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Abstract

Although trait analyses have become more important in community ecology, trait-environment correlations have rarely
been studied along successional gradients. We asked which environmental variables had the strongest impact on
intraspecific and interspecific trait variation in the community and which traits were most responsive to the environment.
We established a series of plots in a secondary forest in the Chinese subtropics, stratified by successional stages that were
defined by the time elapsed since the last logging activities. On a total of 27 plots all woody plants were recorded and a set
of individuals of every species was analysed for leaf traits, resulting in a trait matrix of 26 leaf traits for 122 species. A Fourth
Corner Analysis revealed that the mean values of many leaf traits were tightly related to the successional gradient. Most
shifts in traits followed the leaf economics spectrum with decreasing specific leaf area and leaf nutrient contents with
successional time. Beside succession, few additional environmental variables resulted in significant trait relationships, such
as soil moisture and soil C and N content as well as topographical variables. Not all traits were related to the leaf economics
spectrum, and thus, to the successional gradient, such as stomata size and density. By comparing different permutation
models in the Fourth Corner Analysis, we found that the trait-environment link was based more on the association of
species with the environment than of the communities with species traits. The strong species-environment association was
brought about by a clear gradient in species composition along the succession series, while communities were not well
differentiated in mean trait composition. In contrast, intraspecific trait variation did not show close environmental
relationships. The study confirmed the role of environmental trait filtering in subtropical forests, with traits associated with
the leaf economics spectrum being the most responsive ones.

Citation: Kröber W, Böhnke M, Welk E, Wirth C, Bruelheide H (2012) Leaf Trait-Environment Relationships in a Subtropical Broadleaved Forest in South-East
China. PLoS ONE 7(4): e35742. doi:10.1371/journal.pone.0035742

Editor: Bente Jessen Graae, Norwegian University of Science and Technology, Norway

Received October 10, 2011; Accepted March 21, 2012; Published April 23, 2012
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Introduction

In recent years, community ecology has made much progress in

understanding how the trait composition in a community changes

along environmental gradients [1–3]. Still, predictions of trait-

environment relationships are not straight forward because trait

composition in a community is influenced by two opposing

mechanisms [4]. On the one hand, the species in a community

have to cope with the abiotic environmental setting (e.g. resource

supply, disturbance etc.), resulting in abiotic environmental

filtering of certain trait values [2,5–7]. On the other hand, the

species have to be sufficiently different in their niches, and thus

also in the traits that reflect the niches, to avoid competitive

exclusion [8–10].

As a result of environmental filtering, mean values of a trait will

differ among communities along an environmental gradient,

while, as a result of competitive exclusion, trait value distribution

within communities will be divergent. Despite their alleged

opposition, the two mechanisms are intimately linked in real

communities, because the same trait can contribute to both niche

segregation and competitive ability [11]. Then, environmental

filtering might select for a trait that at the same time confers

competitive superiority or the ability to facilitate other members of

the community [12]. In this case, it might be considered to

broaden the definition of environmental trait filtering and to lump

together abiotic environmental filters and those brought about by

biotic interactions [11]. Such a trait filter would also comply with

the suggestion to model biotic interactions as a milieu or biotic

background with which an organism interacts [13]. Including

biotic interactions in the analysis of environmental filtering is

particularly important for our study system, a successional series in

a subtropical forest in China. Previous analyses from the study

region have revealed that many environmental variables, such as

soil pH, or topographical variables, such as aspect and slope, did

not covary with successional stage, which led to the conclusion that

the sampled forests have not been predominantly shaped by

abiotic conditions but by biotic processes [14]. Thus, we also

included successional stage and variables related to species

richness among the environmental predictor variables, however,

considering them as proxy variables without a causal relationship.

Nevertheless, some abiotic environmental factors were found to

covary with successional age, such as soil carbon, nitrogen content

and soil moisture [14], patterns that have also been described from

other succession series [15,16]. Surprisingly few studies have

PLoS ONE | www.plosone.org 1 April 2012 | Volume 7 | Issue 4 | e35742



attempted to relate shift in community mean trait values to

environmental changes along forest succession series. From global

trait relationships to soil fertility [6,17], trait filtering would be

expected to result in an increase in specific leaf area (SLA), leaf

nitrogen content (LNC) and leaf phosphorous content (LPC) with

increasing soil N and P supply. A typical forest succession series

also reflects a strong gradient in light availability [18]. Light supply

is also affected by elevation, inclination and aspect [19], which

might vary independently of successional gradients. It is clear that

behind these topographical variables there are more direct

environmental drivers for plant performance such as UV

radiation, temperature or air humidity [20]. However, elevation,

inclination and aspect can be considered proxy variables for these

unmeasured environmental variables that are difficult to assess in a

field study.

A wide range of traits has been analysed on woody plants [21–

23]. Among all characteristics, leaf traits are easily measured in

comparison to other traits and offer a consistent basis for

comparisons across a large range of plant life forms [1,2,24].

More importantly, many leaf traits are related to growth rates, as

for example species with leaves with high SLA and LNC tend to

have high nutrient concentrations and mass-based photosynthesis

rates [2,25]. In contrast, leaves with low SLA are physically more

robust and less prone to herbivory and tend to live longer [26,27].

In evergreen species, a low SLA is also associated with a higher

shade tolerance [28]. In subtropical forests, SLA also reflects the

difference between evergreen and deciduous leaf phenology type.

Leaf nutrient concentration tend to vary positively with SLA, such

as Mn [29] and S [30], as do heavy metals such as Pb [31].

Potassium, phosphorous and nitrogen contents have been found to

limit tree growth in tropical forests [32], and thus, their leaf

contents might be indicators of the plants’ nutrient status. In

addition, some cations such as calcium (Ca) might reflect

transpiration, as Ca cannot be retranslocated from ageing leaves,

and thus, Ca content might be taken as proxy for RGR and

photosynthesis capacity (Amax) for leaves of the same age. In

contrast, hardly anything is known about many other leaf traits.

For example, stomata density is generally thought to be positively

related to a plant’s ability to regulate transpiration, with higher

densities of stomata associated with xeric morphology [33,34].

Stomata density has been widely used to deduce atmospheric CO2

concentrations from fossilized leaves [35], but has also been

described to increase with altitude [36].

While trait-environment relationships have already studied in

species-rich subtropical forest ecosystems [37,38], not much effort

has been put so far into further dissecting the underlying link

between traits and environment (but see [39]). It is unclear to

which degree intraspecific trait variability does modulate species

responses to environmental gradients. Although intraspecific trait

variability across different habitats has been found to contribute

less than mean trait values of different constituent species [40], this

component cannot be neglected. Interspecific trait variation results

in strong trait-environment relationships when (a) the range of trait

values within communities is small and the community mean

values are evenly dispersed along the trait gradient, or when (b) the

spread of environmental values within species is small (narrow

niche breadth) and species mean values are evenly dispersed along

the environmental gradient (see simulation studies in [41]). The

relationship becomes weaker when the spread (i.e. the variance) of

values within communities or species increases and the means are

clumped, i.e. do not cover the respective gradients. For example, a

trait-environment relationship would still emerge with a high

spread of trait values within communities but narrow niche

breadths of species that are evenly dispersed along the environ-

mental gradient. Conversely, a relationship would emerge in

communities that are well separated along trait gradients but show

broad niche breadths of species. Both mechanisms have to act in

concert to result in environmental trait filtering. Still, one of the

two might be more important than the other. Knowledge on these

two components of the trait-environment link gives us insights into

community assembly rules, as they inform us how well traits

differentiate the different communities and how well the

environmental gradient is covered by the species’ niches. As we

found broad niche breadths of species in our studied subtropical

succession series [14], we expected only a weak link between

species abundances and the environment. Because of the low

degree of niche segregation of species along environmental

gradients the community assembly in these forests can also be

well explained by neutral models [42,43]. As many tree species in

this type of subtropical forest do occur in all age stages along the

succession [44,45], the secondary succession is best described by

the pathway of initial floristic composition [14,46]. In conse-

quence, if there were any trait-environment relationships at all in

these forests, they had to be brought about by a strong

differentiation of communities in trait space.

A tool to shed light on the relative importance of the two

processes is provided by Fourth Corner Analysis [41]. Fourth

Corner Analysis tests for correlations between traits and

environment by linking a site6environment matrix (R) via a

site6species abundance matrix (L) to a trait6species matrix (Q).

Using an arbitrary example data set, Fig. 1a and b demonstrates

that the trait-environment link can be conceived as two sequential

matrix multiplications. Assessing the relative importance of each of

these two matrix operations would allow conclusions as to whether

environmental trait filtering depends more on the first or the

second step. Appropriate tools to this approach are different

permutation models, as provided by [41]. The different way of

permuting abundances within columns or permuting whole rows

and colums of the L matrix removes either the link between sites

and the environment or between species and traits or both. Fig. 2

gives a schematic overview of these different permutation models,

using a small idealized data set. Different proportions in

environmental conditions realized across sites or in traits realized

across species result in different degrees of significances obtained

by reshuffling, depending on distribution of trait values within and

among communities and of environmental values within and

among species. The less well dispersed the environmental variable

in model type II or the trait values in model type IV, the lower the

levels of significance, seen in insignificant relationships in the two

fictitious datasets in Fig. 2e and i.

We applied this analysis approach to a succession series in

subtropical China, which had been established in the framework

of the recently established biodiversity and ecosystem functioning

experiment in subtropical China (BEF-China) [14]. We hypoth-

esized that 1) most trait-environment relationships are encoun-

tered with environmental variables that covary with the succes-

sional gradient, such as soil carbon, nitrogen content and soil

moisture, while environmental variables representing elevation,

soil pH, aspect and slope are much less related to leaf traits;2) the

most responsive leaf traits are those that reflect the leaf economics

spectrum, i.e. those traits that covary with the worldwide gradient

in chemical, structural and physiological leaf traits, which spans

from species with long leaf lifetimes, high leaf construction costs

(low SLA) and low nutrient concentrations (low LNC) to species

with short leaf lifetimes, low dry-mass investment per leaf area and

high leaf nutrient concentrations [2]; 3) trait-environment

relationships are mostly brought by interspecific trait variation

and to a much lesser degree by intraspecific trait variation; and 4)

Leaf Trait-Environment Relationships
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the association of communities with species leaf traits (the link

between the Q and L matrix) is more important for explaining the

encountered trait-environment relationships than the association

of species with the environment (the link between the R and L

matrix), which would indicate a high differentiation of commu-

nities in trait space.

Materials and Methods

Study site
The study was carried out in the Gutian Mountains (Gutian-

shan), a National Nature Reserve (NNR) situated near to the

border triangle of the three provinces Zhejiang, Jiangxi and

Figure 1. Scheme of linking traits to the environment in the Fourth Corner Analysis. The general procedure is shown by two matrix
operations with an arbitrary data set. a: Multiplication of the traits6species matrix Q with the transposed species6sites matrixL, resulting in a
traits6site matrix; b: Multiplication of the traits6sites matrix with the sites6environment matrix R, resulting in a traits6environment matrix; c:
combining a and b in the Fourth Corner Analysis, showing Pearson correlation coefficients for the resulting in a traits6environment matrix
significances derived from Model type I (see Fig. 2). Note that matrix multiplication satisfies the associativity rule, thus rendering it irrelevant whether
first calculating the matrix product QLt or LtR. Furthermore, in contrast to this example, Fourth Corner Analysis does not use absolute abundances of
species but fractions of total abundance in L and standardized values in R and Q. Moreover, the Fourth Corner algorithm does not use original matrix
but inflated matrices where every non-empty entry or every occurrence in L becomes a new row (see [41]).
doi:10.1371/journal.pone.0035742.g001
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Fujian, about 30 km from the county capital Kaihua (China,

29u89180–29u179290N, 118u29140–118u119120E) [14]. It has an

area of 8107 ha, and covers an elevational gradient between

250 m and 1258 m a.s.l. The Gutianshan NNR has a typical

Chinese subtropical climate with an annual average precipitation

ranging between 1793 mm and 1960 mm (109 cells in the

Worldclim dataset with 300 resolution [47]). Taking a mean lapse

rate of 0.55uC/100 m [48], the local mean annual temperature of

15.3uC measured in the NNR at 440 m a.s.l. [49] and published

long term data for the climate station data of Qu Xian (118.87uE,

28.97uN, 66.1 m a.s.l.), which is only about 75 km away from the

study site, we estimated a mean annual temperature range

between 16.3uC to 10.8uC for the whole NNR and between

16.3uC to 12.7uC between our plots (see below) at the lowest and

highest altitude, respectively. Correspondingly, mean January plot

temperatures range between 4.3uC and 0.9uC and mean July plot

temperatures between 28.1uC and 24.4uC. The area is located in

one of the global hot spots of phytodiversity [50], with 1426 seed-

Figure 2. Scheme of the effect of different permutation methods in the Fourth Corner Analysis. The simplified test data set consists of a
R-matrix of 5 sites62 environmental variables, a L matrix of 5 sites65 species and a Q matrix of 2 traits65 species. The three columns show different
proportions of environments and traits that reflect different heterogeneity in environment or traits, respectively. The left column shows equal
variance between environment and traits, the middle column a skewed distribution of environmental variables and the right column a skewed
distribution of traits. ‘?’ indicates that link between the two matrices located aside the sign has been removed. The curved arrows show what is
permutated in the L matrix, abundances within species (model type I), rows (type II) or columns (type IV). a, b, c: Model type I, reshuffling abundances
for each species independently (i.e., within each column of the L matrix); thereby removing both the link between site and environment and the link
between traits and species; d, e, f: Model type II, reshuffling rows of the L matrix, thereby removing the link between site and environment; g, h, i:
Model type IV, reshuffling columns of the L matrix, thereby removing the link between traits and species. All permutations were repeated 99999
times. Please note that all models and proportions result in a perfect trait-environment correlation (r = 1), but differ in probability.
doi:10.1371/journal.pone.0035742.g002
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plant species of 648 genera and 149 families occurring in the

reserve. Regarding the very high pressure of land use commonly

found in China, this forest has been remarkably preserved from

anthropogenic impacts. Part of the reserve has been under

agricultural use, as evidenced in the occurrences of historic

terraces in some of the plots. In addition, there are still illegal

logging activities in low elevation part of the NNR, in addition to

natural disturbances such as typhoon damages and snow and ice

breakages. While old-growth stands cover a large part of the forest,

with maximum tree age of about 180 years [51], younger

successional stages occur as well. It is a mixed evergreen

broadleaved forest with Schima superba (Gardn. et Champ). and

Castanopsis eyrei (Champ. ex Benth.) Tutch. being the dominant

species and almost even proportions between evergreen and

deciduous species in terms of species number [52]. The prevailing

soil type is Cambisol with a generally sandy-loamy texture. Soil

depth varies between shallow soils less than 50 cm and deeply

developed soils of more than 120 cm thickness. The stone content

can exceed 90%-Vol at some locations in the deeper soil horizons.

The soil parent rock is mainly granite or deeply weathered granite

(saprolite).

Study design
A set of 27 Comparative Study Plots (CSPs) was established in

the Nature Reserve in summer 2008. The CSPs were stratified by

successional stage, based on the guess of tree age and on local

knowledge of the most recent logging event, and randomly

selected within the following age classes (1: ,20 yrs, 2: ,40 yrs, 3:

,60 yrs, 4: ,80 yrs, 5: $80 yrs). Classification into successional

stages was then confirmed by measurements of diameter at breast

height (dbh) of all trees in a plot with dbh .10 cm and by tree age

analyses based on stem cores. Tree age of the fifth largest tree in

the plot corresponded to the age classes given above. Further

details on plot selection and age class determination are given in

[14].

On every plot, a complete inventory of individuals taller than

one meter was carried out on an area of 30 m630 m and a set of

environmental variables was measured (elevation, slope, aspect,

soil moisture, pH, C, N and C/N ratio) as well as structural

variables (height and cover of layers). Elevation ranged from

251 m to 903 m a.s.l. Aspect was expressed as northness and

eastness, using cosine and sine of aspect, respectively. Soil samples

were taken from nine positions in every CSP in five different depth

intervals (0–5, 5–10, 10–20, 20–30, and 30–50 cm). Analyses were

carried out on air-dried and sieved (2 mm) samples, pooled per

depth interval. However, in the present study only the uppermost

horizon was used because it showed the largest variation in soil

conditions. Soil pH was analysed potentiometrically in a 1:2.5 soil-

H2O solution. Total soil C and N were analysed with Vario ELIII

elementar analyzer. All samples were non-calcareous, thus total C

content equals organic carbon (Corg). Soil moisture was analysed

gravimetrically in campaigns extending only over a few days in

June/July 2008, November 2008 and March 2009, and averaged

over all dates. Soil water content was determined on 5 g soil after

drying at 105uC for 24 h. Photosynthetically active radiation and

red:far-red ratio were measured at 1.3 m above the ground in nine

subplots perplot, using a Licor LI-190SA PAR quantum sensor

and a Skye Red/Far-Red sensor, respectively. Relative light

intensity was expressed as ratio to a second PAR sensor outside the

forest.

Leaf sampling and leaf traits
Controlling for the profound effects of sun exposure on many

leaf traits [53], leaf samples were taken from sun exposed branches

with an expandable pruner. As some canopies reached 30 m and

more, a minority (less than 10%) of all leaf samples were not

completely sun exposed. Only completely developed leaves were

sampled, without signs of herbivore damage and preferably free of

leaf fungi. Leaf trait analysis followed the protocols for

standardised trait measurements [54]. Seven leaves were taken

per individual and stored in wet PVC bags until weighing in the

field lab. Leaf area was obtained by scanning the fresh leaves and

analysing the digital data with Win FOLIA Pro S (Regent

Instruments Inc.). Two additional leaves were sampled and stored

in 70% ethanol for stomata analysis. Stomatal density was assessed

on both leaf surfaces, thus two enumerations per replicate, using

the Zeiss microscope Axioskop 2 plus. Only one species had

hyperstomatous leaves (Alangium kurzii Craib). Stomata were

counted on a minimum of 50000 mm2. In addition, length and

width were measured of three stomata per replicate. The area

occupied by stomata was calculated from stomata density and

assuming an ellipsoid shape of the stomata. For the majority of the

species, samples were taken from one randomly chosen individual

each from five to seven CSPs (for exact sample sizes see Appendix

Table S1). Exceptions were those species that occurred in less than

five plots (34 species). Species were mostly sampled with one

individual per plot, with the exception of 30 rare species that were

sampled with at maximum two individuals in one plot to obtain

sufficient number of replicates. To reduce the effect of extreme

values of leaf aluminium content, this variable was log trans-

formed.

In total, traits were obtained from 416 individuals, representing

82% of all (148) species occurring in the 27 CSPs, thus providing a

trait value for 95.2% of all (16120) individuals. Of the 773

individuals of species for which no trait value was obtained, 75%

were conifers (mainly Pinus massonianaLamb. and Cunninghamia

lanceolata (Lamb.) Hook.). However, the occurrence and abun-

dance of these conifers did not show a successional pattern and on

average both species together contributed only to 3.5% of all

individuals in a plot.

Statistical analyses
We mainly focused on the contribution of interspecific trait

variation on trait-enviroment relationships, and thus, used leaf

trait values averaged per species. In addition, we tested for an

impact of environment on within-species trait variation by

modifying the approach of [55]. Intraspecific trait variation was

assessed by normalizing trait values within species. All interspecific

differences in trait values were eliminated by substracting the

species’ mean trait value and dividing by the trait’s standard

deviation. Thus, only species entered the analysis for which more

than one trait value had been obtained (106 out of 122) and only

traits were used that varied within species (23 out of 26). We then

weighted the normalized trait values of all species in a plot by the

species’ abundances in that plot. The resulting weighted

normalized trait values of all CSPs were regressed against all

environmental factors that were also used in the Fourth Corner

Analysis. All resulting significant relationships were interpreted as

environmentally caused intraspecific trait variation.

Interspecific trait variation was related to the environment by

using only mean trait values per species. First, the R and Q matrix

were submitted to two PCAs, using standardized variables.

Second, trait-environment relationships were analysed by Fourth

Corner Analysis [56]. This analysis relates the matrix of

untransformed environmental variables (R) to a species trait

matrix (Q), linked by a matrix of species abundances (L) [3]. The

Fourth Corner statistics are derived from comparing the observed

distributions of traits of species along the species’ positions on the

Leaf Trait-Environment Relationships
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environmental gradient with null models. The result is a matrix of

correlations summarizing the significances of the relationship

between the set of environmental data and the set of trait data at a

given community composition. The R-matrix comprised all

environmental data (27 sites616 variables). In addition to soil

variables, the R matrix also contained variables related to

structure and to the richness of tree and shrub species in the

comparative study plots. Although we included both the set of

environmental variables and the set of structure and richness

variables in one single analysis, we only consider environmental

variables as potential direct causes of trait filtering, while structure

and richness con only be considered proxy variables of biotic

causes of trait filtering. As richness depends on the number of

sampled individuals in the plot, rarefied species richness was

calculated [57], based on 100 individuals per plot. The L-matrix

comprised the species abundances (27 sites6122 species) and the

Q-matrix all traits (122 species626 traits). Trait-environment

relationships were tested for significance by three different null

models referred to as model types I, II and IV [41]. In model type

I the abundances in matrix L were permuted for each species

independently (within each column in the L matrix in Fig. 1c

independently of the other columns), thereby testing for non-

random associations between sites and environment (L and R

matrices) and between species abundances and traits (L and Q

matrices, for a scheme see Fig. 2). In model type II the rows (i.e.

sites) of table L are permuted, which is equivalent to reshuffling the

rows of R and which tests for non-random association between

sites and environment (L and R matrices) but keeps the links

between L and Q. By keeping this link between species and traits,

the obtained significances have to go back to the association

between sites and environment. Finally, in model type IV columns

(i.e. species) of table L are permuted, thus keeping the association

between L and R but not between species abundances and traits (L

and Q matrices). As the link between sites and environment is

kept, the obtained results have to be ascribed to the connection

between species and traits. We would like to point out that the

permutation tests are independent of number of traits included in

the Q matrix and number of environmental variables in the R

matrix because in none of the model types permutation is

performed among rows of the Q matrix (i.e. among traits) or

among columns in the R matrix (i.e. among environmental

variables). In consequence, neither the number of traits or

environmental variables nor a potential collinearity among them

does affect the results. All three model types were calculated with

9999 permutations. The number of all significant relationships

across all traits and environmental variables was assessed by model

type for analysing which of the linkages between the matrices was

the most important one in explaining the trait-environment

relationship. All analyses were computed with the statistical

software R (v. 2.10 R Foundation for Statistical Computing) using

the ade4 package and the vegan package [58,59].

Results

Environmental relationships
The environmental conditions in the plot were characterized by

more than one gradient (Fig. 3). Successional stage was closely and

positively related to rarefied species richness, indicating that

species number monotonously increased with successional age

[14]. An inverse strong relationship to successional stage was

encountered to number of individuals, caused by decreasing tree

densities with ongoing succession, and to the proportion of

deciduous individuals in a plot, because the evergreen trees and

shrubs became more abundant with successional time, while the

amount of photosynthetically active radiation decreased and the

red:far-red ratio increased. Soil moisture, N and C content as well

as pH formed a second gradient that was perpendicular to

successional time, while northern and eastern components of

aspect, inclination and elevation displayed only weak relationships

to other environmental variables (Fig. 3).

Trait relationships
The principal component analysis (PCA) that analysed the

covariation of the traits across all species also revealed multiple

gradients (Fig. 4). The first PCA axis reflected the gradient of low

to high leaf construction costs, with negative loadings for

evergreen leaf phenology type, leaf dry matter content and leaf

C/N ratio, and positive loadings for the content of N, P, K and

Ca. Stomata density was quite unrelated to this axis, but was

negatively correlated with stomata width and length, caused by a

trade-off between stomata density and stomata size (r = 20.243,

p = 0.007). Stomata size was also not correlated with SLA

(r = 20.083, p = 0.362). Interestingly, SLA had positive loadings

of similar size on both PCA axes in Fig. 4, but was orthogonal to

leaf area and leaf fresh and dry weight.

Trait-environment relationships
The relationship between interspecific trait variation and the

environment resulted in 11 significant relationships (Appendix Fig.

S1). Within-species variation was positively related between SLA

and inclination, LDMC and northern aspects, leaf carbon content

and deciduousness, leaf calcium content and light, stomata width

and light, as well as between leaf phosphorous content and species

richness, rarefied species richness and inclination. In addition,

Figure 3. Principal component analysis (PCA) analysing the
covariation of all 16environmental variables across all sites
(CSPs). Biplot of PCA scores of the first and second axis. The different
colours show the successional stages (1: ,20 yr, 2: ,40 yr, 3: ,60 yr, 4:
,80 yr, 5: $80 yr). Abbreviations of environmental variables: Succ_-
Stage = Successional stage, Num_Species = Species richness, Num_Spe-
cies_R = Rarefied species richness, Num_Ind = Number of individuals per
plot, Prop_Deciduous = Proportion of deciduous individuals, Soil
C = Soil carbon content, Soil N = Soil nitrogen content, Soil CN = Soil
C/N ratio, Moisture = Mean soil moisture, Asp_E = Eastness = Sine
(aspect), Asp_N = Northness = Cosine (aspect), Light = Mean relative
intensity of PAR, Red_far_red_ratio = Mean red:far-red ratio.
doi:10.1371/journal.pone.0035742.g003
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there were negative relationships of leaf manganese content, leaf

sulphur content and stomata length to rarefied species number.

However, these 11 significances were fewer than would be

statistically expected from 368 regression tests (23 traits616

environmental variables), which, assuming fully randomized data,

should at least result in 18 significances at the 5% error level.

In contrast, interspecific trait variation as assessed by the Fourth

Corner Analysis revealed strong associations of many traits to the

successional gradient (Fig. 5). Most traits with significant

relationships to successional stage were also related to species

richness and rarefied species number, and in an inverse way to the

number of individuals, a finding that was consistent to the results

of the correspondence analysis (Fig. 3). Positive relationships of

successional age and further variables referring to structure and

richness that covaried with age were encountered to evergreen leaf

phenology type, size of leaves in terms of weight but not in terms of

leaf area, carbon-nitrogen ratio, potassium content and stomata

size, seen in increasing stomata length and width. Negative

relationships to the previously-mentioned variables were found for

specific leaf area and leaf nitrogen, phosphorous and calcium

content.

The second main gradient from the correspondence analysis

(Fig. 3) was not well reflected in the Fourth Corner Analysis (Fig. 5),

with, for example, only three significant trait relationships for soil

moisture, one of them showing a negative correlation to leaf

calcium content. Although a high C and N content of the soil and

a low pH value were significantly correlated with fewer traits than

variables associated with successional stage, the significant

relationships existed to the same traits, i.e. to the occurrence of

entire leaves, high C/N ratio, high potassium and low calcium

content and low stomata density. Being less strongly related to

other environmental variables in the PCA (Fig. 3), elevation and

inclination also displayed only few relationships to traits in the

Fourth Corner Analysis (Fig. 5). The incidence of evergreen leaf

phenology type decreased with elevation and northeastern aspects,

while inclination was positively related to the leaf content of zinc

lead, and negatively to sodium.

Comparing the associations of communities with leaf
traits and of species with the environment

A total of 143 significances were obtained for model type I

(Fig. 5), as summed up in Table 1 across all traits and all variables

of the R matrix. Model type I removed the link between the

sites6species matrix (L) and the site6environment matrix (R) as

well as between the L matrix and the species6trait matrix (Q).

Thus, the significant relationships are the result of a combination

of the association of communities with species leaf traits and of

species with the environment. A similar magnitude of significant

cases (127) was obtained by model type II that only removed the

link between sites6species matrix (L) and site6environment

matrix (R) (Appendix Fig. S2). In contrast, when removing only

the link between sites6species matrix (L) and species6trait matrix

(Q) by model type IV, the number of significant relationships was

reduced to 75 (Appendix Fig. S3).

Discussion

Environmental relationships
As postulated in the first hypothesis, most trait-environment

relationships were encountered with variables that covaried with

the successional gradient. In the course of the succession, many

traits that describe the leaf economics spectrum [1,2] decreased in

value, such as specific leaf area and leaf nutrient concentration,

while investment in persistence increased, as seen in increasing C/

N ratio. Thus, the successional gradient reflected the well-known

growth-persistence trade-off [26,27]. This pattern corresponds to

other studies from forests [60,61] and also grasslands [62], but is

contrary to the secondary forest succession from coastal shrubland

to mid-successional forests in New Zealand [63], where the

authors found a clear shift toward increased leaf palatability and

decomposability during succession. However, no abiotic variable

had a similarly high number of trait relationships in the Fourth

Corner Analysis as successional stage. As hypothesized, factors not

related to succession such as elevation, aspect and slope had only a

minor impact on trait composition. This low importance of

topographical variables forms a contrast to a study on trait

distribution in a Chinese tropical forests in Hainan, where slope

and aspect have been found to be important predictors [64].

Nevertheless, the few relationships to topographical variables

encountered in our study make sense ecologically. The finding of

increasing incidence of deciduous leaf phenology with increasing

elevation reflects the latitudinal biogeographical gradient, with

evergreen leaves dominating in the tropics and deciduous leaves in

the temperate zone. The increasing degree of deciduousness with

altitude can probably be explained by a higher frost hardiness and

higher resistance to snow break of deciduous trees [65]. Similarly,

evergreen leaf phenology type was associated with southwestern

aspects, which have higher solar elevation angles [66]. Beside a

better adaptation of evergreen species to higher temperatures and

higher levels of irradiance, the higher sun angles on southwestern

slopes might be particularly relevant in the winter time, because

Figure 4. Principal component analysis (PCA) analysing the
covariation of all 26 traits across all 122 species. Biplot of PCA
scores of the first and second axis. For species codes see Appendix
Table S1. Abbreviations of traits: LM = Leaf margin entire, LP = Leaf
pinnation, LH = Evergreen leaf habit, FW = Leaf fresh weight, DW = Leaf
dry weight, LA = Leaf area, SLA = Specific leaf area, LDMC = Leaf dry
matter content, C = Leaf carbon content, N = Leaf nitrogen content,
CN = Leaf carbon nitrogen ratio, P = Leaf phosphorous content, K = Leaf
potassium content, Ca = Leaf calcium content, Mg = Leaf magnesium
content, Al = Leaf aluminium content, Ni = Leaf nickel content, Pb = Leaf
lead content, Na = Leaf sodium content, Mn = Leaf manganese content,
Zn = Leaf zinc content, Fe = Leaf iron content, S = Leaf sulfur content,
StoD = Stomata density, StoL = Stomata length, StoW = Stomata width.
doi:10.1371/journal.pone.0035742.g004
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then the difference between southern and northern aspects is most

pronounced and evergreen species still assimilate carbon [67,68].

Aspect had also an impact on occurrence of leaves with toothed

margins that were predominantly found at eastern aspects. This

finding fully complies to the global pattern, where the percentage

of toothed leaves was negatively correlated with mean annual

temperature, interpreted as a potential adaptation for increased

carbon uptake through enhanced sap flow early in the growing

season [69].

The low number of significant correlations with inclination is

remarkable, given that inclination is related to site factors with a

positive impact on species richness [70,71]. Soil moisture showed

surprisingly few trait-relationships, which probably results from

our non-continuous moisture measurements. The few encountered

relationships displayed the opposite trend than what had been

anticipated from the assumption of higher transpiration rates, such

as a decrease in leaf calcium content with increasing soil moisture.

Trait relationships
Traits associated to the leaf economics spectrum turned out to

be the most responsive ones, thus confirming the second

hypothesis. Most relationships of abiotic variables and of variables

related to structure and richness were found for with leaf C to N

ratio, which points to a strategy of increasing nutrient conservation

and leaf robustness with ongoing succession, but also with

decreasing soil pH values [72]. Leaf nitrogen content (LNC) and

specific leaf area (SLA) followed the same pattern, but surprisingly

and in contrast to [60], leaf dry matter content (LDMC) did not

show one significant relationship to any environmental factor. As

SLA is determined by both leaf thickness and LDMC [73],

subtropical forests seem to respond to environmental gradients

mainly by variation in leaf thickness and not by LDMC. Stomata

density was found to be unrelated to SLA and leaf nutrient

contents. The observed decrease of stomata density with

successional time does probably not reflect a gradient in light

conditions, as stomata density has been described to be not

associated with shade tolerance [34]. Instead, a high stomata

density in early-successional stages might allow a more effective

and fine-tuned control of conductivity [23]. In contrast, a lower

number of stomata per unit area was compensated for by larger

stomata sizes in late stages.

We are aware that with our focus on leaf traits we have certainly

missed important key traits with well-known functions to tree

growth, demography and survival, such as wood density,

maximum adult height and seed mass [74]. Leaf traits alone,

such as SLA, were found to confer only limited information on the

performance of large trees in the tropics [22] and to explain very

little of the observed growth–mortality trade-off [74].

Trait-environment relationships
The numerous and strong relationships of traits to the abiotic

variables in this succession series allow the conclusion that

Figure 5. Output of the Fourth Corner Analysis based on model type I. Model type I removes both the link between site and environment
and the link between traits and species. Thus, the significant relationships are the result of a combination of the link between species composition
and environment as well as the link between species composition and functional traits. Black fields represent significant positive relationships, grey
fields significant negative relationships and white fields insignificant relationships. Significance levels are p = 0.05, based on 9999 randomizations. For
abbreviations of environmental variables and traits see Fig. 2 and 3, respectively.
doi:10.1371/journal.pone.0035742.g005
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environmental filtering is an important mechanism shaping these

forest communities. As expected from the third hypothesis, these

trait-environment relationships were mainly brought about by

interspecific trait variation, while intraspecific trait variation

played almost no role at all. Consistent with previous findings

that successional time had a large influence on species composition

and diversity [14], variables related to richness and forest structure

showed strong relationships to even a higher number of traits as

compared to those related to the abiotic environment. Assuming

that richness and structure, at least partly, reflect biotic filters,

brought about by competition, facilitation and complementarity,

the biotic component in trait filtering would be stronger than the

abiotic component. These arguments give strong support to the

suggestion to summarize both abiotic and biotic filtering in the

definition of environmental trait filtering [11].

Comparing the associations of communities with leaf
traits and of species with the environment

From the fourth hypothesis we expected that the encountered

trait-environment relationships were more based on the associa-

tion of communities with species leaf traits rather than on the

association of species with the environment, which we tested by

comparing three different null models with the Fourth Corner

Analysis [41]. We found the opposite result, indicating that the

impact of variation and position of environmental niche breadths

of species was larger than that of trait values within communities.

As model type I and II gave almost the same results, most

significances can be traced back to the link between species and

environment. This finding is consistent to the observed species

turnover along the successional gradient [14] and does not support

the idea of neutral community assembly [42]. The high

importance of the species-environment link sheds some light on

the way the performance filters of the community operate [75]. A

certain environment will result in eliminating species with traits

that confer inadequate local fitness. In a regression framework as

suggested by [75] the impact of the environment on the

abundance of species will be larger than the impact of eliminated

species on trait composition of the community. Thus, it might be

that species losses might be buffered by other species with similar

traits, lending support to the idea of trait redundancy in the

community [76,77]. Despite the obvious differences of species with

respect to important traits (e.g. evergreen vs. deciduous phenology

type), trait composition of the different plots was found to be rather

homogeneous. This finding is consistent with the null models

suggested by us for the same succession series [78], where we

described a large equivalence in trait space, i.e. a similar

differences between traits, among species. We can add now to

this result that also community mean trait values did not change

much along the succession series. However, we should point out

that the trait composition across all plots was not fully random,

because this would not have resulted in significant trait-

environment relationships in any null model.

Conclusion
This first study on trait-environment relationships in Chinese

species-rich subtropical forests fully confirmed the existence of

environmental filters. Although we were not able to separate

abiotic from biotic filtering, the low number of relationships

encountered with abiotic environmental variables suggests a strong

biotic component in trait filtering. More importantly, applying

different null models of the Fourth Corner Analysis we were able

to decompose the trait-environment relationship, showing that

species were more strongly associated with the environment than

traits were associated to the communities. This can be interpreted

as general low importance of trait differences for community

assembly in this subtropical forest. Yet, the question remains

which mechanisms have caused the observed species-environment

link. As species composition along the succession series was mainly

found to be the result of diffuse immigration [14], future trait

studies will have to include dispersal and establishment as key

processes that shape the community of this subtropical forest.

Supporting Information

Figure S1 Relationship between interspecific trait variation and

the environment, as obtained by regressing weighted normalized

trait values against environmental variables. Black fields represent

significant positive relationships, grey fields significant negative

relationships and white fields insignificant relationships. Signifi-

cance levels are p = 0.05. Abbreviations of traits: LM = Leaf

margin entire, LP = Leaf pinnation, LH = Evergreen leaf habit,

FW = Leaf fresh weight, DW = Leaf dry weight, LA = Leaf area,

SLA = Specific leaf area, LDMC = Leaf dry matter content,

C = Leaf carbon content, N = Leaf nitrogen content, CN = Leaf

carbon nitrogen ratio, P = Leaf phosphorous content, K = Leaf

potassium content, Ca = Leaf calcium content, Mg = Leaf magne-

sium content, Al = Leaf aluminium content, Ni = Leaf nickel

content, Pb = Leaf lead content, Na = Leaf sodium content,

Mn = Leaf manganese content, Zn = Leaf zinc content, Fe = Leaf

iron content, S = Leaf sulfur content, StoD = Stomata density,

StoL = Stomata length, StoW = Stomata width. Abbreviations of

environmental variables: Succ_Stage = Successional stage, Num_-

Species = Species richness, Num_Species_R = Rarefied species

richness, Num_Ind = Number of individuals per plot, Prop_Deci-

diduous = Proportion of deciduous individuals, Soil C = Soil

carbon content, Soil N = Soil nitrogen content, Soil CN = Soil

C/N ratio, Moisture = Mean soil moisture, Asp_E = Eastness = -

Sine (aspect), Asp_N = Northness = Cosine (aspect)), Light = Mean

Table 1. Model comparisons of the Fourth Corner Analysis.

Model type I Model type II Model typeIV

Suc_Sta 17 18 8

Num_Species 14 13 6

Num_Species_R 19 19 7

Num_Ind 17 18 8

Prop_Deciduous 18 21 6

Soil_C 10 8 3

Soil_N 7 7 4

Soil_CN 4 1 2

Soil_pH 11 11 8

Moisture 3 2 1

Elevation 2 1 1

Asp_E 9 1 9

Asp_N 4 0 4

Inclination 3 3 3

Light 1 1 1

Red_far_red_ratio 4 3 6

Sum 143 127 77

Number of significant relationships of all environmental variables obtained by
the different permutation models in the Fourth Corner Analysis (see Fig. 2 and
Appendix Fig. S2, S3). For abbreviations see Fig. 5.
doi:10.1371/journal.pone.0035742.t001
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relative intensity of PAR, Red_far_red_ratio = Mean red:far-red

ratio.

(DOC)

Figure S2 Output of the Fourth Corner Analysis based on

model type II, removing the link between site and environment;

thus, significances result from the association between site and

environment. Black fields represent significant positive relation-

ships, grey fields significant negative relationships and white fields

insignificant relationships. Significance levels are p = 0.05, based

on 9999 randomizations. Abbreviations of traits and environmen-

tal variables as in Fig. S1, and additionally LM = Leaf margin

entire, LP = Leaf pinnation, LH = Evergreen leaf habit.

(DOC)

Figure S3 Output of the Fourth Corner Analysis based on

model type IV, removing the link between species and traits; thus,

significances result from the association of species and traits. For

details see Fig. S1.

(DOC)

Table S1 Trait values of all species included in the analysis.

ID = species code used in Fig. 5. n = number of individuals

sampled and analysed. Abbreviations of traits: LM = Leaf margin

entire, LP = Leaf pinnation, LH = Evergreen leaf habit, FW = Leaf

fresh weight, DW = Leaf dry weight, LA = Leaf area, SLA = Spe-

cific leaf area, LDMC = Leaf dry matter content, C = Leaf carbon

content, N = Leaf nitrogen content, CN = Leaf carbon nitrogen

ratio, P = Leaf phosphorous content, K = Leaf potassium content,

Ca = Leaf calcium content, Mg = Leaf magnesium content,

Al = Leaf aluminium content, Ni = Leaf nickel content, Pb = Leaf

lead content, Na = Leaf sodium content, Mn = Leaf manganese

content, Zn = Leaf zinc content, Fe = Leaf iron content, S = Leaf

sulfur content, StoD = Stomata density, StoL = Stomata length,

StoW = Stomata width.

(DOC)
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14. Bruelheide H, Böhnke M, Both S, Fang T, Assmann T, et al. (2011) Community

assembly during secondary forest succession in a Chinese subtropical forest. Ecol

Monogr 81: 25–41.

15. Inouye R, Huntly N, Tilman D, Tester J, Stillwell M, et al. (1987) Old-field

succession on a Minnesota sand plain. Ecology 68: 12–26.

16. Guariguata M, Ostertag R (2001) Neotropical secondary forest succession:

changes in structural and functional characteristics. Forest Ecol Manage 148:

185–206.

17. Fyllas NM, Patiño S, Baker TR, Bielefeld Nardoto G, Martinelli LA, et al. (2009)

Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils

and climate. Biogeosciences 6: 2677–2708.

18. Reich PB, Walters MB, Ellesworth DS (1992) Leaf lifespan inrelation to leaf,

plant and stand characteristics among diverse ecosystems. Ecol Monogr 62:

365–392.

19. Alexander RM (1997) Physiological ecology-leaning trees on sloping ground.

Nature 386: 327–329.

20. Körner C (2007) The use of ‘altitude’ in ecological research. Ecol Letters 11:

569–574.

21. Weiher E, Werf A, Thompson K, Roderick M, Garnier E, et al. (1999)

Challenging Theophrastus: a common core list of plant traits for functional

ecology. J Veg Sci 10: 609–620.

22. Poorter L, Wright SJ, Paz H, Ackerly DD, Condit R, et al. (2008) Are functional

traits good predictors of demographic rates? Evidence from five neotropical

forests. Ecology 89: 1908–1920.
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40. Lepš J, de Bello F, Šmilauer P, Doležal J (2011) Community trait response to

environment: disentangling species turnover vs intraspecific trait variability
effects. Ecography 34: 856–863.

41. Dray S, Legendre P (2008) Testing the species traits-environment relationships:
the fourth-corner problem revisited. Ecology 89: 3400–3412.

42. Hubbell SP (2001) The unified theory of biodiversity and biogeography.

Princeton: Princeton University Press. 448 p.
43. Alonso D, Etienne RS, McKane AJ (2006) The merits of neutral theory. Trends

Ecol Evol 21: 451–457.
44. Aiba S, Hill D, Agetsuma N (2001) Comparison between old-growth stands and

secondary stands regenerating after clear-felling in warm-temperate forests of

Yakushima, southern Japan. For Ecol Manage 140: 163–175.
45. Wang XH, Kent M, Fang XF (2007) Evergreen broad-leaved forest in Eastern

China: its ecology and conservation and the importance of resprouting in forest
restoration. For Ecol Manage 245: 76–87.

46. Egler FE (1954) Vegetation science concepts. I. Initial floristic composition-a
factor in old-field vegetation development. Vegetatio 4: 412–417.

47. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high

resolution interpolated climate surfaces for global land areas. Int J Climatol 25:
1965–1978.

48. Fang JY, Yoda K (1988) Climate and vegetation in China. I. Changes in the
altitudinal lapse rate of temperature and distribution of sea level temperature.

Ecol Res 3: 37–51.

49. Legendre P, Mi XC, Ren HB, Ma KP, Yu MJ, et al. (2009) Partitioning beta
diversity in a subtropical broad-leaved forest of China. Ecology 90: 663–674.

50. Mutke J, Barthlott W (2005) Patterns of vascular plant diversity at continental to
global scales. Biologiske Skrifter 55: 521–537.

51. Hu Z, Yu M (2008) Study on successions sequence of evergreen broad-leaved
forest in Gutian Mountain of Zhejiang, Eastern China: species diversity. Front

Biol China 3: 45–49.

52. Yu MJ, Hu ZH, Ding B-Y, Fang T (2001) Forest vegetation types in Gutianshan
Natural Reserve in Zhejiang. J Zhejiang Univ 27: 375–380.

53. Popma J, Bongers F (1988) The effect of canopy gaps on growth and
morphology of seedlings of rain-forest species. Oecologia 75: 625–632.

54. Cornelissen H, Lavorel S, Garnier E, Dı́az S, Buchmann N, et al. (2003) A

handbook of protocols for standardised and easy measurement of plant
functional traits worldwide. Austral J Bot 51: 335–380.

55. Ackerly DD, Cornwell WK (2007) A trait-based approach to community
assembly:partitioning of species trait values into within- andamong-community

components. Ecol Letters 10: 135–145.
56. Legendre P, Galzin R, Harmelin-Vivien M (1997) Relating behavior to habitat:

Solutions to the fourth-corner problem. Ecology 78: 547–562.

57. Hurlbert SH (1971) The nonconcept of species diversity: a critique and
alternative parameters. Ecology 52: 577–586.

58. Dray S, Dufour A-B (2007) The ade4 package: Implementing the duality
diagram for ecologists. J Stat Softw 22: 1–20.

59. Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara RB, et al. (2010) Vegan:
Community Ecology Package. R package Version 1.17-2. http://CRAN.R-

project.org/package = vegan.

60. Poorter L, Plassche M, Willems S, Boot RGA (2004) Leaf traits and herbivory
rates of tropical tree species differing in successional status. Pl Biol 6: 746–754.

61. Wirth C (2009) Old-growth forest: function, fate and value: a synthesis. In: Old-

growth forests: Function, fate and value C. Wirth, G. Gleixner, M. Heimann,
eds. Ecological Studies, 207, Springer New York, Berlin, Heidelberg. pp

465–491.

62. Fortunel C, Garnier E, Joffre R, Kazakou E, Quested H, et al. (2009) Leaf traits
capture the effects of land use changes and climate on litter decomposability of

grasslands across Europe. Ecology 90: 598–611.

63. Mason NWH, Carswell FE, Richardson SJ, Burrows LE (2011) Leaf palatability
and decomposability increase during a 200-year-old post-cultural woody

succession in New Zealand. J Veg Sci 22: 6–17.

64. Deng F, Zang R, Chen B (2008) Identification of functional groups in an old-
growth tropical montane rain forest on Hainan Island, China. Forest Ecol

Manage 255: 1820–1830.

65. McGlone M, Dungan R, Hall G, Allen R (2004) Winter leaf loss in the New
Zealand woody flora. New Zeal J Bot 42: 1–19.

66. Lusk CH, Sendall K, Kooyman R (2011) Latitude, solar elevation angles and

gap-regenerating rain forest pioneers. J Ecol 99: 491–502.

67. Moore P (1980) The advantages of being evergreen. Nature 285: 535.

68. Cavender-Bares J, Cortes P, Rambal S, Joffre R, Miles B, et al. (2005) Summer

and winter sensitivity of leaves and xylem to minimum freezing temperatures: a
comparison of co-occurring Mediterranean oaks that differ in leaf lifespan. New

Phytol 168: 597–612.

69. Peppe DJ, Royer DL, Cariglino B, Oliver SY, Newman S, et al. (2011)
Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic

applications. New Phytol 190: 724–739.
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78. Böhnke M, Kröber W, Welk E, Wirth C, Bruelheide H (2012) Maintenance of

constant functional diversity during secondary succession of a subtropical forest
in China. Ecosphere submitted.

Leaf Trait-Environment Relationships

PLoS ONE | www.plosone.org 11 April 2012 | Volume 7 | Issue 4 | e35742


