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The neurovascular unit (NVU) of the brain is composed of multiple cell types that

act synergistically to modify blood flow to locally match the energy demand of neural

activity, as well as to maintain the integrity of the blood-brain barrier (BBB). It is

becoming increasingly recognized that the functional specialization, as well as the cellular

composition of the NVU varies spatially. This heterogeneity is encountered as variations in

vascular and perivascular cells along the arteriole-capillary-venule axis, as well as through

differences in NVU composition throughout anatomical regions of the brain. Given the

wide variations in metabolic demands between brain regions, especially those of gray

vs. white matter, the spatial heterogeneity of the NVU is critical to brain function. Here we

review recent evidence demonstrating regional specialization of the NVU between brain

regions, by focusing on the heterogeneity of its individual cellular components and briefly

discussing novel approaches to investigate NVU diversity.
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INTRODUCTION

The varied and complex tasks performed by the brain have energy demands that far outweigh
those of other organs. Accordingly, the vascular system that supplies the brain has evolved into
an intricate arrangement that is unique in its cellular composition and function. The neurovascular
unit (NVU) is comprised of a diverse population of cells including neurons, endothelial cells (ECs),
pericytes, astrocytes, vascular smooth muscle cells (vSMCs) and others, that act in a coordinated
manner to spatially and temporally match the local blood supply to the energy demand of neural
activity (Iadecola, 2017). Together, NVU cells form the blood brain barrier (BBB), a regulated
semipermeable border unique to the brain that shields the parenchyma from the vessel lumen
(Sweeney et al., 2019).

The complexity of neurovascular communications has been recognized for a long time; however,
new tools have recently allowed us to distinguish the various cell populations of the NVU in
greater detail. We now know that the NVU not only harbors diverse cell populations, but that
these cell populations are regionally heterogeneous. This regional heterogeneity can be broadly
divided into large and local scales. On a large scale, this review will highlight recent evidence
showing that NVU cells, and the communication between them, vary depending on their location
within specific anatomical or functional brain region. On a more local scale, spatial NVU cellular
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heterogeneity is also found along the vascular tree [see reviews
(Wilhelm et al., 2016; Noumbissi et al., 2018; Villabona-
Rueda et al., 2019)]. Recent demonstrations of such vessel
type-dependent variability include gene expression analysis of
ECs that line the vessel lumen, which suggests that BBB
function differs with vascular tree location (Vanlandewijck et al.,
2018). Abluminal to the ECs, distinct populations of mural
cells exist from arteriolar smooth muscle cells to capillary
pericytes. Different phenotypes of pericytes, whether defined
by morphology or molecular identity, exist along the arterio-
venular tree (Hartmann et al., 2015; Vanlandewijck et al., 2018).
Likewise, astrocytic gene expression and end-foot coverage is
partially governed by vessel type and size (Wang M. X. et al.,
2021). New studies have also uncovered previously unrecognized
roles for perivascular fibroblasts and perivascular macrophages,
preferentially found in the arteriolar and venular compartments
(Vanlandewijck et al., 2018; Koizumi et al., 2019). It is therefore
becoming increasingly recognized that spatial heterogeneity of
NVU components along this arteriole-capillary-venule axis is
necessary to allow local neurovascular coupling (NVC) and
functional hyperemia to take place. While this vessel type-
dependent heterogeneity has been reviewed recently (Wilhelm
et al., 2016; Noumbissi et al., 2018; Villabona-Rueda et al., 2019),
NVU function also displays heterogeneity on a wider scale, where
the vascular compartment needs to match the varying demands
of distinct anatomical regions of the brain. Here, we review recent
evidence showing that this regional variability in neurovascular
communication relies on the individual cellular components of
theNVUdiffering between the functional and anatomical regions
of the brain (Figure 1) and briefly discuss new tools available to
probe this spatial heterogeneity.

BRAIN REGION-SPECIFIC
NEUROVASCULAR COUPLING IN HEALTH
AND DISEASE

The brain is separated into anatomical regions that are
interconnected yet functionally distinct. The relative
specialization of each region allows the CNS to execute incredibly
complex tasks, and their varying functions require adapted blood
flow control. Furthermore, a widely different activity profile and
cellular composition exists between synapse-rich gray matter
areas and white matter harboring myelinated axonal fibers. More
importantly for neurovascular activity, the corresponding energy
demand of these diverse regions varies extensively. Glucose
consumption is 2–4 times greater in gray matter (Sokoloff
et al., 1977) where major energy-consuming processes like
synaptic activity and action potential generation take place
(Attwell and Laughlin, 2001). In white matter, resting potential
maintenance and housekeeping functions in both neurons and
oligodendrocytes are believed to require a comparatively lower
metabolic demand (Harris and Attwell, 2012). The differential
energy demands of gray matter and white matter translate into
adapted microvascular structural architecture: vascular density is
higher in gray matter, with arterioles and venules preferentially
oriented perpendicular to cortical layers while vessels in white

matter are organized parallel to axonal fibers (Cavaglia et al.,
2001; Hase et al., 2019). This suggests that the coupling between
local neural activity and blood flow needs to vary regionally,
and recent data shows that a varying cellular composition of the
NVU may underlie this adaptation.

Adding to evidence of regional heterogeneity of NVU
activity under physiological conditions is the region-dependent
neurovascular dysfunction observed in the pathogenesis of
various brain diseases. It is now widely recognized that vascular
abnormalities are key pathogenic features of cognitive decline. A
group of disorders broadly termed vascular cognitive impairment
and dementias (VCID) is thought to be responsible for ∼20%
of dementias (Iadecola, 2013; Gorelick et al., 2016; Kim et al.,
2020). Cerebral small vessel disease (CSVD)—a disease of varying
etiology that affects small arterioles and venules, and deep
capillaries of the brain—underlies a majority of VCID cases. It
results in impaired NVC, reduced blood flow, and increased BBB
permeability. Neuroimaging characteristics of CSVD include
subcortical infarcts and white matter hyperintensities, implying
a regional component of CSVD pathogenesis (Shi and Wardlaw,
2016; Cuadrado-Godia et al., 2018). White matter abnormalities
linked to cerebrovascular dysfunction are also a risk factor
for Alzheimer’s disease (AD) (Alber et al., 2019). The links
between dementias and cerebrovascular dysfunction, specifically
in white matter, have brought attention to the differential
composition of the NVU between gray matter and white matter
and the differential effects of NVU dysfunction on neural
health. Taken together, the communication between the vascular
system and neural parenchyma shows region-specific variability
in health and disease, drawing interest to potential region-specific
properties of the individual cell types making up the NVU.

ENDOTHELIAL CELLS

ECs lining CNS vessels form the first line of defense against
circulating toxins and pathogens, while bearing responsibility
for the entrance of indispensable nutrients and ions. This
extremely selective control of permeability is achieved via
three distinct features: (1) specialized tight junctions restricting
paracellular flow, (2) low rates of transcytosis hampering
transcellular transport, and (3) expression of membrane
transporters mediating the influx of nutrients and the efflux of
toxic waste (Biswas et al., 2020).

While endothelial heterogeneity along the arterio-venous
tree has been extensively described (Sabbagh et al., 2018;
Vanlandewijck et al., 2018), inter-regional differences in
endothelial properties are subtle and mostly manifested in
pathological conditions. BBB integrity is tightly linked to
the expression pattern of junctional proteins in ECs and to
restriction of transcytotic pathways and minor differences have
been identified in the BBB signature of ECs in gray matter
compared to white matter. In particular, the expression of
junctional proteins occludin, claudin-5 and α-catenin is higher
in white matter ECs compared to cortical ECs. Functionally,
this reflects in vitro into a higher transendothelial electrical
resistance of primary microvascular cells isolated from the white
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FIGURE 1 | Neurovascular unit heterogeneity between gray and white matter. Schematic representation of the main differences between the neurovascular unit of

gray (top) vs. white matter (bottom). The figure was created using BioRender.com.

matter compared to those isolated from the cortex (Nyul-Toth
et al., 2016). Although ECs in the white matter seemingly form
a tighter paracellular barrier, white matter vessels are reported
to be more susceptible than gray matter vessels to junctional
fragmentation and loss of occludin and ZO-1 in pathological
conditions such as HIV-associated neurocognitive deficits
(Dallasta et al., 1999). Consistently with these observations,
several groups have reported that white matter vasculature is
more susceptible to pathological hyperpermeability. In multiple
sclerosis (MS) patients, local BBB dysfunction predominantly
affects white matter but not gray matter (Taheri et al., 2011).
Additionally, several cognitive impairments, including VCID,
AD and post-stroke dementia display marked BBB permeability
specifically in the white matter, likely as a response to a marked
loss of pericytes in those regions (Hase et al., 2018; Ding et al.,
2020).

Regional variability of BBB-forming ECs is somewhat more
prominent in the circumventricular organs (CVOs), where
an active exchange between blood and the CNS is required.
Compared to ECs elsewhere in the brain, ECs in CVOs have
a lower expression of junctional proteins, higher rates of
transcytosis and higher expression of the fenestration-forming
plasmalemma vesicle-associated protein, resulting in increased
permeability to tracers (Morita et al., 2016). This distinctively
different signature of CVOs ECs may be due to low canonical
Wnt signaling, as activation of Wnt/β-catenin pathway, by
stabilizing β-catenin in ECs, induces a BBB-like phenotype (Benz
et al., 2019; Wang et al., 2019). Similar to CVOs, a permeable
vasculature is necessary in the choroid plexus (ChP), the site

of cerebrospinal fluid (CSF) secretion. ECs in the ChP are
fenestrated to allow the passage of water and small molecules.
The blood-CSF barrier at the ChP is instead formed by a layer
of epithelial cells surrounding choroidal vessels that regulate the
permeability by expressing junctional proteins and membrane
transporters (Dani et al., 2021).

Aging has very distinct and regional-specific effects on CNS
vasculature. As both vascular density and branching decrease
across most brain regions with a more pronounced vessel loss
in white matter as a result of aging (Murugesan et al., 2012;
Schager and Brown, 2020), ECs in white and gray matter
activate specific pro-angiogenic pathways to maintain vessel
health. In gray matter, ECs start expressing higher levels of
vascular endothelial growth factor receptor-1 (VEGFR1) and
VEGFR2, while Angiopoietin-1 (Ang1) is specifically upregulated
in the cortex. In white matter, ECs upregulate the expression
of the matrix metalloproteinase-2 (MMP-2) and downregulate
its inhibitor TIMP-2; conversely, ECs in the cortex express less
MMP-2 andmore TIMP-2 during aging (Murugesan et al., 2012).
While minimal decrease in vessel branching is observed in the
hippocampus compared to cortex and white matter, it is the first
brain area to show age-dependent increase in BBB permeability
(Montagne et al., 2015), possibly as a response to the increase of
Ang2 that destabilizes the vasculature (Murugesan et al., 2012).
Studies focused specifically on hippocampal vasculature have
shown a prominent switch from ligand-dependent transport to
caveolar transport across the BBB in aged mice, together with
a marked decrease in junctional and matrix organization (Yang
et al., 2020).
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Some regional heterogeneity in the expression of transporters
and adhesion molecules on the EC membrane also exists. The
expression of the efflux transporter P-glycoprotein (P-gp) was
found to be higher in the cortex than in the cerebellum (Yasuda
et al., 2015). Additionally, in epileptogenic tissue resected from
the temporal lobe, P-gp expression was higher in gray matter
capillaries, and its expression in both white and gray matter
correlated with increased seizure recurrence (Kwan et al., 2010).
Given the key role of P-gp in preventing drugs from entering the
CNS parenchyma, identifying the variability in its distribution
at the BBB is fundamental to address the mechanisms of
pharmacoresistance (Liu et al., 2015). The expression of the
adhesion molecule CD44 is restricted to ECs within gray matter
(Kaaijk et al., 1997). This region-specific pattern is relevant in the
context of neuroinflammation, as CD44 mediates the interaction
of ECs with immune cells and its deficiency increases BBB
disruption in an experimental autoimmune encephalitis (EAE)
model (Flynn et al., 2013).

Aside from the features outlined in this review, the regional
heterogeneity of ECs is still largely unknown. A deeper
investigation in this variability is fundamental when modeling
vascular pathology in vitro, since the area andmethod of isolation
of ECs from the brain may influence their phenotype and
behavior in culture.

MURAL CELLS

Mural cells are critical players in the control of local blood
flow. They line most vessels of the brain and include vSMCs
and pericytes. vSMCs are arranged in circumferential bands
wrapping around arterioles where they are key mediators of
vascular contractility and in a mesh-like pattern on venules.
Pericytes line capillaries and post-capillary venules and are
embedded within the basement membrane with a characteristic
bump-on-a-log cell body. Pericytes are morphologically
heterogeneous, with a cell shape highly correlated to its
relative location along the arteriole-capillary-venule axis.
“Ensheating pericytes” expressing contractile machinery
populate 1st–4th-order branches, “thin-strand pericytes” are
located along deeper capillaries and “mesh pericytes” are found
on post-capillary venules. Pericyte heterogeneity is such that
identification of putative subpopulations requires a combination
of location, morphology, marker expression, and function. The
nomenclature and the defining molecular markers attributed to
each type of pericyte, and the presence of discrete subpopulations
vs. a gradual continuum of phenotypes remains hotly debated
(Hartmann et al., 2015; Hill et al., 2015; Attwell et al., 2016;
Vanlandewijck et al., 2018). While mural cell populations along
the arterial-venous tree are locally diverse, recent studies also hint
at a functional diversity of mural cells, most notably pericytes,
on a larger scale with brain region-dependent characteristics
(Hartmann et al., 2015; Cudmore et al., 2017; Nikolakopoulou
et al., 2017; Villasenor et al., 2017).

Pericytes are found lining vessels in all brain regions; however,
the density of platelet-derived growth factor receptor-β (PDGFR-
β)-expressing pericytes in the cortex inversely correlates with

neural cell density, such that neuron-rich layers II/III of the
cortex contain 40% less pericytes than layer I (Hartmann et al.,
2015). Although vascular density itself may differ between
cortical layers, this observation was corroborated by a study
detailing a decreased density of CD13+ pericytes per capillary
length in layer II/III (Cudmore et al., 2017). With pericyte
presence often linked to tonic vessel constriction (Fernandez-
Klett et al., 2010; Hall et al., 2014; Gonzales et al., 2020; Hartmann
et al., 2021), it is suggested that a higher pericyte density may act
as a buffer to blood flow pressures in upper cortical layers while
lower pericyte density in cell body-rich layers may contribute
to vessel relaxation necessary for NVC in areas with higher
metabolic demand. A recent whole-brain analysis of pericyte
density showed elevated density of PDGFRβ-expressing pericytes
in deeper cortical layers (layers IV and V) relative to layer I,
with pericyte density generally matching vascular density across
most regions (Wu et al., 2021). Notable exceptions were thalamic
areas, where a relatively higher pericyte density (relative to local
vascular density) was observed.

In addition to their role in the control of vascular tone,
pericytes participate in angiogenesis and vessel stabilization, as
well as in the maturation and maintenance of BBB integrity.
Interestingly, this key role of pericytes in BBB maintenance
was shown to vary substantially among anatomical brain
regions. Signaling through PDGFR-β on pericytes is key
for pericyte recruitment to vessels and BBB generation and
maintenance (Armulik et al., 2010; Daneman et al., 2010).
Disruption of the PDGF-B/PDGFR-β signaling axis induces
pericyte loss, disruption of pericyte-endothelial communication
and subsequent vascular defects and BBB dysfunction (Armulik
et al., 2010; Bell et al., 2010; Daneman et al., 2010; Mae et al.,
2021). This property has been investigated by various groups
to demonstrate region-specific contributions of pericytes to BBB
function. In one model where genetic ablation of the retention
motif of PDGF-B prevents pericyte recruitment (pdgf-bret/ret)
(Armulik et al., 2010), the subsequent BBB leakage is elevated
in the cortex, hippocampus and striatum compared to deeper
areas such as the interbrain and midbrain (Villasenor et al.,
2017). The regional variability in extravasation of Evans Blue and
Gd-DTPA and parenchymal IgG accumulation was observed in
pdgf-bret/ret mice despite a uniform reduction of CD13+ pericyte
coverage throughout those same brain regions (∼75% less than in
controls). This suggests that the relative importance of pericytes
in maintaining BBB integrity varies among brain regions, beyond
their local susceptibility to PDGFR-β signaling defects. In another
model of pericyte deficiency, where 7 point mutations on the
pdgfrb gene (pdgfrbF7/F7) (Tallquist et al., 2003) prevents normal
endothelial-pericyte signaling, regional differences in the BBB
dependence on pericyte presence was confirmed. The progressive
loss of CD13+ pericytes induced elevated BBB breakdown in
the cortex, hippocampus and striatum as compared to thalamus
(Nikolakopoulou et al., 2017). In this transgenic model, as well as
in a pericyte-specific ablation model based on double expression
of PDGFR-β and NG2 (Nikolakopoulou et al., 2019), BBB
dysfunction directly correlated with regional pericyte loss. Taken
together, the vulnerability of NVU function to pericyte loss is
region-dependent, and the general resilience of thalamic areas to
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pericyte dysfunction may be linked to the elevated pericyte:vessel
ratio these regions harbor (Wu et al., 2021).

Nevertheless, pericyte vulnerability shows a component of
regional variability, which may play an important role in several
pathologies. Vascular defects in white matter of the brain, and
pericyte dysfunction, are believed to be partially responsible for
multiple types of dementias (Sagare et al., 2013; Halliday et al.,
2016; Alber et al., 2019; Nortley et al., 2019; Ding et al., 2020).
In pdgfrbF7/F7 mice, pericyte loss was prominently observed
in white matter tracts, such as corpus callosum, in association
with BBB leakage and accumulation of blood-borne fibrinogen
(Montagne et al., 2018). Such deposits of fibrinogen are thought
to be toxic to oligodendrocytes, inducing demyelination and
white matter damage. In multiple sclerosis (MS), the nature
of the associated neurological deficits are highly dependent on
the location of focal inflammatory immune cell infiltration and
ensuing neural tissue lesions (Alvarez et al., 2015). When EAE,
a mouse model of MS, was combined with the pdgf-bret/ret

model of pericyte deficiency, the regional immune infiltration
correlated with regional pericyte loss (Torok et al., 2021).
The local reduction in pericyte coverage drives an increased
VCAM-1 and ICAM-1 expression on ECs, thereby facilitating
trafficking of pro-inflammatory CD45+ leukocytes into the
brain. Since vascular defects and BBB dysfunction are hallmarks
of neurodegenerative diseases, this highlights how a regional
variation in pericyte susceptibility to disturbances in PDGFR-
β signaling, or other yet unrecognized pathways, may in fact
underlie the regional component of those diseases.

The mechanisms that dictate pericyte heterogeneity across
brain regions are still poorly understood, but regionally
specialized functions may drive a certain pericyte phenotype.
For example, in the paraventricular nucleus, where vessel density
is 3–5-fold higher than in the cortex, pericyte coverage of
vessels is also significantly higher (Frahm and Tobet, 2015).
In CVOs, where the BBB lacks tight junctions to allow
sensing of blood-borne cues such as osmolarity, pericytes
display especially high levels of NG2 and PDGFR-β (Morita
et al., 2014). These levels were increased upon chronic osmotic
stimulation induced via salt-loading, unlike in the cortex where
they remained unchanged. Interestingly, this challenge also
promoted BBB leakage in CVOs. Ontogenic variability may also
play a role in the observed heterogeneity of pericytes among
anatomical brain regions. Indeed, the developmental origin of
brain pericytes is heterogeneous, with studies demonstrating
neural crest lineage, mesenchymal lineage and hematopoietic
sources (Etchevers et al., 2001; Trost et al., 2016; Yamamoto
et al., 2017; Yamazaki and Mukouyama, 2018). The ontogeny
of pericytes in specific brain regions remains to be elucidated
but is likely to participate in the regional heterogeneity of
pericyte function.

ASTROCYTES

Maintenance of the BBB is not a function of endothelial
and mural cells alone, but a dynamic process that involves
parenchymal cells including astrocytes, which express a specific

molecular repertoire essential for the physiology of the
vascular system.

Astrocytes are a heterogeneous subtype of glial cells that play
key roles in BBB formation and upkeep, blood flow regulation
and vascular contractility in response to neural activity (Abbott
et al., 2010; Alvarez et al., 2013; Boulay et al., 2016). They
release glia-derived neurotrophic factors and provide metabolic
support to neurons (Sofroniew and Vinters, 2010; Allaman et al.,
2011; Allen and Eroglu, 2017). Astrocytes display both inter- and
intra-regional differences in their morphology, gene expression,
and physiological role. Differences in astrocytic distribution
and morphology between white and gray matter reflect the
distinct functions of these CNS components andmeet the specific
functional requirements that each astrocytic population must
fulfill. In white matter, oligodendrocytes create a myelin sheath
around axonal fibers (Marques et al., 2016) that restricts direct
contact of fibrous astrocytes with axonal fibers to gaps in this
sheath called nodes of Ranvier (Black and Waxman, 1988;
Lubetzki et al., 2020). These fibrous astrocytes are small with few
but elongated, finger-like branches and organized in rows around
white matter tracts (Miller, 2018; Matias et al., 2019). Conversely,
gray matter—or protoplasmic—astrocytes have fine processes
that envelope ∼200,000 synapses in mice, and ∼2 million in
humans (Oberheim et al., 2006). Protoplasmic astrocytes are
highly ramified cells, with greater process arborization in layers
II/III than in layer IV (Lanjakornsiripan et al., 2018). Patterns of
gene expression specific to gray matter astrocytes differ between
cortical layers and areas (Morel et al., 2019; Batiuk et al., 2020;
Bayraktar et al., 2020), suggesting a high degree of intra-regional
heterogeneity in the mouse brain. Importantly, astrocytes not
only contact neuronal elements, but also directly interact with the
vasculature via specialized end-feet.

A critical role of astrocytes is tomaintain the barrier properties
of endothelial cells forming the BBB. Astrocyte cell bodies are
on average located 6–10µm from blood vessels (McCaslin et al.,
2011), and their end-feet form a continuous sheath around
all vessels below the pia including arterioles, capillaries, and
venules (McCaslin et al., 2011). Astrocytic end-feet cover 90–
99% of the brain’s vasculature (Abbott et al., 2006; Mathiisen
et al., 2010; Lundgaard et al., 2014). This astrocytic extension
to the vessels’ wall forms a subcellular domain dedicated to
the gliovascular interaction with abundant aquaporin-4 (AQP4),
potassium channels (KIR4.1), glucose transporter 1 (GLUT-
1/SLC2A1), and connexin-43 (Abbott et al., 2006; Jessen et al.,
2015), highlighting the astrocytes’ role in regulating water
transport as well as blood and glymphatic flow—the product
of the exchange of the brain interstitial and cerebrospinal fluid
mediated by AQP4 and responsible for the brain’s waste clearance
via the glymphatic pathway (Iliff and Simon, 2019; Rasmussen
et al., 2021). Along the vascular tree, the perivascular astrocytic
sheath in the somatosensory cortex is thicker in arterioles than
in capillaries (Jammalamadaka et al., 2015). However, capillaries
have the greatest density of astrocyte end-foot processes, and
the separation between astrocytes and capillaries decreases with
increasing cortical depth (McCaslin et al., 2011).

Inter-regional differences in astrocytes can be observed in
their protein expression (Morel et al., 2017). A prime example
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of regional differences is AQP4, a channel protein selectively
permeable to water that is highly expressed in astrocytic
membranes at the BBB and blood-CSF barrier, indicating its role
in controlling bidirectional fluid exchange (Papadopoulos and
Verkman, 2013). Interestingly, in vivo AQP4 deletion did not
affect BBB permeability to macromolecules, with no changes in
glial fibrillary acidic protein (GFAP) expression, or microvessels
ECs morphology (Saadoun et al., 2009; Haj-Yasein et al., 2011).
However, the consequent uncoupling of water and potassium
transport can determine susceptibility to other conditions since
a decrease in AQP4 leads to an increase in propensity for seizures
and cognitive decline (Yang et al., 2011) and participates in
pathologies associated to brain edema (Bonomini and Rezzani,
2010; Stokum et al., 2015). While the distribution pattern of
AQP4 mRNA is homogeneous across the cortex and white
matter, the protein itself is expressed in the white matter at almost
half of the level detected in the cortex (Nyul-Toth et al., 2016)—
likely due to the lower levels of vessel density that characterize the
white matter. AQP4 in protoplasmic astrocytes is preferentially
localized to the perivascular end-feet, while fibrous astrocytes
show a more uniform localization across the plasma membrane
(Stokum et al., 2015). This difference in distribution of one of
the main regulators of water homeostasis could explain why
white matter is more vulnerable to swelling and edema under
ischemic conditions.

Astrocytes are highly coupled via gap junctions (Cotrina and
Nedergaard, 2012) comprised of connexins Cx30 and Cx43,
which allow astrocytes to exchange ions and molecules below
1.5 kDa with adjacent cells by connecting their cytoplasm
(Bruzzone et al., 1996). Double deletion of Cx30 and Cx43
downregulates AQP4 (Nielsen et al., 1997) and weakens the
BBB, which becomes permeable to macromolecules upon an
increase in vascular pressure (Ezan et al., 2012). Interestingly, the
expression of these connexins is not uniform across anatomical
circuits: corpus callosum astrocytes are less coupled to each
other by gap junctions than their counterparts in the neocortex
(Haas et al., 2006), showing that gap junctional communication
between astrocytes can differ among brain regions. Whether
these regional differences in connexin expression directly
affect communication between astrocytes and ECs remains to
be clarified.

Astrocytes express high levels of GFAP, which is also
upregulated in reactive astrocytes and is often associated with
the severity of CNS disorders (Escartin et al., 2019), though
this correlation may be impacted by the regional differences in
basal GFAP expression (Griemsmann et al., 2015; Ben Haim and
Rowitch, 2017). For instance, hippocampal astrocytes display a
higher level of GFAP than cortical, thalamic, or striatal astrocytes
(Bushong et al., 2002; Chai et al., 2017). GFAP expression is
also higher in astrocytes isolated from the corpus callosum
compared to those in cortical structures (Goursaud et al., 2009).
In fact, mRNA and proteins levels of GFAP are 3–7-fold higher
in white matter than in gray matter (Nyul-Toth et al., 2016).
Although direct investigations in the mechanistic role of GFAP in
NVU function remain limited, its region-dependent expression
pattern is involved in white matter vs. gray matter vascular
properties since GFAP deletion increases the permeability to

macromolecules of the BBB in white matter and specifically
reduces vascularization in white matter compared to gray matter
(Liedtke et al., 1996).

Regional identities of astrocytes are maintained over time,
and evidence has shown that aged astrocytes from different
brain regions present a unique molecular signature (Boisvert
et al., 2018; Clarke et al., 2018). Significant differences in age-
related changes in gene expression have been found between
hippocampus, striatum and cortex, with an up-regulation of
astrocytic reactive genes in the hippocampus and striatum—
regions that show more susceptibility to oxidative stress and
other environmental stressors (Saxena and Caroni, 2011)—
compared to the cortex (Clarke et al., 2018). Accordingly, RNA
sequencing studies on aging astrocytes from different regions
showed that cortical astrocytes undergo minimal changes in
gene expression (<100 differentially regulated genes) compared
to cerebellar astrocytes (>500 genes). Interestingly, an age-
dependent increase in GFAP expression has been shown in
the hippocampus, but also in the frontal and temporal cortices
(Boisvert et al., 2018). However, functional implication of
GFAP upregulation during aging and CNS disorders is still
controversial. A failure of astrocytes to adequately adapt to
their roles in areas affected by aging may lead to a loss of
neuronal populations due to insufficient vascularization, and
differences in the regional expression of key proteins may be
crucial to our understanding of the origin and progression of
neurodegenerative diseases.

TOOLS TO STUDY REGIONAL
HETEROGENEITY OF THE NVU

Investigations in the NVU diversity demonstrate region-
dependent cellular variations, however direct functional
investigations remain necessary to evaluate how these differences
in NVU composition affect local brain functions. In this regard,
the development of novel neuroimaging modalities suitable for
brain-wide recordings has expanded the toolset required to probe
the regional heterogeneity of the NVU that was until recently
mostly addressed by single cell RNA sequencing (scRNAseq) and
functional magnetic resonance imaging (fMRI). The former is a
major contributor in characterizing the single cell transcriptomic
profile of the cellular and vascular components of the NVU
highlighting region-specific differences at the brain-wide scale
(Saunders et al., 2018; Ross et al., 2020) and beyond what can be
achieved with conventional imaging modalities. The latter, fMRI,
is a gold standard modality suitable to capture the heterogeneity
of hemodynamic responses at the whole brain scale (Devonshire
et al., 2012) and between white and gray matter (Gawryluk
et al., 2014). However, when considering NVU/C investigations
scRNAseq lacks the functional interplay between cellular and
vascular components while fMRI approach remains limited by
a reduced spatiotemporal resolution when compared with other
modalities (Urban et al., 2017), the need of anesthetic drugs when
considering their impact on the NVC (Aksenov et al., 2015), and
its lack of cellular component compensated by complementary
modalities (Mishra et al., 2011; Aksenov et al., 2015).
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Hereafter we focus on recent strategies allowing for cellular
and/or vascular imaging under conscious conditions enabling
to preserve the physiological integrity of the NVC (Masamoto
and Kanno, 2012; Reimann and Niendorf, 2020). While acting
at different spatiotemporal scales, multi-photon microscopy
(MPM; 2- and 3-photon microscopy), miniaturized fluorescence
microscopes (Miniscope), multi-fiber photometry (MFP),
and functional ultrasound imaging (fUSI) modalities are
complementary methods providing information on the interplay
between the cellular and vascular components of the NVU
regionally and at the larger, whole brain scale (Figure 2). For
further comparison of neuroimaging methods described in this
section, we also refer the readers to Urban et al. (2017) and
Walter et al. (2020).

Multi-photon microscopy (MPM) is the “gold standard” for
the study of cellular dynamics, function and morphology as
well as hemodynamics (Shih et al., 2012; O’Herron et al., 2016;
Urban et al., 2017) in a low- to non-invasive way [i.e., cranial
window (Goldey et al., 2014), thinned-skull (Drew et al., 2010),
or transcranial (Wang et al., 2018)]. The capabilities of MPM
(Urban et al., 2017; Li B. et al., 2020) combined with cell-
specific genetically encoded activity reporters suited for probing
either calcium or voltage changes (GECIs and GEVIs) (Lin and
Schnitzer, 2016) has allowed the simultaneous recording of many
cell populations involved in NVC [neurons (Urban et al., 2017),
roles of astrocytes in the control of arteriole diameter, increase in
local blood flow (Takano et al., 2006; Tran and Gordon, 2015),
microglia as important regulators of blood flow during NVC
(Hierro-Bujalance et al., 2018; Császár et al., 2021), pericytes
control blood flow direction at capillary junctions, maintenance
of capillary flow resistance and metabolic exchanges (Berthiaume
et al., 2018; Gonzales et al., 2020)] and/or BBB permeability
(Knowland et al., 2014). Along with cell-specific imaging, MPM
can record local volumetric hemodynamic changes [blood flow
and red blood cell velocity (Urban et al., 2017)] from surface
pial vessels down to deep capillaries (Fan et al., 2020) with
dedicated circulating fluorescent contrast agents (Miller et al.,
2017). The unique combination of approaches offered by MPM
makes it a tool of choice for investigating the complex interplay
between cellular functions and vascular dynamics under awake
conditions. Furthermore, the development of MPM allowing
deeper imaging with better resolution (Miller et al., 2017; Wang
et al., 2018) together with new faster and brighter GECIs (Dana
et al., 2019; Inoue et al., 2019) to improve imaging capabilities
in the mouse brain now allows to address the neurovascular
components in the entire depth of the cortex, the white matter (Li
B. et al., 2020) and down to the dorsal layers of the hippocampus
(Ouzounov et al., 2017).

To better investigate the NVU of deeper brain areas,
Miniscopes offer the opportunity to image up to 1,000 cells (Ziv
et al., 2013) from distinct populations at single-cell resolution
in freely behaving animals (Aharoni and Hoogland, 2019) using
GECIs or GEVIs. Miniscope designs afford wide-field imaging of
the cortical surface that can be extended to the entire cortical
column by the means of microprism allowing for recording
of both cell assembly and hemodynamics (Chia and Levene,
2009; Andermann et al., 2013; Low et al., 2014; Gulati et al.,

2017) to various deep brain areas [e.g., hippocampus (Ziv et al.,
2013), striatum (de Groot et al., 2020), hypothalamus (Resendez
et al., 2016)] via gradient-index (GRIN) lens and relay. For
example, using two GRIN relays Barretto et al. (2011) chronically
monitored the progressive distortion of the microvasculature
(i.e., architecture and velocity) due to glioma angiogenesis as well
as properties of hippocampal neurons. To adapt the Miniscope
design for hemodynamic measurements, Senarathna et al. (2019)
added intrinsic optical signal (Grinvald et al., 1986) and laser
speckle contrast (Miao et al., 2011) channels, enabling imaging
of cerebral blood volume and flow over wide areas. Showing
the Miniscope approach can also be used for BBB studies,
Barr et al. (2020) used circulating contrast agents to image
cocaine-induced BBB leakage in freely moving rats. Conceivably,
Miniscopes will allow for comparative NVU imaging in deep
regions of the brain, however hemodynamic recordings and BBB
permeability are poorly addressed (often excluded from analysis)
using these tools while so far limited to superficial layers of
the cortex.

In contrast to the limited brain-wide capabilities of MPM and
Miniscope, the MFP modality enables large-scale investigations
through simultaneous recording of tens of cortical and
subcortical regions of the mouse brain under freely-moving
conditions (Pisano et al., 2019; Sych et al., 2019). As with MPM
and Miniscope, MFP requires genetically encoded biosensors
to collect changes in neuronal (Wang Y. et al., 2021) and
astrocyte activity (Paukert et al., 2014; Schlegel et al., 2018)
and supports simultaneous dual-color recordings that allows for
combined recordings of different cell types (Meng et al., 2018).
Despite its sensitivity and brain-wide coverage, MFP remains
constrained to bulk changes and lacks single-cell resolution
making investigations into specific non-neuronal cell population
activity, hemodynamics [limited to O2 saturation measurement
(Yu et al., 2020)] and BBB function poorly accessible so far.

From a hemodynamic point-of-view, functional ultrasound
imaging (fUSI) can be considered as an alternative to fMRI by
monitoring blood velocity and cerebral blood volume changes
in the entire brain depth at high spatiotemporal resolution
(Mace et al., 2011). Three major developments have broadened
the fUSI application to neuroscience: (i) ultrasound transducer
miniaturization allowed freely-behaving investigation (Urban
et al., 2015), (ii) ultrasound transducer motorization achieved
brain-wide coverage therefore extending the detection of activity
to ∼250 brain regions (Mace et al., 2018), and (iii) brain-wide
volumetric imaging of behaving rodents by the mean of matrix
transducer (Brunner et al., 2020). Similarly to optical modalities
discussed above, several strategies have been proposed to reduce
the ultrasound attenuation of the skull from transcranial (Tiran
et al., 2017), thinned skull (Urban et al., 2014) to stabilized
cranial window suited for awake imaging (Mace et al., 2018;
Brunner et al., 2020). While fUSI enables the study of NVC
regional heterogeneity (Mace et al., 2011, 2018; Sans-Dublanc
et al., 2021), it has never been employed to address large scale
white matter hemodynamics or BBB functions. Unlike MPM,
Miniscope or MFP, fUSI cannot track cell activity via genetically-
encoded indicators but can be combined with electrophysiology
(Mace et al., 2018; Nunez-Elizalde et al., 2021; Sans-Dublanc
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FIGURE 2 | Neuroimaging modalities to investigate the regional heterogeneity of the neurovascular unit under awake conditions. Top left: Multi-photon microscopy

(MPM) allows high-resolution imaging of cell-specific activities (here, pericytes) and vascular dynamics using fluorescent dyes in a cortical column and deeper regions.

Top right: Miniaturized microscope (Miniscope) suitable for imaging of single cell activity and blood vessels from deep brain regions (here, lateral hypothalamus) by the

mean of a GRIN relay. Bottom left: Multi-fiber photometry (MFP) allows for simultaneous recording of cellular changes (here, GCaMP6m-expressing cells) from across,

but not limited to, 12 individual brain regions. Bottom right: Functional ultrasound imaging (fUSI) allows for high sensitivity recording of hemodynamic changes with a

brain-wide coverage of more than 130 regions per hemisphere. Reprinted with permission from Li B. et al. (2020), Berthiaume et al. (2018), Resendez et al. (2016),

Sych et al. (2019), and Brunner et al. (2020). The figure was created using BioRender.com.

et al., 2021) and cell-specific optogenetic tools (Brunner et al.,
2020; Sans-Dublanc et al., 2021).

Also employed in the preclinical cerebrovascular realm,
optical coherence tomography [OCT; reviewed by Yao andWang
(2014)] and optoacoustic [OA; reviewed by Ovsepian et al.
(2017)] neuroimaging modalities actively support investigations
on NVU/C. OCT allows for high resolution angiography of the
cortical depth down to the hippocampus and including the white
matter (Chong et al., 2015; Park et al., 2018). However, functional
monitoring of local blood flow, velocity and O2 saturation
(Gagnon et al., 2016) suitable under awake conditions (Li et al.,
2020) are restricted to small cortical regions strongly limiting the

investigation of the NVU and its heterogeneity in the entire brain.
On the other hand, OA affords high resolution angiography
of the cortical vascular tree but lacks spatial resolution and
tissue penetration when probing mesoscale hemodynamics [i.e.,
hemoglobin oxygenation, O2 saturation (Burton et al., 2013; Tang
et al., 2016)] and neural activity (Gottschalk et al., 2019). Such
constraint makes OA modality limited to address the regional
heterogeneity of the neurovascular unit.

Overall, imaging modalities described here range from low
to high invasiveness with thinned skull or cranial window
preparations (MPM and fUSI) up to insertion of device into
the brain tissue (Miniscope, MFP) that may lead to structural
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and functional damage to the brain [i.e., tissue inflammation
(Dorand et al., 2014; Bocarsly et al., 2015); brain lesions (Cole
et al., 2011; Jacob et al., 2018); vessels leaking (Chia and Levene,
2009); spreading depolarization (Srienc et al., 2019)] affecting
the integrity of NVU/C and inducing confounding effects in the
brain cortex. These considerations further highlight the need
for appropriate controls or exclusion criterion in studies using
these approaches.

Beyond the establishedmethods discussed above, the potential
of combining different modalities is huge and can provide
crucial information to better understand the heterogeneity and
complexity driving the NVU/C at the whole brain scale. For
example, scRNAseq has been performed after combined MPM
and electrophysiological recordings highlighting the functional
pattern and the transcriptional profile of tagged cells (Liu
et al., 2020) paving the way to a better characterization of the
NVU components and functions. The versatility and limited
invasiveness of MFP modality allow for combination with
fMRI (Schulz et al., 2012; Schlegel et al., 2018) suited for
hemodynamic recordings and BBB investigations. Furthermore,
the dual MFP/fUSI monitoring could provide very helpful
information on the NVU heterogeneity as they generate very
complementary signals (i.e., cellular and vascular) at the brain-
wide scale. Similarly, Lake et al. (2020) simultaneously recorded
wide-field calcium imaging with fMRI to investigate cortex-wide
cell-specific activity with whole-brain hemodynamics. Moreover,
Boido et al. (2019) compared the vascular and neuronal signals
captured withMPMwith hemodynamic changes monitored with
fUSI and fMRI in the same animal.

While these studies were mostly focused on neuronal activity,
the diversity of cell-specific GECI/GEVIs, optogenetic constructs
and transgenic animals now available combined with the
methods discussed above should support the investigation of the
vascular and cellular components of the NVU at the brain-wide
scale in awake rodents.

CONCLUDING REMARKS

It is now well-accepted that the NVU displays a high degree
of heterogeneity, encompassing diverse cell types and varying

its composition among vessel types and anatomical regions.
Recent data highlighted here is likely only a hint of how
the NVU exhibits specialized function to adapt to the varied
environments of the brain. Intense research on the vascular
landscape of areas like the choroid plexus, where a barrier
more permeable than the BBB is critical to CSF production,
will surely reveal new functions to the “classical” NVU cells
(Liddelow, 2015; Lun et al., 2015; Kaur et al., 2016). These cells
making up the NVU, once thought limited to ECs, astrocytes,
pericytes and neurons, are also joined by “newcomers,” with
perivascular fibroblasts, perivascular macrophages, resident
microglia and others now believed to play an active role
in cerebrovascular activity (Koizumi et al., 2019; Ross et al.,
2020). With each of these cell types also displaying their
own regional heterogeneity across the brain (Masuda et al.,
2020), it is easy to imagine that even if the cerebrovascular
compartment connects into one continuum, it may in fact
harbor multiple somewhat distinct regions of specialized
cellular composition and function. With techniques continually
improving to provide better access to the cerebrovasculature,
our vision of the NVU may move from a global “one NVU fits
all” perspective, to a more nuanced one where the NVU is not
only metabolically serving a brain region, but participating in
its specialization.
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