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Electrohysterography (EHG) is a noninvasive technique formonitoring uterine electrical activity. However, the presence of artifacts
in the EHG signal may give rise to erroneous interpretations and make it difficult to extract useful information from these
recordings. The aim of this work was to develop an automatic system of segmenting EHG recordings that distinguishes between
uterine contractions and artifacts. Firstly, the segmentation is performed using an algorithm that generates the TOCO-like signal
derived from the EHG and detects windows with significant changes in amplitude. After that, these segments are classified in two
groups: artifacted and nonartifacted signals. To develop a classifier, a total of eleven spectral, temporal, and nonlinear features were
calculated from EHG signal windows from 12 women in the first stage of labor that had previously been classified by experts. The
combination of characteristics that led to the highest degree of accuracy in detecting artifacts was then determined. The results
showed that it is possible to obtain automatic detection of motion artifacts in segmented EHG recordings with a precision of 92.2%
using only seven features. The proposed algorithm and classifier together compose a useful tool for analyzing EHG signals and
would help to promote clinical applications of this technique.

1. Introduction

Monitoring uterine contractions is commonly used to esti-
mate the time of an approaching labour. In spite of the
fact that intrauterine pressure (IUP) is regarded as the gold
standard in monitoring these contractions, its use in clinical
practice is limited since it requires rupturing the membranes
to place a catheter inside the uterus. This not only leads
to delivery but may also increase the risk of intrapartum
infection [1]. Hospitals often use a pressure transducer
(TOCOdynamometer or TOCO) placed on the mother’s
abdomen for basic noninvasivemonitoring of uterine activity,
thus obtaining the frequency and duration of contractions.
However, the TOCO is not a reliable technique, as the
measurements obtained are by no means precise and depend
to a large extent on the subjective criteria of the operator

[2–4]. Neither do they provide much additional information
on the efficiency of contractions in order to decide whether
parturition is near. However, in spite of these disadvantages,
the technique is widely used in maternity clinics due to its
non-invasive nature.

The electrohysterogram (EHG) is the recording of uterine
electrical activity from the abdominal surface. Earlier studies
have shown that the EHG signal is synchronized in time
with the electrical signal generated by themyometrial smooth
muscle, which is also related in timewith uterine contractions
in all animal species, including humans [2, 5, 6]. In addition,
the EHG also provides relevant information for assessing the
efficiency of contractions, due to the fact that as pregnancy
advances and the time of birth approaches uterine electrical
activity undergoes changes which are reflected in EHG
signals temporal and spectral characteristics [2, 3, 5, 7, 8].

Hindawi Publishing Corporation
Computational and Mathematical Methods in Medicine
Volume 2014, Article ID 470786, 11 pages
http://dx.doi.org/10.1155/2014/470786

http://dx.doi.org/10.1155/2014/470786


2 Computational and Mathematical Methods in Medicine

Moreover, recent studies have shown that conduction velocity
and direction are associated with the contractions efficiency
[8–11].

However, due to the difficulties involved in interpreting
the information contained in EHG recordings, this non-
invasive technique is still not used in clinical practice. In
order to promote its clinical application different methods
have been applied to extract from EHG record a signal which
is similar to pressure recordings (TOCO-like signal), with
which clinical staff are familiar [3, 12–16], and algorithms
have been developed to allow contractions to be detected
automatically in the TOCO-like signals [12, 14, 16]. The main
problem associated with the extensive application of these
algorithms lies in the fact that EHG recordings contain not
only uterine electrical activity but also a series of physiologi-
cal interference elements (maternal and fetal ECG, abdom-
inal muscle activity, and baseline fluctuations) and motion
artifacts [3, 12, 17]. The presence of the latter phenomena can
completely distort the spectral power density [18–21] which
could lead to misinterpretation of the results. In addition, the
presence of such artifacts makes the automatic identification
of contractions based on TOCO-like signals generated from
the EHG signal extremely difficult [12].This is the reasonwhy
so many authors consider it necessary to have the recordings
segmented manually prior to data analysis by experts in
identifying signal windows containing contractions [7, 22–
24]. This is a crucial task as it has repercussions on the
information that may subsequently be extracted. However, it
is also laborious and costly, not to mention the fact that the
results are partially dependent on the subjective criteria of
the operator. The aim of this work was therefore to develop
a tool that would provide automatic segmentation of EHG
recordingswhile distinguishing between uterine contractions
and artifacts, to promote the future clinical use of this
non-invasive technique for dynamic uterine monitoring and
predicting premature births.

2. Materials and Methods

2.1. Data Acquisition. Twelve recording sessions were carried
out at theHospital Universitario y Politécnico la Fe in Valencia
(Spain) on twelve healthy women in the first stages of
labor having uneventful singleton pregnancies. Estimated
gestational period was 37–41 weeks. The study adheres to
the Declaration of Helsinki and was approved by the Ethical
Committee of the hospital. All the volunteers were informed
of the nature of the study, briefed on the recording protocol,
and signed the consent form.The duration of the sessions was
between 30 minutes and two hours. Patients were asked to
report about fetal movements they could identify. Maternal
movements were written down by the examiner.

The subjects were prepared by applying abrasive paste
to the skin surface to reduce electrode contact impedance.
In each session, 5 monopolar EHG signals were acquired
through 5 unshielded Ag/AgCl electrodes with 8mm in
recording diameter placed in the form of a cross in the
subumbilical zone, as shown in Figure 1. This arrangement
was chosen since the best EHG signal/noise ratio is obtained
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Figure 1: Configuration of contact electrodes for EHG recording.

close to the abdominal vertical midline, especially in the
region immediately below the umbilicus [15]. Similar to other
studies interelectrode distance was 25mm [7, 8, 25] and
the reference electrode was placed on the subjects’ right hip
[15, 24]. A third electrode was placed on the subjects’ left hip
and it was connected to the commercial bioamplifiers’ ground
terminal. All the monopolar EHG signals were amplified,
analog bandpass filtered between 0.05 and 35Hz (Biopac
ECG100C), and acquired at a sampling frequency of 500Hz.

At the same time a TOCOdynamometer was positioned
on the abdominal surface together with an intrauterine
pressure catheter (ACCU-Trace) to obtain the TOCO and
IUP readings, respectively. The signals were conditioned in a
commercial maternal/fetal monitor (Corometrics 170 Series,
GE Medical Systems) and acquired at a sampling frequency
of 4Hz. All data were simultaneously stored in a PC for
subsequent analysis.

2.2. Signal Preprocessing. Since EHG signal energy basically
ranges from 0.1 to 3–5 Hz [5, 15, 26], a 5th order Butterworth
bandpass digital filter between 0.1 and 4Hz was used to elim-
inate undesirable components.Thenmonopolar EHG signals
were downsampled at 20Hz to reduce the computational cost
of the data analysis. This sampling frequency is enough to
compute the spectral parameters later described and showed
no significant effects in the distribution of the nonlinear
parameters studied in the next section. In this study, only the
4 bipolar EHG signals obtained from monopolar recordings
were analyzed, since this configuration largely reduces the
amount of interference present in monopolar EHG record-
ings [5, 15, 24, 27]:
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where 𝑀
𝑖
are the preprocessed EHG signals acquired by

electrode 𝑖 (𝑖 = 1, . . . , 5) and 𝐵
𝑗
(𝑗 = 1, . . . , 4) are the

estimated bipolar signals.
As has been mentioned above, identifying uterine con-

tractions in EHG recordings is usually performed by means
of the TOCO-like signals derived from them [12, 14]. In the
present study, in order to exclude from the analysis most
of the artifact components due to motion, respiration, and
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cardiac electrical signals, only frequency components in the
0.34–1Hz (“uterine specific” range) [3, 22, 28] were used for
generating the TOCO-like signal of the four bipolar signals.
Concretely, two TOCO-like signals from bandpass filtered
EHG bipolar signal were obtained by calculating the RMS
value [12, 29] and the unnormalized first statistical moment
of the frequency spectrum [15] of 30 s moving windows
displaced every 0.25 s.

The TOCO-like signal segments with an amplitude sig-
nificantly different to that of the baseline were then identified
following a criteria similar to other authors’ proposals for
automatic detection of contractions [12, 22]. The baseline
activity of each TOCO-like signal was obtained with a 4-
minute moving window displaced every 0.25 s, ordering
the TOCO-like signal from highest to lowest values and
calculating the average of the lowest 10% of values.The signal
segments with an amplitude significantly different to that of
the baseline were then identified when the TOCO-like signal
amplitude remained at > 2𝑥, the mean baseline activity, and
at >25%, signal amplitude of each window for more than 30 s.
A rise in amplitude in these segments could possibly have
uterine origin, and would thus be due to a contraction, or
could alternatively be caused by artifacts.

The corresponding segments in the EHG signal were
classified as artifacted or non-artifacted signals by two
experts (1 bioengineer and 1 clinician) with the help of the
simultaneous TOCO and IUP recordings and the previously
annotated events. Segments classified as artifacted signals
should correspond in time to annotated events of mother
or fetal movements, except for visually identifiable abrupt
variations of the biosignals which were also considered
artifacted signals since this behavior does not have an uterine
physiological origin, and these episodes could have been
missed in the annotated events. The segments classified
as contractions (non-artifacted signals) had to correspond
in time to uterine pressure events as measured by IUP
and TOCO. In this study a segment of signals with both
contraction and artifacts is considered to be an artifacted
signal. We decided to work in this manner since when an
artifact is present during a contraction it affects the signal
parameters which could lead to misinterpretation of the
EHG characteristics associated to that contraction. Only the
segments in which the classification of both experts agreed
were included in the design and test of the automatic classifier.
A total of 277 EHG artifacted and 422 non-artifacted signal
windows were used.

2.3. Feature Analysis. Motion artifacts in surface myoelectric
recordings come in a wide range of waveforms according to
the type of motion and the subject characteristics. Besides
their presence is intermittent and unpredictable [18, 19].
For example, pulse-type motion artifacts often cause abrupt
variations in the potential measured on the abdominal
surface, while others are associated with a considerable rise
in the potential amplitude. The presence of motion artifacts
also affects the power spectral density (PSD) of the signal,
distributing its energy in the high frequency range [18, 20]. In

this study, the following EHG signal features were proposed
to detect their presence.

Spectral Parameters. To determine the energy distribution
within the signal spectrum, the energy was calculated in
certain frequency ranges [23]. Given the amplitude variations
in the EHG signals obtained from the different channels and
subjects during the sessions, this energy was normalized in
relation to total energy. Three frequency ranges were defined
to characterize energy distribution in the signal spectral
domain (𝐸

1
: 0.1–0.3Hz; 𝐸

2
: 0.3–1 Hz; 𝐸

3
: 1–4 Hz):
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where PSD [𝑓
𝑘
] is the bipolar signal PSD obtained from the

periodogram with a Hamming window and 𝑓
0𝑗
and 𝑓

1𝑗
are

the abovementioned lower and upper limits of the frequency
band considered (𝑗 = 1, 2, 3).

Temporal Parameters. As previously mentioned, EHG signals
containing artifacts often present sudden large amplitude
variations. This can be characterized by means of parameters
such as standard deviation (𝜎

𝑥
); relative amplitude (RA);

kurtosis (𝜅); normalized maximum derivative in relation
to standard deviation of the baseline (MDbs); normalized
maximum derivative in relation to standard deviation of the
signal under study (MD

𝑥
); and the ratio between the RMS

value of the segment of the signal under study and the RMS
of the baseline extracted from the same channel and the same
recording (𝑅RMS) :
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where 𝑥
𝑖
is the 𝑖th sample of the bipolar EHG signal,𝑁 is the

number of samples in the window length, 𝜎
𝑥
is the standard

deviation of the signal under study, and 𝜎bs is the standard
deviation of the baseline extracted from the same channel of
the same recording session.

Nonlinear Parameters. The presence of artifacts in an EHG
signal may affect the signal non-linearity properties, such as
regularity or complexity of finite length time series which can
bemeasured by the sample entropy (𝐸

𝑛
).This nonlinear tech-

nique seems to be an appropriate quantitative tool tomeasure
the variability of underlying physiological mechanisms. It
has been shown to discriminate between EHG signals of
term and preterm deliveries [30], and it has been used for
detection of eye blink artifact in multichannel EEG data [31].
We established a signal pattern dimension 𝑚 = 3 and a
pattern matches margin 𝑟 = 0.15 to obtain the parameter
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sample entropy. In addition time reversibility of the surrogate
time series (𝑇

𝑟
) was calculated. Probabilistic properties of

artifacted signals are expected to be more susceptible with
respect to time reversal than non-artifacted signals. The
difference between the time reversibility of the original data
and the surrogates was quantified as the measurement of
signal non-linearity. For this the 𝑧 score value was computed:

𝑧 =


𝑇
𝑟org − ⟨𝑇𝑟surr⟩



𝜎
𝑇
𝑟surr

, (4)

where 𝑇
𝑟org is the time reversibility of the original data, 𝑇

𝑟surr
denotes the time reversibility for the 100 computations of the
surrogate time series, and 𝜎

𝑇
𝑟surr

is the standard deviation.
The definition of the signal time reversibility and the method
for generating surrogate time series is described in previous
works [32].

2.4. Feature Selection. An important aspect in the design of
a classifier is the selection of the features involved in it. The
use of a single or a limited number of these could adversely
affect the classifier accuracy due to lack of information. On
the other hand, too many features could also give rise to an
excess of information and over-training of data, which would
also affect the classifier performance [33]. We opted for first
determining which features contained the best information
for distinguishing between EHG signals with and without
artifacts and thus implemented a single-feature classifier in
order to determine its individual discriminatory capacity
[18]. Then the combination of features that gave maximum
classifier accuracy in detecting artifacts by means of the
sequential forward feature selection algorithm was found.
The latter consists of an iterative process that checks whether
or not the addition of a new feature will reduce classification
errors and then selects the one with the least errors.

2.5. Design of the Classifier. In the present study, linear (LDA)
and quadratic discriminant analysis (QDA); and support
vectormachine (SVM) classifier using RBF kernel was imple-
mented. In order to determine the generalization capacity
of the new data classifiers, in a first stage signals from ten
patients were used (392 nonartifacted contractions and 253
artifacted segments). Specifically, two-fold cross-validation
was used, with 50% of the data being used for training
and 50% for validation [22]. In the second stage, classifiers
were tested using signals from 2 additional patients (30 non
artifacted contractions and 24 artifacted segments). Due to
the random nature of the set of data used for training and
validating, the cross-validation process was carried out 50
times to minimize bias. For each set of training data, various
classifiers based on LDA and QDA and SVM (RBF kernel
with optimized parameters) were implemented to distinguish
between signals with and without artifacts. For each set of
training data, optimal parameters for SVMclassifier were car-
ried out using the simplex method. All sets of data were then
examined using these classifiers. Finally, classifier accuracy,
sensitivity, specificity, positive predictive value (PPV), and
negative predictive value (NPV)were analyzed and compared
while using the best combination of features.

3. Results

Figure 2 shows a box and whisker plot of the 11 features of
the EHG signals corresponding to Group 1 (no artifacts) and
Group 2 (with artifacts). It can be seen that the presence of
artifacts in the signal significantly raises the spectral content
in the high frequency range (1–4Hz, 𝐸

3
). By contrast, even

though differences were found in the spectral content in the
0.1–0.3Hz (𝐸

1
) and 0.3–1Hz (𝐸

2
) frequency ranges in both

groups, the distribution of these two features is completely
overlapping. In the temporal parameters, the presence of
artifacts is also associated with a significant rise in the values
of parameters RA, 𝜅, MDbs, and MD

𝑥
. On the other hand,

even though the standard deviation of the signal (𝜎
𝑥
) and

the RRMS feature in EHG signals with artifacts tends to be
higher than in signals with no artifacts, the distribution of
these parameters shows considerable overlapping between
both groups. As expected, the signals containing artifacts
present a higher degree of nonlinear behavior as evidenced
by the higher time reversibility 𝑧-score value, although the
sample entropy in both groups is completely overlapping.

Table 1 shows the average accuracy of the single-feature
classifier of the three classifiers obtained from the training
and validation set of data. In general, SVM provided slightly
better results than QDA, and this latter permits to achieve
better accuracy than LDA. It can be seen that an accuracy
higher than 75% can be obtained with the 𝐸

3
, RA, 𝜅, MDbs,

andMD
𝑥
features for the three classifiers. The sequential for-

ward feature selection algorithm provided a set of 7 features
as the best combination of features for both QDA and SVM,
5 of them being common for both classifiers which provide
complementary information among them. Table 2 gives the
classifiers’ accuracy for artifact detection in EHG signal using
the best combination of features forQDAclassifier, which are:
𝐸
3
, RA, 𝜅, MDbs, MD

𝑥
, 𝐸
𝑛
, and 𝑇

𝑟
. The optimal combination

of specific features for LDA and SVMprovided similar results
to those shown inTable 2, with a difference less than 1%. It can
be seen that LDAclassifier presents the lowest accuracy values
whereas similar results were obtained for QDA and SVM
mean accuracy for the training and validation data set (92.1%
and 93.3%, resp.). Nevertheless, for the test data set QDA
clearly provided the highest accuracy values. Tables 3 and 4
show the values of additional prediction parameters for the
training and validation and for the test data sets, respectively.
Again it can be observed that LDA provides the worst results
and that SVM and QDA present similar performance for the
training and validation data set. In general it can be observed
that the classifiers obtained higher PPV and specificity than
NPV and sensitivity. This is probably due to the unbalanced
database which contains a higher number of non-artifacted
windows than of artifacted windows. Finally, it should be
pointed out that the poorer performance of SVM in the test
data set in comparison to QDA is also manifested in Table 4.
This will be discussed in the next section.

Figure 3(a) shows a bipolar signal from an EHG register
taken during the early stages of labor; the other three bipolar
signals are not shown due to space issues. Figure 3(b) shows
the corresponding TOCO-like signals using the RMS-based
algorithm (grey line) and the unnormalized first statistical
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Figure 2: Influence ofmotion artifacts on EHG features. 1: non-artifacted EHG signal windows. 2: artifacted EHG signal windows.The feature
𝐸
3
upper quartile value for artifacted EHG signals (Group 2) is out of scale.

Table 1: Mean accuracy (%) of classifiers using a single feature for detecting motion artifacts (training and validation data set, 392
nonartifacted contractions versus 253 artifacted segments).

𝐸
1

𝐸
2

𝐸
3

𝜎
𝑥

RA 𝜅 MDbs MD
𝑥

𝑅rms 𝐸
𝑛

𝑇
𝑟

LDA 70.6 61.2 78.5 55.7 80.9 76.9 76.0 85.3 66.2 54.6 67.4
QDA 71.4 61.6 78.8 59.0 80.8 78.7 78.1 86.2 65.5 69.6 69.5
SVM 70.9 62.6 82.1 63.6 80.9 79.9 83.4 87.6 66.0 70.9 69.3

moment of the frequency spectrum (black line). The auto-
matic detector of possible contractions identified 9 signal
segments with a significant rise in amplitude in relation to
baseline in both TOCO-like signals. Slight differences in the
onset and the end of these segments can be observed. The
waveforms in these 9 signal segments are given in greater
detail in Figure 4. They were later evaluated by the classifiers
designed to determine whether they were associated with

uterine contractions or were simply due to the presence of
motion artifacts. The results suggest that the signal windows
(6) and (8) identified in the two TOCO-like signals contained
artifacts, while the remainder could be considered as artifact-
free uterine contractions. These conclusions coincide with
visual observations and the previous classification carried out
by the experts. Moreover the simultaneously recorded IUP
and TOCO recording corroborate this finding. In this case,
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Figure 3: (a) EHG signal. (b) TOCO-like signal generated from EHG signal using RMS-based algorithm (grey line) and the unnormalized
first statistical moment of the frequency spectrum algorithm (black line). The signal windows with amplitude significantly different from the
baseline identified by the automatic contraction detector are marked by grey triangle and black point, respectively. (c)-(d) IUP and TOCO
were acquired simultaneously.

52 117

1

Time (s)

(m
V

)

193 253

1

331 399

1

Time (s)

(m
V

)

471 523

1

Time (s)

(m
V

)

594 649

1

Time (s)

(m
V

)

748 815

1

Time (s)

(m
V

)

823 855

1

Time (s)

(m
V

)

906 951

1

Time (s)

(m
V

)

1098 1170

1

Time (s)

(m
V

)

(3)

(6)

(2)

(5)

(1)

(4)

(9)(8)(7)

−1

−1

−1

(m
V

)

Time (s)

−1

−1

−1

−1

−1

−1

Figure 4: Waveform of 9 EHG signal windows identified by automatic contraction detector extracted from the recording session shown in
Figure 3 using RMS-based algorithm.

Table 2: Comparison of the classifiers’ accuracy using the best
combination of features for motion artifact detection in EHG
signals.

LDA QDA SVM
Training + validation 86.1 ± 0.8% 92.1 ± 0.3% 93.3 ± 0.6%
Test 79.4 ± 3.5% 92.2 ± 1.8% 83.6 ± 3.5%

contractions situated around 800 and 930 s (which coincide
with windows (6) and (8), classified as containing artifacts)
can be identified in the IUP. Nevertheless, these contractions

Table 3: Comparison of the classifiers’ performance for the training
and validation set of data (392 nonartifacted contractions versus 253
artifacted segments).

𝑁 = 645 Sensitivity Specificity PPV NPV
LDA 69.4% 97.0% 93.7% 83.1%
QDA 84.3% 97.0% 94.8% 90.6%
SVM 87.1% 97.3% 95.5% 92.1%

cannot be correctly identified in the TOCO recording. This
was possibly due to movements made by the patient at this
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Figure 5: (a) EHG signal. (b) TOCO-like signal generated from EHG signal using RMS-based algorithm (grey line) and the unnormalized
first statistical moment of the frequency spectrum algorithm (black line). The signal windows with amplitude significantly different from the
baseline identified by the automatic contraction detector are marked by grey triangle and black point, respectively. (c)-(d) IUP and TOCO
were acquired simultaneously.

Table 4: Comparison of the classifiers’ performance for the test data
set (30 nonartifacted contractions versus 24 artifacted segments).

𝑁 = 54 Sensitivity Specificity PPV NPV
LDA 58.0% 96.5% 92.9% 74.2%
QDA 90.7% 93.5% 91.7% 92.6%
SVM 77.7% 88.4% 84.3% 83.2%

time, which would have given rise to incorrect readings
not only in the EHG recording but also in the TOCO.
In such cases, even though simultaneous contractions have
occurred, no robust information about the characteristics of
these contractions can be obtained from either noninvasive
recording.

Another example of the application of the algorithm
designed to automatically segment and classify EHG record-
ings is shown in Figure 5. A total of 7 signal windows were
identified with a significant increase in amplitude in both the
TOCO-like signal generated using the RMS-based algorithm
and that obtained from time-frequency-based algorithm,
showing again someminor difference in the onset and the end
of these segments. Subsequent analysis of the corresponding
EHG signal segments with the classifiers showed that only
the signal window (4) was associated with artifacts, while
the other 6 signals windows would be of artifact-free uterine
contractions. In contrast to the previous example, in this case
the artifacted window does not coincide with a simultaneous
uterine contraction.The comparison of the TOCO-like signal
with the IUP and TOCO recordings acquired simultaneously
corroborates this result. The sudden amplitude rise that
occurs around the second 450 was observed in both non-
invasive TOCO recording and EHG recording, but no uterine
contraction was recorded by IUP recording.

4. Discussion

Motion artifacts detection is a common problem in bioelec-
trical signal analysis and is extremely challenging as their
characteristics show an extremely large variability depending
on the specific source, making it hard to distinguish between
target signal and artifacts. Although previous works have
beenmade in this respect [18, 20, 21, 34–36], to our knowledge
this is the first one in EHG recordings. In this paper, amethod
for the automatic detection of motion artifacts in EHG has
been proposedwithout the need of additional accelerometers.
This method was implemented in two steps: firstly a TOCO-
like signal from the EHG recording was derived and the
segments with amplitude significantly different to that of
the baseline were identified. Subsequently a classifier for
discriminating whether this signal segment is artifacted or
not was implemented.

Concerning the TOCO-like generation from EHG
recording, various methods that have been proposed in the
literature were implemented and compared: RMS-based
approach [12, 29] and the unnormalized first statistical
moment of the frequency spectrum derived from time
frequency analysis [15]. It was observed that similar TOCO-
like signals can be obtained from these two methods. The
latter method may give a better estimation of IUP from EHG
recording [15], nevertheless both methods showed similar
behavior in identifying signal segments with a significant
increase in TOCO-like amplitude. Only, small differences
in the width of the segment were found. In this sense, if the
goal is to quickly identify those signal segments with an
amplitude significantly higher than that of the baseline, the
RMS-based method would be preferred due to its smaller
computational cost.

Moreover, in this work it has been shown that the signal
features of artifacted-EHG segments differ significantly from
the non-artifacted ones. Artifacted EHG segments are asso-
ciated with a rise in relative amplitude, maximum derivative,
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and kurtosis value. These observations agree with other
authors that analyzed noninvasive recordings of other myo-
electric signals [18, 37]. Motion artifacts in EHG recording
are also associated with a rise in relative energy between 1Hz
and 4Hz. This is mainly due to the fact that the signal-noise
ratio of EHG component decreases greatly over 1Hz. This
is the reason why several authors reduce the upper limit of
signal bandwidth to 1Hz for EHG signal feature extraction [9,
22, 28]. In addition, nonlinear parameters such as surrogate
time reversibility were also tested, and clear differences were
found between artifacted and non-artifacted EHG segments.
Although it has been shown that the signal length has high
effect on generating the surrogate data [38], we can discard
this fact as the main responsible for the differences that
were found since the average difference in signal length
between artifacted and non-artifacted EHG signal windows
was only about 6 s. Also, we tested (not shown) enlarging
and reducing such difference with additional ±10 s, and the
much greater values of time-reversibility parameter for the
artifacted EHG segments remained; suggesting their higher
nonlinearity character in comparison to non-artifacted EHG
segments. It should also be noted that only monovariate
features were analyzed in this work. The use of bivariate
parameters associated to the correlation or synchronization
between signals could also provide valuable information for
describing and discriminating artifacted and non-artifacted
EHG segments.This would be further studied in future work.

In the present work, the ability of the different single
features for discriminating the target signal and motion arti-
facted signal was further analyzed. Our experimental results
are in partial agreement with another study on the analysis
of parameters for detecting artifacts in surface electrogastro-
gram recordings [18]. In this latter work, neuronal network-
based classifiers were obtained with an accuracy of 94.9%,
96.2%, and 97.4% for standard deviation, high frequency
energy, and maximum derivative of signals, respectively. In
the present study, the accuracy obtained in nonnormalized
parameters, such as the standard deviation, is about 60%,
which indicates that this type of parameters has a relatively
low capacity to discriminate between artifacted and non-
artifacted signals. This could possibly be due to the wide
variation in EHG signal amplitude between the different
channels and recording sessions. By contrast, the accuracy
achieved by normalized features such as 𝐸

3
, MDbs, and MD

𝑥

ranged from 76.0% to 87.6%.
On the other hand, various classifying techniques (LDA,

QDA, and SVM) to distinguish the EHG signal segments
with and without artifacts were compared. As it could be
expected, the two nonlinear methods provided superior clas-
sifier accuracy than LDAwhichmay be due to the fact that the
features’ distribution for artifacted signal and non-artifacted
signal was highly overlapped. Regarding SVMandQDA, they
yielded similar results for the training and validation data set.
Theoretically, the SVM should provide lower generalization
error [39]; however, SVMobtained significant lower accuracy
values in the test data set than in the training and validation
data set. Although the data set used for the design of the
classifier contained more than six hundred signal windows,
the data from the two additional subjects of the test set seems

to have compromised the values of the support vectors of the
designed SVM classifier. A database with a higher number of
subjects would help to enhance the generalization capability
of this classifier. Nonetheless, the results suggest that the
classifier based on QDA using the best 7 features possesses a
high degree of generalization for detecting artifacts in EHG
signals (extendable to signals not initially included in the
data base), which can therefore be considered suitable for
automatic artifact detection in these signals. Furthermore,
from the computational point of view, discriminant analysis
is much more effective than SVM and it does not need
the optimization of the classifier’s configuration parameters,
which is a crucial part of advanced techniques. Nevertheless,
it should be highlighted that the proposed method has been
tested on measurements performed during the first stage
of term labor, and its feasibility for for preterm/non in
labor measurements should be checked in future studies. On
one hand, the interpretation of the EHG signal of pregnant
patients at earlier gestational ages is more challenging due to
its poorer signal-to-noise ratio, also making the detection of
uterine contractions harder. On the other hand, as pregnancy
progresses the uterine myoelectrical activity shifts towards
higher frequencies and becomes more organized [3, 32];
therefore pregnancy contractions would also present some
differences in the characteristic parameters used in this study;
still they would be expected to remain different enough from
those of artifacted signal windows. The inclusion of other
features such as the conduction velocity [8] or the non-
linear correlation coefficient ℎ2 [24] that have been shown
to provide additional information in EHG interpretation
could help to improve the system’s performance under these
circumstances.

With respect to the motion artifacts detection in bioelec-
trical recording, manual identification by experts based on
previous knowledge about both the target signal and motion
artifacts has been often used [18, 34]. Other authors consider
that annotations or accelerometers [36, 40] are more objec-
tive for the detection of motion artifacts. Nevertheless the
automatic identification ofmotion artifacts in accelerometers
signal is still problematic due to its high variability, and on the
other hand annotations are not absolved of the subjectivity of
each patient or observer. In this work, a method based on the
features of the target signal andmotion artifactswas proposed
and checked with annotation method. This method could be
of special interest as an incentive for the use of non-invasive
myoelectric techniques in clinical environments since no
additional accelerometers are needed for motion artifacts
detection. On the other hand, a large percentage of motion
artifacted segments in EHG recording were obtained in this
work. Although the subject was asked to be as quite as
possible during the recording session, motion artifacts in
EHG recordings are unavoidable.Moreover the occurrence of
a uterine contractionmay also inducemovement artifacts due
to abdominal deformation, due to forced respiration patterns,
or due to pain. In fact, a large percentage of artifacted
segments occurred during a uterine contraction that could be
simultaneously identified in the IUP and TOCO recordings.
This phenomenon can be observed in the segments n∘6 and
n∘8 in Figure 3 which were associated with an amplitude
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rise in IUP recording. The presence of motion artifact may
impair greatly in temporal and spectral parameters, and also
on the measurement of conduction velocity and direction.
Thus misinterpretation of the results may occur. For this
reason, in this work it was preferred to classify such cases
as artifacted signals not suitable for the characterization of
uterine contractile behaviour.

Finally it should be noticeable that EHG recording is not
only contaminated by motion artifacts but also by a set of
physiological interferences, such as fetal and maternal ECG
activity and respiration. Regarding the possible effects of such
interferences in the proposed algorithm, ECG interference is
partially cancelled in bipolar EHG recording, its energy con-
tent is mostly distributed over 1Hz, and it is almost constant
throughout the recording sessions. Therefore the proposed
algorithm would not be very sensitive to this interference.
Nevertheless, several techniques have been proposed for
removing ECG fromEHG recordings and could be used prior
to applying the presentedmethod [17, 41–43].The respiration
interference is mainly distributed within 0.20 and 0.34Hz,
which is partially overlapped with uterine electrical activity.
For this reason, many authors prefer to analyze the EHG
signal over 0.34Hz [3, 22, 23, 28], although it has been shown
that EHG component distributes its energy from 0.1Hz [17,
26]. This respiration interference usually happens during a
large period of time and does not suffer large variations
in amplitude by contrast to uterine electrical activity, and
therefore it would not be detected as possible contraction
segments in our algorithm.

With respect to the potential use of EHG recordings
and the proposed method in everyday clinical practice,
although clinical staff is not accustomed to EHG record-
ings for monitoring uterine contraction, they are familiar
to other bioelectrical recordings such as electrocardiogram
or electroencephalogram. Therefore we consider that the
progressive implementation of these methods would not be
distressing. It would undoubtedly require a training period
for the clinical staff to adapt to and learn about the electrode
arrangement for the recording and electrode and bioamplifier
wiring and handling. In this context, the TOCO-like signal
generation with which clinicians are accustomed will also
facilitate the introduction of this technique in clinical prac-
tice. Moreover the proposed algorithms do not require a high
computational cost, and, from the user point of view, the
application could be considered to work on real-time. The
proposedmethodwould greatly facilitate the task of segment-
ing recording sessions and evaluating uterine contractions
based on the EHG recording. After having correctly identified
the contractions, delivery room staff could be provided with
relevant information on their efficiency, such as duration,
frequency, signal amplitude, dominant frequency of the EHG
signal, and the energy distribution in the spectral domain,
among others [2, 5, 7–9, 22, 30].

5. Conclusion

The experimental results show that the most important
features for detecting artifacts in EHG signals are 𝐸

3
, RA, 𝜅,

MDbs, MD
𝑥
, sample entropy, and surrogate time reversibility.

The proposed classifier, based on QDA with these features,
can be used for the automatic detection of artifacts in
the EHG recording, reaching a classification accuracy of
92.2%. This classifier, jointly with the proposed TOCO-like
signal generation and analysis algorithms, provide a tool for
the automatic detection and segmentation of uterine con-
tractions, distinguishing them from possible artifacts. This
technique could therefore be a valuable aid to the analysis of
surface EHG recordings and could be used by clinical staff
to extract additional information from the habitually used
TOCO recordings.
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