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Abstract

Context

Research on d-aspartic acid (DAA) has demonstrated increases in total testosterone levels

in untrained men, however research in resistance-trained men demonstrated no changes,

and reductions in testosterone levels. The long-term consequences of DAA in a resistance

trained population are currently unknown.

Objective

To evaluate the effectiveness of DAA to alter basal testosterone levels over 3 months of

resistance training in resistance-trained men.

Design

Randomised, double-blind, placebo controlled trial in healthy resistance-trained men, aged

18–36, had been performing regular resistance training exercise for at least 3 d.w-1 for the

previous 2 years. Randomised participants were 22 men (d-aspartic acid n = 11; placebo n

= 11) (age, 23.8±4.9 y, training age, 3.2±1.5 y).

Intervention

D-aspartic acid (6 g.d-1, DAA) versus equal-weight, visually-matched placebo (PLA). All par-

ticipants performed 12 weeks of supervised, periodised resistance training (4 d.w-1), with a

program focusing on all muscle groups.

Measures

Basal hormones, total testosterone (TT), free testosterone (FT), estradiol (E2), sex-hor-

mone-binding globulin (SHBG) and albumin (ALB); isometric strength; calf muscle cross-

sectional area (CSA); calf muscle thickness; quadriceps muscle CSA; quadriceps muscle

thickness; evoked V-wave and H-reflexes, were assessed at weeks zero (T1), after six

weeks (T2) and after 12 weeks (T3).
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Results

No change in basal TT or FT were observed after the intervention. DAA supplementation

(n = 10) led to a 16%, 95% CI [-27%, -5%] reduction in E2 from T1-T3 (p<0.01). The placebo

group (n = 9) demonstrated improvements in spinal responsiveness (gastrocnemius) at the

level of the alpha motoneuron. Both groups exhibited increases in isometric strength of the

plantar flexors by 17%, 95% CI [7%, 28%] (p<0.05) as well as similar increases in hypertro-

phy in the quadriceps and calf muscles.

Conclusions

The results of this paper indicate that DAA supplementation is ineffective at changing testos-

terone levels, or positively affecting training outcomes. Reductions in estradiol and the blunt-

ing of peripheral excitability appear unrelated to improvements from resistance training.

Trial registration

Australian New Zealand Clinical Trials Registry ACTRN12617000041358

Introduction

D-aspartic acid (DAA) is an amino acid that exists in central nervous and reproductive tissues.

Animal and human research suggest that DAA functions in the development of the nervous

system as well as hormonal regulation [1, 2]. Data in mammalian studies indicate that DAA

supplementation can influence the hypothalamic-pituitary-gonadal axis (HPG) at the level of

the hypothalamus [3], anterior pituitary [3, 4] and the testes [4, 5]. Accumulation of DAA at

these sites is associated with an upregulation of testosterone production in these animals, as

well as upstream effectors of the HPG axis (i.e. luteinizing hormone).

Early human research demonstrated that three grams per day of DAA supplementation

increased total testosterone in untrained men by ~42% [6, 7]. Subsequently the popularity of

DAA supplementation in recreational resistance training has increased, owing to the positive

relationship between testosterone levels and mechanisms of muscular hypertrophy, such as

increased protein synthesis [8, 9] and satellite cell proliferation [10]. However in resistance-

trained men, three grams of DAA per day resulted in no meaningful change in testosterone

levels, or training outcomes after 14 [11] or 30 days of supplementation [12]. Indeed, Melville

and colleagues reported that a larger daily dose of DAA (6 g.d-1) actually decreased basal tes-

tosterone by ~12.5% after 14 days of supplementation, suggesting a deleterious effect on nega-

tive feedback mechanisms of the HPG axis [11]. This reduction is a particularly concerning

finding considering the supposed importance of basal testosterone, with respect to hypertro-

phic training outcomes. It is unclear if the observed decline in basal testosterone after 14 days

will continue if supplementation is continued for a longer timeframe (i.e. three months).

Moreover, the relationship to training outcomes if testosterone continues to decline, or other-

wise is maintained at a new basal level, is unknown.

The potential adverse effects of DAA on testosterone, in addition to affecting hypertrophic

outcomes, may also have an effect on the neural mechanisms associated with increased muscu-

lar strength. Strength appears to be a function of both the size [13] and composition of muscle

[14], in addition to the rate and magnitude of output from the nervous system [15, 16]. Resis-

tance training increases the voluntary activation of the nervous system [17], in addition to
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increasing the input-output response of cells in the spinal cord [18–20]. There is a growing

body of research that suggests DAA fills the criteria of a neurotransmitter [21–23], which

potentially could provide strength improvements via increased neurotransmitter availability.

Neural plasticity, which is observed in untrained individuals is a key explanatory mechanism

of strength development [24], and can involve cells at the spinal and supraspinal level. Mea-

sures of neural plasticity that examine spinal and supraspinal output, such as the H-reflex and

V-wave respectively, have not been measured following a period of resistance exercise in

trained individuals and as such, it is not clear if trained populations have the same neural adap-

tation response to resistance training as untrained individuals. The link between testosterone

and changes in the corticospinal pathway has been explored in humans with artificially

induced testosterone levels [25]. These increases in testosterone were concurrent with reduced

threshold of the evoked potentials from transcranial magnetic stimulation (TMS), indicating

that testosterone can positively increase the output from a given input, within the corticospinal

pathway [25]. It is plausible that artificially changing testosterone levels, via supplementation

may affect strength or power, by altering the efficiency of the corticospinal pathway. The

effects of DAA on neural plasticity has yet to be researched in humans.

The primary objective of this study was to evaluate the effectiveness of DAA to alter basal

testosterone levels over three months of resistance training. A secondary objective was to

establish potential mechanisms for changes in strength and hypertrophy. Based on our previ-

ous findings, it was hypothesised that the DAA group would experience decreased total testos-

terone and free testosterone. In addition, it was hypothesised that the DAA group would

experience decreased strength, which would be explained by changes in the corticospinal

pathway.

Methods

Subjects

The present study was approved by the Western Sydney University Research Ethics Commit-

tee (H10087) and data are ethically restricted for reasons relating to participant privacy. All

relevant data are contained within the paper and supporting files. All participants gave writ-

ten consent and completed a medical history check. The study was carried out by the Decla-

ration of Helsinki. Participants were recruited from the University campus via flyers, lecture

announcements and online intranet advertising. In addition, recruitment from the western

Sydney area was promoted via Facebook advertising. In response to recruitment 31 people

were assessed for eligibility. Twenty-two subjects were recruited, three dropped out due to

personal reasons, leaving 19 that completed the study (Fig 1). A rolling recruitment strategy

was conducted from 17th of March to the 16th of December 2014, with participants beginning

soon after they were recruited, thus participants began the study at different time periods.

Final testing was conducted at the end of the 12 week training period and the trial was ended

according to a set schedule for each participant. The last day of data collection was the 10th

March 2015. The sample size for the present study was determined from the reduction in free

testosterone observed in previous DAA research [11]. Free testosterone changes in the six-

gram group demonstrated an effect size of 1.17, which required 12 participants to be ade-

quately powered. A Means statistical test (matched pairs) using G Power v 3.1. was used to

estimate effect size using group parameters from the previous research [11]. Power calcula-

tions were determined A Priori with an alpha level of 0.05 and two tailed significance. Partici-

pant demographics are presented in Table 1.

Inclusion Criteria: aged 18–36; have no acute or chronic medical conditions; have the ability

to bench press 100% bodyweight; had been performing regular resistance training exercise for
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Fig 1. Consort flow diagram.

https://doi.org/10.1371/journal.pone.0182630.g001

Table 1. Comparison of participant characteristics for 6 g/d of d-aspartic acid (DAA) and placebo

(PLA), presented as mean±SD.

PLA DAA

N = 9 N = 10

Age (years) 25.4 ± 6.4 22.4 ± 2.6

Training age (years) 3.3 ± 1.7 3.1 ± 1.3

Height (m) 178.3 ± 6.2 180.4 ± 6.4

Body Mass (kg) 82.5 ± 9.0 80.5 ± 10.2

https://doi.org/10.1371/journal.pone.0182630.t001

A RCT of long-term DAA supplementation in trained men

PLOS ONE | https://doi.org/10.1371/journal.pone.0182630 August 25, 2017 4 / 20

https://doi.org/10.1371/journal.pone.0182630.g001
https://doi.org/10.1371/journal.pone.0182630.t001
https://doi.org/10.1371/journal.pone.0182630


at least three days per week for the previous two years; and not supplementing diet with any

ergogenic or testosterone boosting supplements.

Study design

The present study was a randomised, double-blinded, and placebo-controlled research

design. Subjects attended three laboratory sessions, located at the University campus,

baseline testing (T1), midpoint testing (T2) and post testing (T3). These testing sessions

involved: fasted blood draws for serum hormonal analysis; Brightness-mode (B-mode) ultra-

sound of the quadriceps and calf muscles for hypertrophy changes; electrical stimulation of

the tibial nerve to determine H-reflex and V-wave responses of the plantar flexors; and iso-

metric maximal voluntary contraction (MVC) of the plantar flexor muscles. Following T1,

all participants followed a structured resistance training protocol, which was combined with

their daily supplementation protocol. Participants were assigned to one of two experimental

groups: placebo (PLA, 6g rice flour, n = 11) or d-aspartic acid (6g DAA, n = 11). Three par-

ticipants were lost to follow-up, thus analysed participants included PLA, n = 9; DAA,

n = 10. One participant from the placebo group did not have sufficient data for plantar flexor

strength and neural measures, thus was omitted from those analyses. All participants con-

sumed 10 identical opaque capsules each morning with water before they had breakfast for

12 weeks. Adherence to daily supplementation was controlled for via prompts at supervised

training sessions, in addition the number of pills left were compared to their set schedule

each week. Participants were randomly allocated to treatment groups following a block ran-

domisation procedure (block size of four) based on a computer-generated list of random

numbers. Group allocation was managed by a technical officer, while the primary investiga-

tor and participants was kept blind to group assignment throughout the experimental inter-

vention, and data analysis. The protocol as explained in the original participant information

sheet, included 1RM testing for the squat and bench press. These were omitted due to time

constraints of participants on testing days, as well as the fact that isometric testing would

provide a stronger match with neural testing of the plantar flexors. As this study utilised a

commercially available supplement rather than a drug, it was not expected that this study

would fit the definition of a clinical trial, therefore the clinical registration of this study was

performed retrospectively (ANZCTR).

Training protocol

Participants trained four days per week, with supervised sessions conducted a minimum of

once per week. The participants training was monitored using training diaries. The prescribed

training involved five exercises that included 3–5 sets of various repetition maximum (RM)

prescriptions (2RM– 10RM). A primary lift was prescribed for each day–deadlift, bench press,

good morning/stiff-leg deadlift and squat, with accessory exercises for balance and volume.

These accessory exercises included: seated rows, pull-down, bent over row, biceps curl, chin-

ups, bench press, overhead press, pec fly, dip and back extension. See Table 2 for programming

of measurement specific exercises.

Periodisation changes were implemented at week six to improve motivation and prevent

overtraining. These changes can be observed in Table 2, with an increase in training intensity

with some of the exercises, but they did not affect the overall layout of the protocol. All partici-

pants were asked to perform 48 sessions in the gym in total (average number of sessions per-

formed 47.5±0.8, an adherence rate of 99.0%).

A RCT of long-term DAA supplementation in trained men
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Testing sessions

During laboratory sessions, the subject was asked to lie down upon arrival. After checking for

pre-testing adherence protocols (fasting status) participants were asked to lie down for two

minutes. Blood was then extracted from the antecubital vein via venepuncture. Participants

remained lying down for 20 minutes before ultrasound procedures followed. Following ultra-

sound testing, the subject was seated into an isokinetic dynamometer (KinCom 125, version

5.32, Chattanooga, TN, USA). After the KinCom was configured, the subject was prepared for

EMG and the cathode location was determined for transcutaneous nerve stimulation. The pro-

tocol for the determination of isometric plantar flexor strength, H-wave, Mmax and V-waves

followed. The overview of the study protocol is visually represented in Fig 2.

Fasted blood draws

Participants were instructed to fast for 12-hours and avoid strenuous exercise and alcohol con-

sumption the day before testing. For each participant, the initial blood draw was scheduled in

the morning between 7:00–10:00, with subsequent draws time-matched on an individual basis.

Whole blood was collected using serum separator tubes (SST™ II Advance, BD Vacutainer1),

and rested for 45 minutes in an air-conditioned room (19˚C). Collection tubes were centri-

fuged using a fixed angle rotor centrifuge (ADAMS1 Compact II Centrifuge, V:227, Becton

Dickinson & Co), run for 15 minutes at 2700 rpm and 828 x g. Serum was aliquoted and stored

at –80˚C until analysis by an external laboratory (Douglas Hanly Moir Pathology, Macquarie

Park, NSW, Australia). A single analysis of serum was performed for total testosterone (TT),

estradiol (E2), sex-hormone-binding-globulin (SHBG) and albumin (ALB). Testosterone and

SHBG were measured via electrochemiluminescence immunoassay, on a Roche E170 system

Table 2. Program design for exercises that primarily targeted the quadriceps and calf muscles. Prescribed training was either repetition maximum

(RM) or body weight to failure (BWF).

Weeks 1–6 Set 1 Set 2 Set 3 Set 4 Set 5

Day 1

Split squat 10RM 8RM 6RM

1-leg calf raise BWF BWF BWF

Day 3

Seated calf 10RM 10RM 8RM 8RM 6RM

Day 4

Front squat 8RM 6RM 5RM

Leg press 8RM 6RM 5RM

Leg extension 10RM 10RM 10RM 10RM

Step-ups 10RM 10RM 10RM

Weeks 7–12 Set 1 Set 2 Set 3 Set 4 Set 5

Day 1

Bulgarian split squat 8RM 6RM 6RM

1-leg calf raise BWF BWF BWF

Day 3

Seated calf 10RM 8RM 8RM 6RM

Day 4

Back squat 8RM 8RM 6RM 6RM

Leg press 10RM 6RM 8RM 6RM 6RM

Leg extension 10RM 10RM 10RM 8RM

Step-ups 5RM 5RM 5RM 5RM

https://doi.org/10.1371/journal.pone.0182630.t002
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(Roche Diagnostics, Dee Why, NSW, Australia), with a limit of detection values of 0.025 ng/ml

and 0.350 nmol/l respectively. Albumin was measured via bromocresol green succinate buffer

method (BCG), on an Abbott ARCHITECT c16000 (Abbott Laboratories, Abbott Park, Illi-

nois, USA). The limit of detection of the ALB assay is 30 g/l. Estradiol was measured via chemi-

luminescent microparticle immunoassay, on an Abbott i2000 (Abbott Laboratories, Abbott

Park, Illinois, USA) and the analytical sensitivity of this assay is� 10 pg/ml. Free testosterone

(FT) was calculated from TT, SHBG and ALB [26].

Ultrasound

Participants were asked to rest in a supine position for 20 minutes, to allow for the fluid shift

in the muscles to stabilise [27]. Extended-field-of-view (EFOV) images were conducted at the

inferior third of the quadriceps muscles, measured as a third of the distance between the centre

of the knee joint and the Anterior Superior Iliac Spine (ASIS). B-mode ultrasound imaging

was conducted using an Echo Blaster 128 family scanner and Echo Wave II v2.3.6 (Telemed,

Vilnius, Lithuania) software. Quality control methodology has been previously outlined [28].

These images were analysed for Cross Sectional Area (CSA) of the quadriceps muscles; vastus

lateralis (VL), vastus intermedialis (VI), vastus medialis (VM) and rectus femoris (RF). A mini-

mum of three images was obtained for each time point, with the average values from these

images used for data analysis. Images were analysed using ImageJ 1.46 (National Institutes of

Health, Bethesda, Maryland, USA) public domain software package. Intra-experimenter reli-

ability (CV) of the EFOV method was 2.26%.

Muscle thickness was determined for VL and VI at the inferior third (33%) and the mid-

point of the quadriceps (50%). To obtain sagittal images the probe was manipulated until the

superficial, and deep aponeuroses were parallel, and the pennation fibres were straight rather

than curved. Muscle thickness was obtained for vastus lateralis (VL33%, VL50%) and vastus

intermedialis (VI33%, VI50%). Pennation angle for vastus lateralis (VLAngle) was determined at

the midpoint quadriceps site (50% between the centre of the knee joint and ASIS). To deter-

mine calf muscle thickness, the distance between the lateral malleolus and the fibular head

was divided into three sites: Superior quarter, SOL75% and GAS75%; superior third, SOL67%

and GAS67%; and midpoint, SOL50% and GAS50%. Intra-experimenter reliability (CV) of the

Fig 2. Testing procedures overview. In chronological order, the study protocol comprised of: Consent and forms; venepuncture blood draws; ultrasound

testing of the quadriceps and calf muscles; EMG and stimulation preparation; isometric MVCs (plantar flexors); and determination of H-wave curve and V-

waves via electrical stimulation.

https://doi.org/10.1371/journal.pone.0182630.g002
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analysis of the sagittal images was 2.99% for the quadriceps thickness, 8.68% for calf thickness

and 13.67% for pennation angle.

EMG

Electromyography was recorded from the soleus and gastrocnemius muscles using bipolar

Ag/AgCl electrodes (Maxensor; Medimax Global, Australia). The skin was prepared following

standardised procedure to reduce impedance below five kΩ. Soleus electrodes were placed at

two-thirds of the distance between the medial condyle of the femur and the medial malleolus.

Two electrodes were placed on the muscle belly for the medial gastrocnemius site, and the

medial malleolus landmark was used for the reference electrode. Placement of the electrodes

was recorded to ensure consistency between testing sessions. A ML138 Octal BioAmp (com-

mon mode rejection ratio >85 dB @ 50 Hz, input impedance 200 MΩ) with 16-bit analog-to-

digital conversion, sampled at 2 kHz (ADI Instruments, Sydney, NSW, Australia) was used to

record sEMG signals into LabChart v7.3.7. Raw signals were filtered with a fourth-order Bessel

filter between 20–500 Hz.

Isometric force

Isometric testing was chosen over dynamic 1RM strength testing, as it was believed to be a

stronger and more reliable match to the neural protocol. The isokinetic dynamometer (Kin-

Com 125, version 5.32, Chattanooga, TN, USA) was configured, so the seat was set upright,

with the participant’s hip and knee flexed to 90˚ degrees and the subject’s lateral malleolus in

line with the centre of rotation of the lever arm. The seat angle was adjusted so that there was

no gap between the knee and the edge of the seat to prevent unwanted muscle activity. The

participants left foot was attached to the plantar-flexion–dorsiflexion attachment with hook-

and-loop straps. Two seatbelts were applied across the thighs and chest. Subjects were warmed

up with three submaximal contractions, ~50%, ~75%, ~90% Maximal Voluntary Contraction

(MVC) spaced one minute apart. After sufficient warm up, three MVCs were recorded, with

two minutes rest given between each MVC. Subjects were instructed, from complete relaxa-

tion, to contract their plantar flexors as hard and as fast as possible, holding the contraction for

five seconds. Verbal encouragement was given during MVC attempts. This was standardised

by repeating the word “GO” during the five seconds of contraction. Visual feedback of the

instantaneous torque production was displayed on a screen that participants could see. Torque

output signals were directly sampled from the dynamometer at 2 kHz (PowerLab, ADInstru-

ments, Sydney, NSW, Australia). MVC was defined as the peak isometric torque (N.m) exerted

within the 5s force trace.

Posterior tibial nerve stimulation

H-reflexes, M-waves and V-waves were evoked from the soleus and gastrocnemius using a

1-ms square wave pulse, delivered by a constant current stimulator (DS7AH Stimulator, Wel-

wyn Garden City, UK) at 400 V, applied to the tibial nerve. A custom anode (Aluminium foil

10x6 cm and electrode paste) was applied to the anterior aspect of the thigh, proximal to the

patella. A single Ag/AgCl electrode (Maxensor; Medimax Global, Australia), was located on

the posterior side of the left knee within the popliteal fossa. To determine nerve location a rub-

ber-insulated probe was manipulated within the popliteal fossa until the largest evoked resting

H-wave was observed from the soleus EMG trace. To map the H-M curve, H-wave threshold

was approximated by increasing stimulation intensity from 10 to 30 mA (1 mA increments).

The start of the H-M curve was defined as three mA lower than the intensity to evoke� 1 mV.

To approximate Mmax, the stimulus intensity was increased by 10 mA increments until a
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plateau was achieved over three stimulation points, with the last point defined as Mmax. Thirty

stimulation points were created on a logarithmic scale between these two approximations.

Two stimulations (with 10 seconds rest between) were recorded for each of the thirty points.

H-wave data processing

For H-wave processing, the ascending limb was defined as data from the initial stimulation

point to Hmax. Data from the ascending limb was entered into a custom program coded in the

statistical package R (R Foundation for Statistical Computing, Vienna, Austria). This program

incorporated a three-parameter sigmoid function and used a general least squares model to

find the best fit for the ascending limb H-wave data (Klimstra & Zehr, 2008). Recruitment

curves with an R2 < 0.90 were omitted from analysis (Vila-Cha et al., 2012). The following

parameters were acquired from the ascending limb: the slope at the midpoint (Hslp), current at

H-wave threshold (iHth), current at H-wave maximum amplitude (iHmax) and current at 50%

Hmax (iH50). These parameters are visually represented in Fig 3. V-wave data was processed by

normalising the value to the maximal motor response for that time point (Mmax).

Statistical analyses

All statistical analyses were completed using IBM SPSS Statistics version 22 (SPSS Inc., Chi-

cago, IL, USA), two-tailed statistical significance was accepted at P<0.05. The Kolmogorov-

Fig 3. H-reflex parameters displayed on a representative example. The raw data is represented as open circles, with the sigmoid fit

data represented along the solid line. The short dashed line represents the slope at 50% of Hmax. The lower filled circle represents iHth,

and the upper filled circle represents iHmax.

https://doi.org/10.1371/journal.pone.0182630.g003
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Smirnov test was applied to assess normality of distribution. The descriptive data are presented

as means ± standard deviation (SD). All measurements were analysed by a two-way (condition

x time) ANOVA for repeated measures (T1, T2 and T3). In the event of a significant F ratio,

post hoc comparisons were made using a Bonferroni correction. Mean differences and stan-

dard deviation were reported in results tables. When significant changes over time or when

differences between conditions were observed, data was reported as percentage change with

the upper and lower 95% confidence intervals (CI) displayed in square brackets. The estimated

effect size Cohen’s d (d) was reported for post hoc analysis.

Results

Hormonal analysis

There was no main effect of time for the blood markers, FT (p = 0.661), SHBG (p = 0.180),

ALB (p = 0.096) and a trend for a time effect for TT (p = 0.075, d = 0.18, see Fig 4, trend indi-

cates an overall reduction in TT). Results from E2 revealed a significant group by time effect

(p = 0.023) with post hoc analysis showing that the DAA group experienced a 16.2%, 95% CI

[-27.0%, -5.5%] reduction in E2 from T1 to T3 (p = 0.009, d = 0.59, Fig 5). All other blood

markers showed no significant group by time effect (TT, p = 0.614; FT, p = 0.543; SHBG,

p = 0.829; ALB, p = 0.393; HDL, p = 0.301) (Table 3).

Isometric and dynamic muscle strength

A main effect for time was observed for plantar flexor strength (p = 0.004, Table 4). Post hoc
analysis revealed that isometric plantar flexor strength increased 17.2%, 95% CI [6.9%, 27.5%]

from T1 to T3 (p = 0.008, d = 0.66, Fig 6). A significant main effect for time was observed in

the 10RM seated calf raise (p<0.001, Table 4). Post hoc analysis revealed that dynamic calf

strength was significantly increased by 50.3%, 95% CI [22.6%, 77.9%] from T1 to T2 (p<0.001,

Fig 4. Individual response of total testosterone. Left graph depicts placebo data and right graph depicts the data from the d-aspartic group. Solid

line depicts group mean.

https://doi.org/10.1371/journal.pone.0182630.g004
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d = 1.24), 15.8%, 95% CI [9.2%, 22.3%] from T2 to T3 (p<0.001, d = 0.71) and 76.5%, 95% CI

[37.7%, 115.3%] from T1 to T3 (p<0.001, d = 1.94).

α-motor neuron excitability and efferent drive

A main effect for time was observed for Hmax (p = 0.023). Post hoc analysis revealed a decreas-

ing trend between T1 and T3 (p = 0.101, d = 0.63). A significant group by time effect was

observed in gastrocnemius iHmax (p = 0.031), and in iH50 (p = 0.033). Post-hoc analysis of

iHmax showed a 13.8%, 95% CI [-36.0%, 8.4%] reduction from T2 to T3 in PLA (p = 0.038,

d = 0.70; Fig 7). Post-hoc analysis for iH50 also demonstrated a 14.8%, 95% CI [-34.1%, 4.6%]

reduction from T2 to T3 in PLA (p = 0.041, d = 0.68, Fig 8). No time effects (p>0.200) or

group by time effects (p>0.100) were observed in any soleus H-reflex measure (Table 5). The

V/Mmax ratio had no main effect for time (V/Mmax, p = 0.417; V/Mmax, p = 0.587, soleus and

Fig 5. Individual response of estradiol. Left graph depicts placebo data and right graph depicts the data from the d-aspartic group. Solid line depicts

group mean. *a significant between group difference, as compared to T1 (p<0.01).

https://doi.org/10.1371/journal.pone.0182630.g005

Table 3. Fasting hormones. Total testosterone (TT, ng/ml), free testosterone (FT, pmol/l), estradiol (E2, pmol/l), sex-hormone-binding-globulin (SHBG,

nmol/l), albumin (ALB, g/l) levels, for placebo (PLA) and six grams per day of d-aspartic acid (DAA), at baseline (T1), six weeks midpoint (T2) and 12 weeks

post testing (T3).

PLA (n = 9) DAA (n = 10)

T1 T2 T3 T1 T2 T3

TT 6.1 ± 1.5 6.3 ± 1.5 6.0 ± 1.9 5.7 ± 1.6 5.9 ± 1.6 5.3 ± 1.4

FT 431.9 ± 113.3 443.3 ± 121.2 444.4 ± 164.2 408.3 ± 90.3 418.7 ± 108.7 387.9 ± 95.1

E2 84.4 ± 25.0 82.8 ± 17.7 91.2 ± 26.5 92.4 ± 25.7 83.2 ± 29.5 77.1 ± 26.4*a

SHBG 36.2 ± 12.5 38.2 ± 14.5 34.6 ± 11.7 34.5 ± 15.3 34.6 ± 12.8 32.3 ± 10.2

ALB 45.4 ± 2.1 44.7 ± 3.1 44.6 ± 1.7 45.9 ± 2.5 46.1 ± 2.5 44.9 ± 1.9

Data are mean±SD.

*a significant between-group difference, as compared to T1 (p<0.01).

https://doi.org/10.1371/journal.pone.0182630.t003
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gastrocnemius respectively) or group by time effect (V/Mmax, p = 0.568; V/Mmax, p = 0.496,

respectively; Table 5).

Muscle hypertrophy and architecture

A significant main effect for time was observed in body mass (p = 0.005, Table 6). Post hoc
analysis revealed a 1.5%, 95% CI [0.2%, 2.4%] increase in body mass from T1 to T3 (p = 0.045,

d = 0.12). A significant main effect for time was observed for CSA in the muscles, VL

(p<0.001), VI (p = 0.002), RF (p = 0.034) and VM (p<0.001). Post-hoc analysis of CSA

revealed that VL was increased 6.5%, 95% CI [2.3%, 10.8%] from T1 at T2 (p = 0.020, d = 0.33)

and 10.1%, 95% CI [5.4%, 14.8%] at T3 (p<0.001, d = 0.48). VM was increased 7.8%, 95% CI

[4.3%, 11.3%] from T1 at T2 (p<0.001, d = 0.21) and 11.4%, 95% CI [6.4%, 16.4%] at T3

(p<0.001; d = 0.41). VI was increased 6.6%, 95% CI [2.3%, 10.9%] from T1 to T3 (p = 0.008

d = 0.41). RF demonstrated an increasing trend between T1 and T3 (p = 0.091, d = 0.41,

Table 6).

Table 4. Maximal voluntary contractions and dynamic strength of the plantar flexors. Seated 90˚ calf raise MVC and seated 90˚ calf raise 10RM, for

placebo (PLA) and six grams per day of d-aspartic acid (DAA), at baseline (T1), six weeks midpoint (T2) and 12 weeks post testing (T3).

PLA (n = 8) DAA (n = 10)

T1 T2 T3 T1 T2 T3

MVC 264.3 ± 52.0 292.8 ± 49.8 293.0 ± 40.8#a 243.6 ± 61.7 268.8 ± 78.8 287.6 ± 64.8#a

10 RM 33.9 ± 7.0 41.1 ± 6.5#a 47.8 ± 7.0# @a 31.3 ± 12.4 47.5 ± 10.5#a 53.7 ± 9.8#a @a

Data are mean±SD.
# significantly different from T1, irrespective of group (p<0.05),
#a (p<0.01).
@a significantly different from T2, irrespective of group (p<0.01).

https://doi.org/10.1371/journal.pone.0182630.t004

Fig 6. Maximal voluntary contraction results for isometric plantar flexor strength. Values at baseline

(T1), six weeks midpoint (T2) and 12 weeks post testing (T3), n = 18. Data are mean, 95% CI. #a significantly

different from T1, irrespective of group (p<0.01).

https://doi.org/10.1371/journal.pone.0182630.g006
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For the quadriceps sagittal images (Table 6), a significant main effect for time was observed

in VI33% (p = 0.047) and VLAngle (p = 0.040; d = 0.41). Post-hoc analysis revealed no significant

change from T1 to T3, in VI33% (p = 0.135; d = 0.26) and VLA (p = 0.106; d = 0.41). No signifi-

cant main effects for time were observed in soleus at SOL75% (p = 0.217), SOL67% (p = 0.141),

with an increasing trend observed in SOL50% (p = 0.063, d = 0.49). Significant main effects

for time were observed in the gastrocnemius muscle at GAS75% (p<0.001) and GAS67%

(p = 0.004) but not GAS50% (p = 0.468). Post-hoc analysis revealed that GAS75% increased

9.7%, 95% CI [4.3%, 15.0%] from T1 to T2 (p = 0.002, d = 0.32) and 18.6%, 95% CI [4.8%,

32.3%] from T1 to T3 (p = 0.011, d = 0.59). GAS67% increased 20.6%, 95% CI [3.4%, 37.9%]

from T1 to T3 (p = 0.012, d = 0.51; Table 6).

Fig 7. Absolute change score in gastrocnemius normalised iHmax. Normalised to current at 50% Mmax,

post testing minus midpoint testing (T3-T2) and post testing minus baseline testing (T3-T1). Data are mean,

95% CI. * significant difference between groups (p<0.05).

https://doi.org/10.1371/journal.pone.0182630.g007

Fig 8. Absolute change score in gastrocnemius normalised iH50. Normalised to current at 50% Mmax,

post testing minus midpoint testing (T3-T2). Data are mean, 95% CI. * significant difference between groups

(p<0.05).

https://doi.org/10.1371/journal.pone.0182630.g008
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Discussion

The short-term supplementation (14 days) has been shown to reduce testosterone levels in

resistance-trained men [11]. Thus the primary objective of this study was to evaluate the effect

of DAA supplementation on basal testosterone over a three month resistance training period.

Based on our previous results, we hypothesised that DAA would reduce basal testosterone lev-

els. The novel findings of this study were that 1) DAA did not increase or decrease testosterone

levels in resistance-trained men, 2) DAA supplementation reduced levels of estradiol, 3) equiv-

alent strength and hypertrophy gains were observed for both the placebo and DAA groups,

and 4) the placebo group experienced a reduction in all gastrocnemius H-reflex parameters

pertaining to current intensity.

Effects of DAA on hormones, strength and hypertrophy

Three months of DAA supplementation did not change basal testosterone levels in resistance-

trained men. The lack of change observed in the present study suggests that the previously

observed reduction in testosterone after two weeks supplementation may be transitory [11].

Previous research in resistance-trained men has observed increases in d-aspartate oxidase [12],

which oxidises DAA. It is plausible that d-aspartate oxidase production is linked with total tes-

tosterone levels, and regulates abnormal levels of DAA in the bloodstream. This could explain

why increased testosterone from DAA supplementation has been observed when levels of tes-

tosterone are low-normal [6], in comparison to the lack of change observed when testosterone

levels are normal-high [11, 12]. The results of this study clearly demonstrate that DAA is an

ineffective supplement for improving basal testosterone levels in resistance-trained men.

Table 5. Plantar flexor neural variables. Maximal M-wave (Mmax, mV), V-wave to maximal M-wave ratio (V/Mmax, %), maximal H-wave (Hmax, % Mmax),

slope at 50% Hmax (Hslp, mV/mA), current (i), all i variables normalised to current at 50% Mmax, current at H-wave threshold (iHth), current at 50% Hmax (iH50),

current at Hmax (iHmax), for placebo (PLA) and six grams per day of d-aspartic acid (DAA), at baseline (T1), six weeks midpoint (T2) and 12 weeks post testing

(T3).

PLA (n = 8) DAA (n = 10)

Soleus T1 T2 T3 T1 T2 T3

Mmax 9.5 ± 3.5 8.0 ± 2.3 9.8 ± 4.4 9.8 ± 2.6 11.3 ± 5.4 8.9 ± 4.0

V/Mmax 30.46 ± 27.75 34.08 ± 29.28 26.49 ± 18.60 24.89 ± 9.33 30.37 ± 17.62 28.92 ± 20.29

Hmax 44.1 ± 18.3 47.4 ± 18.2 47.6 ± 15.4 45.3 ± 12.4 46.3 ± 17.4 39.8 ± 12.5

Hslp 2.1 ± 1.4 2.6 ± 2.3 2.8 ± 1.7 2.1 ± 1.3 2.9 ± 2.3 2.3 ± 1.7

iHth 59.0 ± 27.0 50.8 ± 23.0 40.3 ± 8.8 47.8 ± 19.1 44.5 ± 17.1 49.8 ± 21.0

iH50 70.8 ± 29.5 62.4 ± 25.6 51.0 ± 9.5 60.8 ± 23.5 54.8 ± 20.1 62.5 ± 20.6

iHmax 82.7 ± 32.3 74.1 ± 29.4 61.8 ± 12.5 73.8 ± 28.3 65.0 ± 23.7 75.2 ± 22.2

Gastrocnemius T1 T2 T3 T1 T2 T3

Mmax 7.7 ± 3.0 9.0 ± 3.1 8.9 ± 3.5 9.7 ± 2.8 10.1 ± 3.5 10.7 ± 2.9

V/Mmax 26.50 ± 28.41 30.87 ± 28.76 24.50 ± 18.54 22.20 ± 9.91 25.30 ± 10.41 27.40 ± 30.24

Hmax 49.3 ± 22.3 34.9 ± 18.0 36.5 ± 20.4 41.7 ± 21.5 38.4 ± 18.6 31.4 ± 13.5

Hslp 2.2 ± 1.3 1.9 ± 1.6 2.5 ± 2.0 2.1 ± 1.7 2.5 ± 1.7 1.6 ± 1.2

iHth 46.0 ± 18.7 54.6 ± 31.8 40.0 ± 8.1 47.5 ± 19.4 46.5 ± 19.3 44.6 ± 15.0

iH50 59.7 ± 20.2 66.9 ± 35.0 49.6 ± 7.3ϕ 60.9 ± 23.1 54.1 ± 20.3 61.5 ± 22.4

iHmax 73.42 ± 23.5 79.2 ± 39.0 59.3 ± 9.1*ϕ 74.3 ± 28.1 63.8 ± 25.0 76.2 ± 29.0

Data are mean ± SD.

* significant between-group differences, as compared to T1 (p<0.05).
ϕ significant between-group differences, as compared to T2 (p<0.05).

https://doi.org/10.1371/journal.pone.0182630.t005
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The supplementation of DAA caused a marked reduction in estradiol levels. Mechanisti-

cally, estradiol was potentially reduced via disruption of the testosterone-estradiol aromatase

pathway [29]. In the animal model, both positive [30] and negative [31] relationships have

been observed between gonadal DAA and estradiol. Additionally, in vitro research has

observed both increased [30, 32] and decreased [31] estradiol levels with DAA supplementa-

tion. With this conflicting data, the effects of DAA on estradiol in the animal model is unclear.

In resistance-trained men estradiol remains unchanged over two [11] and four weeks [12]

from a resistance training and supplement protocol. Despite an observed reduction of estradiol

in the present study, the training outcomes clearly demonstrate similar improvements in

hypertrophy and strength. This is further evidence that basal hormonal fluctuations within

normal ranges are not key explanatory mechanisms of training outcomes, rather it is likely

intrinsic mechanisms that explain training improvements and that hormones play a permis-

sive role in training adaptions. Intrinsic mechanisms pertaining to hypertrophy include the

activation of various signalling pathways (Akt/mTOR, PA/mTOR, mechanoreceptor),

Table 6. Body mass and ultrasound hypertrophy data. Vastus lateralis (VL), vastus intermedialis (VI), rectus femoris (RF), vastus medialis (VM), soleus

(SOL), gastrocnemius (GAS). Percentage indicates the distance from distal to proximal with quadriceps images referenced from the centre knee joint to the

ASIS and calf images referenced from lateral malleolus to the fibular head.

Placebo (n = 9) 6 g/d (n = 10)

T1 T2 T3 T1 T2 T3

Body Mass 82.5 ± 9.0 83.2 ± 7.9 83.8 ± 8.0# 80.5 ± 10.2 81.0 ± 9.8 81.4 ± 9.9#

Quadriceps

CSA (cm2)

VL 22.4 ± 5.3 24.1 ± 4.9# 24.8 ± 4.7#b 21.1 ± 4.4 21.9 ± 3.6# 22.7 ± 4.1#b

VI 23.7 ± 4.1 24.4 ± 3.9 25.3 ± 3.6#b 26.6 ± 3.7 27.3 ± 3.9 27.9 ± 3.8#b

RF 4.1 ± 1.4 4.3 ± 0.8 4.6 ± 1.0 4.7 ± 1.2 5.1 ± 1.1 5.2 ± 1.2

VM 18.7 ± 4.1 19.6 ± 4.3#b 20.4 ± 4.1#b 18.3 ± 4.6 20.1 ± 4.8#b 20.5 ± 4.7#b

Sagittal (mm)

VL33% 27.5 ± 3.7 28.5 ± 3.1 28.3 ± 4.0 26.4 ± 4.1 27.1 ± 4.9 27.7 ± 4.8

VI33% 17.2 ± 3.4 18.9 ± 2.7 18.4 ± 3.3 19.1 ± 4.0 19.5 ± 4.2 19.8 ± 3.4

VL50% 25.8 ± 3.6 26.6 ± 3.5 26.6 ± 4.6 26.0 ± 4.7 27.1 ± 5.5 27.1 ± 4.7

VI50% 17.2 ± 3.4 18.9 ± 2.7 18.4 ± 3.3 20.1 ± 4.6 20.6 ± 4.7 20.5 ± 4.6

VLAngle (˚) 14.4 ± 2.6 15.6 ± 3.0 16.4 ± 3.7 15.9 ± 3.4 17.5 ± 4.6 16.6 ± 3.2

Calf

Sagittal (mm)

SOL75% 14.0 ± 2.5 13.3 ± 2.6 14.0 ± 2.3 14.1 ± 2.1 13.6 ± 1.5 14.2 ± 1.4

SOL67% 14.3 ± 2.3 14.7 ± 2.2 14.9 ± 2.2 14.1 ± 2.2 14.3 ± 2.2 14.9 ± 2.3

SOL50% 14.8 ± 2.2 17.4 ± 5.7 16.2 ± 3.0 14.2 ± 3.5 15.5 ± 2.6 16.1 ± 2.2

GAS75% 8.6 ± 3.0 9.4 ± 3.2#a 10.4 ± 2.4# 9.4 ± 1.6 10.1 ± 1.5#a 10.1 ± 1.5#

GAS67% 8.5 ± 3.0 9.8 ± 3.0 10.6 ± 2.9# 9.4 ± 2.5 9.7 ± 3.0 10.1 ± 2.5#

GAS50% 3.8 ± 2.0 4.2 ± 1.8 4.4 ± 1.3 4.5 ± 3.0 3.2 ± 1.0 3.8 ± 0.9

Data are mean±SD.
# significantly different from T1, irrespective of group (p<0.05),
#a (p<0.01),
#b (p<0.001)

https://doi.org/10.1371/journal.pone.0182630.t006

A RCT of long-term DAA supplementation in trained men

PLOS ONE | https://doi.org/10.1371/journal.pone.0182630 August 25, 2017 15 / 20

https://doi.org/10.1371/journal.pone.0182630.t006
https://doi.org/10.1371/journal.pone.0182630


phosphorylation of intramuscular signalling proteins, regulation of messenger RNA (transla-

tion initiation), increases in AR content, satellite cell activity and expression of muscle-specific

microRNA [33, 34]. For strength it appears that neural adaptation mechanisms such as earlier

recruitment of type II motor units, as demonstrated by a reduction in recruitment threshold

distributions; increased observation of ‘true’ doublet spikes; or increased maximal firing fre-

quency of motor units during voluntary ballistic contractions shown by a reduction of inter-

spike intervals; increase in efferent neural drive to the muscle: and an increase in the firing fre-

quency of the motor units [15, 16, 35] are driving improvments.

Neural adaptation

This is the first study to examine changes in the H-reflex pathway following a period of resis-

tance exercise in trained men. These results demonstrate for the first time improvements in

responsiveness at the level of the alpha motoneuron, similar to that which is observed in novice

populations [24, 36, 37]. Mechanistically, this could be a result of improved excitability of the

alpha motoneuron, improved excitability of the Ia afferent loop, or a decrease in presynaptic

inhibition at the level of the interneuron [38].

Improved excitability of the H-reflex pathway in the placebo group was blunted by DAA

supplementation. It is plausible since DAA appears to fit the role of a neurotransmitter [21],

that DAA is inhibiting the capacity of the neurotransmitter system to adapt over time to the

resistance exercise stimulus. DAA can enter the neuron via L-glutamate transporters [39, 40].

However, the transport of DAA could be saturating the L-glutamate transporters. This, in

turn, might inhibit a more potent neurotransmitter, such as glutamate [41] and ultimately

result in blunted neural adaption. As both groups equally improved plantar flexor isometric

and dynamic strength (10RM values), the contribution of between-group differences observed

in excitability of the spinal pathway appears negligible. The H-reflex utilises the same pathway

as the myotatic reflex [42], which is important reflex in the context of power development

because it activates alpha motoneuron activity in a rapidly stretched muscle [38]. A potential

limitation of this study is the lack of testing for dynamic power (e.g. plyometric testing), as this

would help clarify the relevance of the improved H-reflex excitability from the perspective of

functional power.

The present study showed that V/Mmax ratio in the plantar flexors did not improve over

the course of the training study, suggesting that neither DAA supplementation nor training

affected supraspinal drive to the plantar flexors in this population. Research in novice popu-

lations has demonstrated increases in V/Mmax ratio with resistance training [16, 24, 43, 44],

however resistance-trained individuals (e.g. weightlifters) demonstrate significantly larger

V-wave responses in comparison to inexperienced trainers [45]. Data on endurance training

has failed to show any improvements in V-wave measures, suggesting that the improvement

of neural drive is an adaptation exclusive to resistance training [24]. The results of the cur-

rent study present novel evidence, demonstrating that resistance-trained individuals do not

improve supraspinal drive to the plantar flexors with three months of resistance training.

This could suggest that there is a ceiling for adaptation of supraspinal drive and that further

neural improvements are exclusive to changes of excitability within the spinal cord. The

data from the present study exhibited high variability between subject’s V-waves, which

might suggest an issue with the sensitivity of the method that was used. Additionally, the

reliance of V-waves to measure a change in supraspinal drive is a limitation of this study.

The inclusion of additional measures of corticospinal function from the use of transcranial

stimulation techniques may have provided clearer insight into potential supraspinal

changes.
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Practical implications and future research direction

DAA is currently purported as a testosterone boosting supplement. The results of this study

not only suggest otherwise but also add to the body of evidence that changes in basal hormonal

levels within the normal physiological range play a minor role with respect to training out-

comes. The long-term effects of DAA did not provide any benefit in relation to strength or

hypertrophy in a resistance-trained population. Additionally, DAA appears to be blunting

neural adaptation that was evident in the placebo group. As such, the results of this study

strongly suggest that DAA is not an ideal supplement for resistance-trained men and cannot

be recommended for long-term use with resistance training.

The effects of DAA have yet to be explored in either a female population, where mecha-

nisms of DAA and testosterone manipulation could differ. Additionally, an elderly population,

with decreased testosterone levels, may benefit from DAA supplementation combined with

resistance training, as some research has demonstrated that DAA can improve testosterone

levels in untrained men. The mechanisms driving power adaptations in untrained individuals

are well researched, however, in a resistance-trained population the data is lacking. The link

between neural plasticity and changes in functional power from resistance training, from a

resistance-trained context could also be explored. Additionally, future studies could further

test the theory that resistance-trained individuals experience a ceiling effect with supraspinal

neural adaptations, or if they have the ability to continue to improve supraspinal drive.
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