients who showed only mild symptoms during hospitalization had consistently lower PLV,

CK, NLR, and LDH.
Longitudinal comparison of time-dependent disease progression prediction

Furthermore, to reveal the respective values of clinical data and paired CT scans in predicting the deteri-

oration of COVID-19, we divided the data into six groups longitudinally every three days from the onset of

COVID-19 symptoms and analyzed them using our AI model. As shown in Figure 6A, the progression pre-

diction model achieves time-dependent AUCs of 0.688, 0.833, 0.901, 0.942, and 0.946 with combination of

CT and clinical data over three-day time points in 14 days from symptom onset. The time-dependent AUC

of the time group Day 15- reaching 1.000 trained and evaluated on only ten paired CT scans and clinical

data (see Figure S3) was excluded from the discussion for the limitation of data scale. As a comparison,

AUCs of the disease progression prediction model are 0.656, 0.800, 0.842, 0.915, and 0.944 using CT
4 iScience 25, 104227, May 20, 2022



Table 2. A short summary of our multicentre datasets used to develop and evaluate our image segmentation model, BCL-Net

Dataset Patients Scans Slices Labeled scans

Labeled slices

Slice thickness (mm)Lesion Lung

Coronacase.org 10 10 2581 10 2581 2581 1.0–1.5

Radiopaedia.org 19 19 1342 19 1342 1342 4.0–6.0

Wuhan 27 27 3805 27 3805 N/A 3.0

Shanghai 162 679 293,349 43 2717 10,007 1.0–6.0

Total 218 735 301,077 99 10,445 13,930 1.0–6.0

Four datasets, Coronacases, Radiopedia, Wuhan and Shanghai were collected independently. Coronacases and Radiopedia were uploaded by individual com-

munity users and publicly available. Wuhan and Shanghai were collected from Wuhan Tongji hospital and Shanghai Public Health Clinical Center. Among the

datasets, over 10,000 slices labeled by two radiologists were used to train and test BCL-Net and other competitive segmentation models. Moreover, the

Shanghai dataset contains longitudinal scans of the same patients which reflect the progression of corona-triggered pneumonia over time.
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only. Using only clinical data, the AUCs of the model are 0.672, 0.748, 0.846, 0.869, and 0.890. To more

appropriately describe the performance of COVID-19 progression prediction models on the dataset

with imbalanced positive and negative samples (273 vs. 68) over three-day time groups, we compared
A

B

Figure 3. The overview of our proposed AI system

(A) CT features were quantified using our BCL-Net, which combines a 2D U-net to process intra-slice spatial information with an LSTM to leverage inter-slice

context. BCL-Net uses the share-weighted 2D convolution in both encoding and decoding paths, avoiding computational expensive 3D convolution.

Instead, it uses a BC-LSTM Module (right) to integrate inter-slice context from multiple CT slices. In addition, a dual path attention mechanism including a

global average pooling and a depthwise 2D convolution followed by 1 3 1 convolution is applied to reduce the computation cost.

(B) We implemented an ensemble learning method to predict the disease progression using the paired CT scans and clinical data. 21 clinical measurements

were combined with 12 lung and lesion volume CT features to predict the disease progression.

See also Table S1.

iScience 25, 104227, May 20, 2022 5



Table 3. Comparison of different network architectures and segmentation performances

Method

Multi-slice

fusion Parameter (M)

Inference

speed (ms/slice)

Dice coefficient (95% CI)
Additional

preprocessingLesion Lung

DeepLabV3+ N/A 41.3 85 0.727 (0.650�0.804) 0.978 (0.974�0.983) N/A

Sensor3D ConvLSTM 18.7 50 0.653 (0.545�0.760) 0.968 (0.964�0.973) N/A

nnUNet2D N/A 17.8 3000 0.780 (0.725�0.835) 0.964 (0.951�0.977) Interpolation

nnUNet3D 3D convolution kernel 30.4 3200 0.816 (0.785�0.847) 0.911 (0.857�0.966) Interpolation

BCL-Net (ours) BC-LSTM Module 19.5 16 0.840 (0.813�0.867) 0.982 (0.979�0.985) N/A

In addition to BCL-Net, we tested four state-of-the-art segmentation methods, including DeepLabV3+, Sensor3D, nnUNet2D, and nnUNet3D. Among all these

methods, DeepLabV3+ and nnUNet2D are purely 2D segmentation methods; nnUNet3D is a full 3D volumetric segmentation method with 3D convolution ker-

nels; both Sensor3D and BCL-Net are hybrid 2D-3D methods, whereas Sensor3D fuses 2D segmentation with convolutional LSTM (ConvLSTM). Compared to

other methods, BCL-Net achieves the highest dice score for both lung and lesion segmentation as well as the fastest inference speed. Segmentation perfor-

mances are presented as dice scores along with 95% CI. Bold numbers indicate the best performance in terms of the corresponding metrics. See also Figure S2.
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the changes in F1 scores (Figure 6B). The progression prediction model achieved time-dependent F1

scores of 0.286, 0.563, 0.783, 0.857, and 0.889 with combination of CT and clinical data over 3-day time

groups. With only features extracted from CT, the prediction model achieved F1 scores of 0.286, 0.424,

0.694, 0.815, and 0.889; with clinical data alone, the model achieved 0.250, 0.400, 0.638, 0.815, and

0.750. Time-dependent AUCs and F1 scores with different time group combinations are detailed in Fig-

ure S3 and Table S3.

Note that in the very early stage (Day 0–Day 2), the performance of disease progression prediction

models is limited with either CT or clinical data alone or even with both. From day 3 to day 14 after

the onset of symptoms, compared to using clinical data alone, the introduction of CT examinations

significantly increases the prediction accuracy (p < 0.05). The add-on value of CT over clinical data is

maximized during day 6 to day 8 (AUC improves from 0.833 to 0.901, F1-score from 0.563 to 0.783). These

results suggest that the ideal time window for a CT scan is between day 6 and day 8 after the COVID-19

symptom onset.

DISCUSSION

In the current work, based on well-designed longitudinal clinical data and paired CT scans, we developed a

new AI system to reveal the respective value of clinical data and parallel CT scans for comprehensive pre-

diction of COVID-19 progression.

The CT examination and clinical data are complementary for the prediction of COVID-19

progression

CT scans and clinical data capture different characteristics of COVID-19 patients, but the complementar-

ities between them have not been fully leveraged. Several machine learning studies have addressed this

issue and are attempting to assess the risk of critical illness for COVID-19 patients during the hospital

admission (Liang et al., 2020; Vaid et al., 2020; Wu et al., 2020). Although these studies are very promising

to identify patients at high risk, they usually rely on CT scans (Kim et al., 2021; Wang et al., 2021b) or clinical

measurements (Yan et al., 2020; Zhou et al., 2021) alone, which can lead to incomplete clinical observation.

By contrast, as shown in Figure 7, our correlation analysis between CT features and clinical measurements

revealed there is a strong correlation between LDH and PLV (r = 0.68, p < 0.01) and PCV (r = 0.65, p < 0.01).

In addition, the univariate and bivariate distributions and the correlation of the features are shown in Fig-

ure S4. Based on the combination of chest CT scans and clinical data, our AI system reaches an AUC score

of 0.900, which has been proven outperforming CT scan or clinical data alone. Therefore, our tool is com-

plementary to existing AI tools for COVID-19 triage and prognosis.

The longitudinal measurements provide possibilities for precision medicine

Early prediction of disease deterioration is crucial because it allows for timely and effective treatment,

which can potentially improve outcomes and reduce mortality for critically ill COVID-19 patients (Li

et al., 2020). DL methods have the potential to help identify patients at risk for progression to critical illness

in an early stage of disease. In contrast to published work, with longitudinal measurements, we found that
6 iScience 25, 104227, May 20, 2022



A

B

C

Figure 4. BCL-Net outperforms state-of-the-art methods in terms of accuracy and inference time for lung lesion segmentation

(A) Representative CT images of three COVID-19 patients in mild (top), severe (middle), and critical (bottom) stages and corresponding segmentation results

of five methods. BCL-Net achieves highest dice coefficient (DC) in all three cases (red) and robustly segments small lesions in the mild stage, which are often

missed by other methods (see false negative (FN) regions marked by orange). The saliency maps highlight the most prominent regions where BCL-Net

makes decisions.

(B) BCL-Net achieves significantly higher DC than other methods in all three datasets (**p < 0.01, ***p < 0.001, Friedmann test with adjusted significance

level).

(C) A particular highlight of BCL-Net is its fast speed.With an average inference time of 16 ms/slice, it takes less than 5 seconds to segment a conventional CT

scan with about 300 slices in clinics. In comparison, nnUnet3D, because of its computationally expensive interpolation preprocessing step, needs almost

20 min to process the same CT image.

See also Figure S2.
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the performance of the predictive model improves as the disease progresses and reaches considerable ac-

curacy after five days. In the very early stage (the first three days from the date of symptom onset), the per-

formance of disease progression prediction is limited with either CT scans or clinical data. The performance

of the model using combined features is greatly improved in three to eight days compared to using clinical

data alone. Given the prediction accuracy of the combined approach reaches a satisfying F1-score of

around 0.80, the most recommended time point for CT scan is between day 5 and day 8 from the date

of symptom onset.

The stability and robustness of the model is critical for clinical application

DL-based methods often encounter performance degradation in the multicenter study, mainly because of

the large data distribution discrepancy between different cohorts. As shown in Table 3, BCL-Net achieves

better Dice scores than other methods for both lung and lesion segmentation in all four cohorts from
iScience 25, 104227, May 20, 2022 7



Figure 5. Prediction of COVID-19 progression using CT scan and clinical data at the same time point

(A) Using features extracted from CT scans and clinical data, we can predict whether a patient will develop severe symptoms during hospitalization with

an AUC.

(B) Top 10 important features selected by our classifier to distinguish progression patients from non-progression ones.

(C) Temporal trajectories of percent lesion volume (PLV) of individual patients illustrate high variability in the COVID-triggered pneumonia progression.

Progression patients tend to have larger lesion volume as compared to non-progression ones. Note, all patients showed mild symptoms when admitted to

hospital.

(D) 3D visualization of the pneumonia progression for a representative progression patient and a non-progression patient.

(E) Average trajectories of CK, NLR, and LDH for non-progression vs. progression patients (shaded area represents 25–75% percentiles). The orange dotted

lines show the normal ranges of these clinical data. Progression patients generally show a more acute disease progression than non-progression patients in

the early stage.

CT, computed tomography; CD, clinical data; CK, Creatine kinase; NLR, Neutrophil lymphocyte ratio; LDH, Lactate dehydrogenase.
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multiple centers, suggesting that BCL-Net is robust for variations in lesion size, CT image intensities, and

slice thickness. We also found that our new volumetric segmentation algorithm, BCL-Net, increases the

prediction accuracy by 6–8% over the current state-of-the-art method, DeepLabV3+ (Zhang et al., 2020).
8 iScience 25, 104227, May 20, 2022



Table 4. Comparison of performance of machine learning methods and ensemble learning methods using CT data and clinical data

Method CT data Clinical data AUC F1 score Accuracy Sensitivity Specificity

SVM O 0.772 (0.758�0.786) 0.317 (0.282�0.341) 0.798 (0.788�0.808) 0.235 (0.209�0.261) 0.938 (0.931�0.945)

O 0.827 (0.813�0.840) 0.447 (0.416�0.477) 0.833 (0.823�0.842) 0.338 (0.314�0.362) 0.956 (0.950�0.962)

O O 0.853 (0.843�0.864) 0.584 (0.555�0.613) 0.862 (0.854�0.870) 0.485 (0.458�0.513) 0.956 (0.950�0.962)

MLP O 0.740 (0.720�0.760) 0.477 (0.452�0.502) 0.801 (0.791�0.810) 0.456 (0.428�0.484) 0.886 (0.878�0.895)

O 0.807 (0.795�0.819) 0.543 (0.519�0.567) 0.812 (0.803�0.822) 0.559 (0.533�0.585) 0.875 (0.866�0.885)

O O 0.817 (0.803�0.830) 0.533 (0.509�0.557) 0.795 (0.786�0.804) 0.588 (0.559�0.617) 0.846 (0.837�0.855)

GB O 0.815 (0.802�0.829) 0.534 (0.509�0.559) 0.821 (0.813�0.829) 0.515 (0.490�0.539) 0.897 (0.889�0.906)

O 0.858 (0.847�0.869) 0.594 (0.571�0.616) 0.848 (0.838�0.857) 0.559 (0.530�0.588) 0.919 (0.911�0.927)

O O 0.840 (0.828�0.852) 0.592 (0.569�0.615) 0.850 (0.841�0.860) 0.544 (0.519�0.588) 0.927 (0.919�0.934)

XGBoost O 0.840 (0.827�0.853) 0.554 (0.533�0.575) 0.806 (0.798�0.815) 0.603 (0.578�0.628) 0.857 (0.847�0.867)

O 0.841 (0.830�0.852) 0.556 (0.533�0.580) 0.804 (0.794�0.813) 0.618 (0.591�0.644) 0.850 (0.842�0.858)

O O 0.868 (0.858�0.879) 0.653 (0.632�0.674) 0.850 (0.842�0.859) 0.706 (0.680�0.732) 0.886 (0.878�0.895)

Ours O 0.844 (0.833�0.856) 0.588 (0.564�0.613) 0.836 (0.827�0.844) 0.588 (0.556�0.621) 0.897 (0.888�0.907)

O 0.857 (0.846�0.868) 0.611 (0.588�0.633) 0.850 (0.842�0.859) 0.588 (0.563�0.614) 0.916 (0.908�0.923)

O O 0.900 (0.891�0.909) 0.691 (0.667�0.714) 0.874 (0.866�0.882) 0.706 (0.681�0.730) 0.916 (0.908�0.923)

We compared our ensemble learning method with four independently trained and evaluated machine learning methods including support vector machine

(SVM), multilayer perceptron (MLP), gradient boost (GB), and extreme gradient boosting (XGBoost). The numbers in Bold indicate the best performance. All

metrics are presented with 95% CI.
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Yet, DeepLabV3 is a pure 2D segmentation algorithm that neglects the rich inter-slice contexts in CT scans.

By contrast, BCL-Net is a hybrid 2D-3D segmentation network that combines classical 2D intra-slice feature

extraction and a bidirectional ConvLSTM network for inter-slice feature learning, yielding an improved per-

formance. Sensor3D fuses 2D segmentation with ConvLSTM, whereas BCL-Net uses a dual path attention

mechanism to reduce the computation cost. On the other hand, compared to full 3D volumetric segmen-

tation such as 3D U-Net, BCL-Net is several orders of magnitude faster, lower in memory consumption, and

robust with respect to thick-slice CT as well as thin-slice CT (Figure S2). Hence, it is more generalizable in

clinical settings where different CT scanners and computing resources are used.

Limitations of the study

One limitation of this study is that the sample size is not large. Unlike the acquisition of routine clinical data

and because of the radiation in CT examinations, unnecessary multiple CT scans are not only harmful to

health but also consume excessive medical resources. Therefore, for the same patient, it is often imprac-

tical to obtain longitudinal multi-time CT data that exactly matches the clinical data. Fortunately, in this

study, we have collected the paired CT and clinical data. We have taken advantage of these data to predict

disease progression after the onset of COVID-19 symptoms. The results indicate that the addition of CT

examinations between day 6 and day 8 after the onset of symptoms may be ideal for predicting COVID-

19 progress. In future work, we will collect more CT data at multiple time points that are paired with clinical

data and accurately analyze the predictive value of CT examinations for the prediction of COVID-19 pro-

gression and evaluate its necessity in tracking clinical treatment outcome.
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Figure 6. The time-dependent AUCs and F1 scores of the COVID-19 progression prediction model

Data are represented as mean +/� STD.

(A) The time-dependent AUCs of the disease progression prediction model using CT or clinical data or both.

(B) The F1 scores of the disease progression prediction model using CT or clinical data or both. Permutation tests for AUC

and F1 score were performed on comparison of combination of CT scan and clinical data vs. CT scan only and

combination of CT scan and clinical data vs. clinical data only.

CT, computed tomography; CD, clinical data.

See also Figure S3 and Table S3.
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Figure 7. Correlation analysis between CT features and clinical measurements

(A) Correlation diagram heat map of CT features and clinical measurements. Dots are present when p < 0.01 and color represent either a positive (blue) or

negative (orange) correlation coefficient.

(B) Detailed correlogram of features with significant correlation coefficients (*p < 0.05, **p < 0.01, ***p < 0.001).

PLV, percent lesion volume; PCV, percent consolidation volume; Z-position, related center of the lesion in the z axis; NLR, neutrophil lymphocyte; LDH,

lactate dehydrogenase; D-BIL, direct bilirubin; CK, creatine kinase.

See also Figure S4.
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Data and code availability

d Partial data reported in this paper will be shared by the lead contact upon request. The longitudinal data

reported in this study cannot be deposited in a public repository because patients do not want their data

to be made public.

d All original code has been deposited at https://robin970822.github.io/DABC-Net-for-COVID-19/and is

publicly available as of the date of publication.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patients’ cohort

This longitudinal cohort study was approved by the Ethics Committee of Shanghai Public Health Clinical

Center (YJ-2020-S035-01). Figure 2 illustrates the flowchart of the patient selection. As shown in Table 2,

a total number of 218 COVID-19 patients with 735 CT scans were collected from January 21, 2020 to April

29, 2020. From public datasets available online, we obtained 27 CT scans with lesion labels fromWuhan, 19

CT scans with lesion and lung labels from Radiopaedia.org and 10 CT scans with lesion and lung labels from

Coroncase.org. From Shanghai Public Health Clinical Center, we obtained 679 CT scans from 162 patients

including 43 CT scans with lesion and lung labels and 341 longitudinally measured CT scans and corre-

sponding clinical data from 119 patients. The CT scans from Shanghai Public Health Clinical Center

were obtained on dedicated CT scanners (Hitachi, Philips and UIH) with the following parameters: slice

thickness 1-6 mm, slice gap 0 mm. All CT scans with lesion and lung labels were included to segment

the lesion and lung volume on a deep learning method. 119 patients with 341 longitudinally measured
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CT scans and paired clinical data from Shanghai Public Health Clinical Center were enrolled to build an AI

system to predict the disease progression and investigate the respective value of clinical data and CT

scans.

The longitudinal clinical data including patient demographics, medical history, presenting signs and symp-

toms and laboratory examinations were all collected from the hospital information system (HIS). The lab-

oratory examinations including absolute neutrophil count (ANC), absolute lymphocyte count (ALC),

neutrophil lymphocyte ratio (NLR), lactate dehydrogenase (LDH), direct bilirubin (D-BIL), and creatine

kinase (CK) were measured and matched with CT scans. The time points of symptoms onset and the begin-

ning of the severe/critical stage were recorded for the time alignment.

According to the guidelines of national diagnosis and treatment protocols for COVID-19 (the seventh

version) ((Released by National Health Commission & National Administration of Traditional Chinese Med-

icine on March 3, 2020), 2020), patients with COVID-19 can be divided into four subtypes: mild, common,

severe, and critically ill. The progress of the severe illness with COVID-19 is usually rapid and there is no

clear separation between the severe illness and the critical illness (Li et al., 2020). Therefore, patients dete-

riorating into these two subtypes were combined to be the progression patients. The 119 patients who

were common subtypes at admission were divided into two groups, that is, 90 non-progression patients

with 273 paired CT scans and clinical data who were discharged from hospital in the common subtype,

and 29 progression patients with 68 paired CT scans and clinical data who deteriorated into severe or crit-

ically ill subtype or died.

METHOD DETAILS

Overview of our proposed AI system

An AI system (Figure 3) was used to predict the disease progression with paired clinical data and CT scans

at each time point for each patient. CT features are obtained by BCL-Net. Both clinical features (patient

demographics, medical history, signs and symptoms, and laboratory tests) and CT features are combined

and fed into the AI system for the prediction.

Quantization of lung and pneumonia lesion using BCL-Net

As a hybrid 2D-3D network, BCL-Net combines a U-shaped network (UNet) (Çiçek et al., 2016; Falk et al.,

2019) with shared-weighted encoder and decoder to process in-plane context and a BC-LSTMModule that

uses bidirectional convolutional LSTM to integrate cross-plane context (Figure 3B).

BCL-Net uses a share-weighted convolution operator in the encoding and decoding paths of 2D U-Net to

extract intra-slice features. More specifically, each convolution and transposed convolution block consists

of two 3 3 3 shared convolution filters followed by a 23 2 max pooling layer and ReLU function. These pa-

rameters are shared among all input slices. In order to process the cross-plane context along the z-axis and

retain the original high-resolution xy in-plane information, a convolutional long-short term memory (C-

LSTM) (Shi et al., 2015) is used to integrate in-plane features extracted by 2D U-Net. Unlike temporal

sequential data (e.g., video clips), where information flows in only one forward direction, structural CT scans

have two orientations that need to be considered. Hence, a bidirectional C-LSTMmodule (BC-LSTMMod-

ule) is used to model both forward and backward information.

To reduce computational cost, we propose a dual path attention mechanism including a global average

pooling (GAP) to generate channel-wise maps and a channel-dimension squeeze procedure with a depth-

wise convolution followed by 1 3 1 convolution to generate spatial-wise maps. BC-LSTM only fuses the in-

formation distilled by the channel-wise maps and the spatial-wise maps and reduces the computation cost.

We trained two BCL-Nets, respectively for lung and pneumonia lesion segmentation. We further multiplied

the output of lesion BCL-Net with the corresponding output of lung BCL-Net to remove possible false pos-

itive lesions outside the lung organ. Consolidations were found more common in patients >50 years old

(Poyiadji et al., 2020) and could be a warning sign of severe progression. Therefore, we further outlined

the consolidation region thresholding at 0.5 on normalized intensity within the lesion region (Liu et al.,

2020). Additionally, we calculated the weighted volume from the inner product of the lesion and the inten-

sity, determining the center of the lesion in the z-axis (Yu et al., 2020). In all, 12 AI-derived CT features

including lung volume (LuV), lesion volume (LeV), consolidation volume (CV), percentage of lesion (PLV)
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and consolidation volume (PCV), and the related center of the lesion in the z-axis (z-position) in left and

right lung were obtained.

We compared BCL-Net with four state-of-the-art medical segmentation methods, namely DeepLabV3+

(Chen et al., 2018), Sensor3D (Novikov et al., 2019), nnUNet2D & nnUNet3D (Isensee et al., 2021). Table 3

summarizes the individual features of all five methods including BCL-Net in terms of model architecture,

parameter size and inference speed.
Prediction of disease progression using ensemble learning

As illustrated in Figure 3A, we implemented an ensemble learning method to predict the disease progres-

sion using a total of 33 features including 12 AI-derived features extracted from CT scans and paired 21

clinical measurements collected from HIS.

The ensemble learningmethodwas implemented in Python scikit-learn library with base learners consisting

of support vector machine (SVM), k-nearest neighbors (KNN), naive Bayes (NB), multilayer perceptron

(MLP), random forest (RF), gradient boost (GB), logistic regression (LR), adaptive boosting (Adaboost),

and extreme gradient boosting (XGBoost) (Chen and Guestrin, 2016). The averaged output of base

learners was calculated as the final output for prediction of disease prediction. Table S1 summarizes the

implementation details of base learners. We compared our ensemble learning method with four indepen-

dently trained and evaluated machine learning methods including SVM, MLP, GB, and XGBoost in a five-

fold cross-validation. In addition to prediction, we also highlighted important features that mostly

contribute to our prediction using the average feature importances from base learners including RF, GB,

Adaboost, and XGBoost.
Longitudinal studies for precision medicine

Given the fact that patients from Shanghai Public Health Clinical Center were under daily medical obser-

vation and scanned for CT about every 3 days (Figure S1), we divided 341 paired CT and clinical data in six

three-day time groups, that is 27, 74, 79, 73, 78, and 10 paired CT and clinical data in group Day0-Day2

(within two days from symptom onset), group Day3-Day5 (3-5 days), group Day6-Day8 (6-8 days), group

Day9-Day11 (9-11 days), groupDay12-Day14 (12-14 days), and groupDay15- (more than 15 days from symp-

tom onset), separately. We compare the performance changes over the different three-day time groups of

the model trained with a combination of CT and clinical data at the same time-point, the model with only

CT and the model with only clinical data.

Using our proposed AI system (Figure 3), the respective value of longitudinal clinical data and paired CT

scans in predicting the deterioration of COVID-19 was evaluated with AUC (area under the receiver oper-

ating characteristic curve, ROC) and F1 score in a five-fold cross-validation in each time group except group

Day0-2 and Day15- in a three-fold cross-validation owing to the insufficiency of progression patients.
QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis of features extracted from CT scans and clinical characteristics is performed in the Py-

thon statsmodel library. Continuous variables are represented by median and range, and a comparison

between non-progression vs progression patients is performed using the Student’s t test for normally

distributed variables and the Mann-Whitney U statistics for non-normally distributed variables. Categorical

variables are represented as numbers with percentages, and a comparison between patient groups is per-

formed by chi-square. The performances of lung and pneumonia lesion segmentation are evaluated in dice

coefficient (DC) and compared with four state-of-the-art in the Friedmann test. The performances of dis-

ease progression prediction are evaluated in AUCs and F1 scores and compared in the permutation

test. All the metrics of the AI system are presented with 95% confidence interval (CI).
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