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Abstract: Oocytes are postulated to repress the proton pumps (e.g., complex IV) and ATP synthase
to safeguard mitochondrial DNA homoplasmy by curtailing superoxide production. Whether the
ATP synthase is inhibited is, however, unknown. Here we show that: oligomycin sensitive ATP
synthase activity is significantly greater (~170 vs. 20 nmol/min−1/mg−1) in testes compared to oocytes
in Xenopus laevis (X. laevis). Since ATP synthase activity is redox regulated, we explored a regulatory
role for reversible thiol oxidation. If a protein thiol inhibits the ATP synthase, then constituent
subunits must be reversibly oxidised. Catalyst-free trans-cyclooctene 6-methyltetrazine (TCO-Tz)
immunocapture coupled to redox affinity blotting reveals several subunits in F1 (e.g., ATP-α-F1) and
Fo (e.g., subunit c) are reversibly oxidised. Catalyst-free TCO-Tz Click PEGylation reveals significant
(~60%) reversible ATP-α-F1 oxidation at two evolutionary conserved cysteine residues (C244 and
C294) in oocytes. TCO-Tz Click PEGylation reveals ~20% of the total thiols in the ATP synthase
are substantially oxidised. Chemically reversing thiol oxidation significantly increased oligomycin
sensitive ATP synthase activity from ~12 to 100 nmol/min−1/mg−1 in oocytes. We conclude that
reversible thiol oxidation inhibits the mitochondrial ATP synthase in X. laevis oocytes.

Keywords: mitochondria; thiol; redox signaling; ATP synthase; oocyte; Xenopus laevis; click chemistry

1. Introduction

Human sperm rely on oxidative phosphorylation (OXPHOS) to swim 103 times their own length to
fertilise an oocyte [1,2]. Paternal mitochondrial DNA (mtDNA) is purged and/or heavily diluted after
fertilisation to ensure maternal inheritance dominates in the embryo [3,4]. Maternal inheritance avoids
deleterious mtDNA heteroplasmy because OXPHOS sensitises sperm to oxidative DNA damage [5].
Oxidative DNA damage can occur when thermodynamically and kinetically competent reduced
electron donors (e.g., prosthetic semiquinone radicals) catalyse the univalent reduction of ground
state molecular dioxygen (O2) to superoxide [6,7]. Superoxide anion and its dismutation product
hydrogen peroxide (H2O2) are chemically unable to oxidise DNA directly [8]. H2O2 can, however, react
with DNA bound iron and copper ions to produce hydroxyl radical (OH•) [9–11]. In turn, OH• can
damage pyrimidine and purine bases at a diffusion controlled rate (i.e., k ~ 109 M−1 s−1) via addition,
oxidation, and abstraction reactions [12–14]. If OXPHOS imperils mtDNA homoplasmy, then oocyte
mitochondria may repress it to curtail superoxide production.

Allen [15] posits that: oocytes safeguard mtDNA homoplasmy by repressing OXPHOS to curtail
superoxide production. In support, OXPHOS is repressed in oocytes compared to sperm in diverse
phyla from jellyfish to mice [16–20]. Repressed OXPHOS is associated with lower mitochondrial free
radical levels in oocytes compared to sperm [16,17]. To curtail superoxide production by repressing
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OXPHOS without sacrificing oocyte viability, dual inhibition of the proton pumps (i.e., complex I,
III and IV) and F1-Fo ATP synthase may be required. If the proton pumps are active and the F1-Fo ATP
synthase is inactive, then a large electrochemical proton motive force (∆p) could substantially enhance
superoxide production (e.g., by complex I catalysed reverse electron transfer [21]). Reciprocally, if the
proton pumps are inactive and F1-Fo ATP synthase is active, then it may curtail complex I and III
catalysed superoxide production, but the synthase may compromise oocyte viability by hydrolysing
ATP to maintain ∆p [22]. Whether the proton pumps and F1-Fo ATP synthase are inhibited in oocytes
is, however, unknown. Unravelling if and how the F1-Fo ATP synthase is inhibited would advance
current understanding of reproductive biology.

Extant data imply the F1-Fo ATP synthase is inhibited in Xenopus laevis (X. laevis) oocytes.
In support, the F1-Fo ATP synthase inhibitor oligomycin fails to deplete [ATP] in rapidly proliferating
X. laevis blastulae [23,24]. Their oligomycin insensitivity may be explained by pre-existing inhibition
by reversible thiol oxidation. Indeed, we observed substantial reversible thiol oxidation of the F1 alpha
subunit (ATP-α-F1) in X. laevis oocytes [25]. Informed by seminal work in chloroplasts and somatic
mitochondria [26–33], we infer that the F1-Fo ATP synthase is inhibited by reversible thiol oxidation;
which can tune protein function by modifying activity, subcellular locale, and/or vicinal interactome
(reviewed in [34–38]). Since Yagi and Hatefi [26] first reported that reversible thiol oxidation inhibits
the F1-Fo ATP synthase in 1984, subsequent studies [29,32,33] have shown that it regulates OXPHOS,
superoxide production, and the mitochondrial permeability transition pore (reviewed in [31,39–41]).
For example, Wang and colleagues [29] found that a disulfide bond between the ATP-α-F1 and gamma
(ATP-γ-F1) subunits impaired OXPHOS in dyssynchronous heart failure.

No study has investigated whether reversible thiol oxidation inhibits the F1-Fo ATP synthase
in oocytes. To advance current understanding, we determined whether: (1) F1-Fo ATP synthase
activity is impaired in the female germline compared to the testes (i.e., a somatic tissue responsible for
producing the male germline); (2) the F1-Fo ATP synthase is assembled; (3) F1-Fo ATP synthase subunits
are reversibly oxidised; and (4) F1-Fo ATP synthase activity is redox regulated in X. laevis oocytes.
X. laevis oocytes are ideal because they are a tractable developmental model [42–44], insensitive to
oligomycin [45,46], and key thiols are conserved [25].

2. Materials and Methods

2.1. Materials and Reagents

A list of the materials and reagents used is provided (see Table S1).

2.2. Xenopus laevis

In-house bred X. laevis were maintained at the European Xenopus Resource Centre (EXRC) at 18 ◦C
and fed daily on trout pellets [47]. Following ethical approval (#OLETHSHE1500), X. laevis oocytes
were harvested, defolliculated with collagenase, and stored at −80 ◦C for biochemical analysis. In line
with the ARRIVE guidelines [48], biological variability was accounted for by obtaining samples from
three different adult females.

2.3. F1-Fo ATP Synthase Assay

Mitochondria were isolated by differential centrifugation wherein oocytes (n = 10) were lysed in
STE buffer (250 mM sucrose, 200 mM Tris-HCL, 2 mM EDTA, pH 7.2) supplemented with a protease
inhibitor tablet, 1% fatty acid free BSA and 100 mM N-ethylmaleimide (NEM) to block reduced thiols
for 10 min on ice. Lysates were centrifuged at 700× g for 10 min at 4 ◦C, before the supernatant was
centrifuged at 7000× g for 10 min at 4 ◦C. After discarding the supernatant, the mitochondrial pellet
was resuspended in STE with fresh 10 mM 1-4-Dithiothreitol (DTT) or without (control) for 30 min
on ice. Mitochondria were pelleted and washed (3 × 1 min in BSA free STE) to remove excess DTT,
before being treated with 50 µg/mL alamethicin to permeabilise the inner membrane to ATP [49],
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1 µM diphenyleneiodonium to prevent complex I oxidising NADH by inhibiting the prosthetic
flavin mononucleotide group, and 300 nM antimycin A to block complex III. In the reduced group,
TCEP (2 mM) was used to maintain a reducing environment (e.g., prevent vicinal dithiols reforming
disulfide bonds after reduction). TCEP is preferable to DTT for maintaining a reducing environment
because DTT can autoxidise to produce superoxide in the presence of transition metals [12].

F1-Fo ATP synthase activity was assessed by monitoring ATP hydrolysis in the presence of
a glycolytic pyruvate kinase (PK), lactate dehydrogenase (LDH), and phosphoenolpyruvate (PEP)
system to regenerate ATP. ATP hydrolysis was followed as the decrease in NADH absorbance at 340
nm (extinction coefficient: 6.22 Mm−1 cm−1) using a plate reader. Mitochondria were analysed in
duplicate in a reaction buffer containing (400 µM NADH, 1 mM PEP, 20 U/mL LDH, 15 U/mL PK, and
2.5 mM ATP in 200 mM Tris, 2 mM MgCl2, 200 µM EDTA, pH 8.0). ATP hydrolysis was followed
for 2 min without mitochondria to account for spontaneous ATP hydrolysis. Mitochondria were
added and NADH absorbance was monitored for every 15 s 10 min. All wells were then spiked
with 6 µM oligomycin and NADH absorbance was followed for 5 min to determine specific F1-Fo

ATP synthase activity. After determining protein content using a Bradford assay and subtracting
oligomycin insensitive absorbance, F1-Fo ATP synthase activity (nmol/min−1/mg−1) was calculated
using the following equation: (∆ 340/min × 1000)/[(extinction coefficient × sample volume) × protein
concentration)] [50].

2.4. Native Blotting

Mitochondrial membranes were solubilised with 5 µL of 20% dodecyl lauryl maltoside (DDM)
in PBS. After centrifuging samples at 16,250× g for 12 min at 4 ◦C, 0.1% Ponceau S was added
to the supernatant to establish a dye front [51]. High resolution clear native polyacrylamide gel
electrophoresis (Hr-CNPAGE) was performed as described by Wittig and colleagues [51] using a
cathode (50 mM Tricine, 7.5 mM Imidazole, 0.02% DDM, and 0.05% sodium deoxycholate, pH ~7)
and anode buffer (25 mM Imidazole, pH ~7). Electrophoresis was performed at 4 ◦C for 90 min to
prevent band broadening and to ensure sufficient protein transfer [52]. Gels were transferred onto
a low autofluorescence 0.45 µM polyvinylidene fluoride (PVDF) membrane at 100 V for 60 min in
transfer buffer (50 mM Tricine, 7.5 mM Imidazole, pH 7) at 4 ◦C. Membranes were blocked with 5%
non-fat dry milk (NFDM) in PBS for at least 60 min. Primary/secondary antibody incubations and
fluorescent detection are described below (see Redox Mobility Shift Assay).

2.5. In-Gel ATP Hydrolysis Assay

Mitochondrial membranes were solubilised with DDM and Hr-CNPAGE was performed as
described above. After alkylating reduced thiols with NEM (100 mM), reversibly oxidised thiols were
treated with (reduced) or without (control) 3.5 mM TCEP for 15 min. Oligomycin controls (500 nM)
were loaded in parallel. An equal amount of protein (5 µg) was loaded onto a precast 4–15% gradient
gel. Native gels were incubated with buffer (35 mM Tris, 270 mM Glycine, pH 8.3) for 2 h, before being
incubated with assay buffer (35 mM Tris, 270 mM Glycine, 14 mM MgSO4, 0.2% Pb(NO3)2, 2.8mM ATP,
pH 8.3) for 2 h at room temperature. The reaction was stopped with 50% methanol for 30 min before
membranes were scanned. Images were inverted to visualise the white bands and densitometry was
performed using VisionWorksTM software (Analytik Jena, Germany).

2.6. Catalyst-Free TCO-Tz Immunocapture Coupled to Redox Affinity Blotting

Aliquots (5 µL) of anti-ATP-α-F1 primary antibody were incubated with 10 mM trans-cyclooctene
polyethylene glycol 4 (PEG) N-hydroxysuccinimide (TCO-PEG4-NHS) for 30 min at 4 ◦C to label primary
amines. To prevent unwanted labelling of primary amines in the sample, excess TCO-PEG4-NHS was
quenched by adding 5 mM Tris for 15 min. A 45 min total reaction time should ensure NHS hydrolysis
outcompetes the carbodiimide reaction thereby preventing adventitious sample labelling. Mitochondrial
membranes were prepared as described below (see Catalyst-free TCO-Tz Click PEGylation), except
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TCO-PEG3-maleimide (TCO-PEG3-NEM) was substituted for 5 mM Biotin-dPEG®3-maleimide (Sigma,
UK, Biotin-dPEG®3-MAL). Biotin-dPEG®3-MAL labelled mitochondrial membranes were incubated
with TCO-PEG4-NHS labelled primary antibody for 30 min on ice, before being placed in a spin
cup containing 85 µL 6-methyltetrazine substituted agarose beads to initiate the catalyst-free Inverse
Electron Demand Diels Alder (IEDDA) Click reaction for 90 min on ice. Clicked samples were washed
in PBS supplemented with 0.05% DDM for 1 min before being centrifuged for 1 min at 1000× g
(washing was repeated five times). Using a spin cup increases purity by removing contaminants
with high stringency. Western blotting was performed as described below (see Redox Mobility Shift
Assay), expect Streptavidin Alexa Fluor™ 647 (ThermoFisher, UK, 1:500 in TBST for 60 min at room
temperature) was used to detect reversibly oxidised subunits on an Analytik Jena (Analytik Jena,
Germany) scanner using the appropriate filters (excitation: 600–645 nm; emission: 607–682 nm).

2.7. Catalyst-Free TCO-Tz Click PEGylation

We amended whole-cell TCO-Tz Click PEGylation for mitochondria [25]. Oocytes (n = 10) were
lysed in STE buffer supplemented with a protease inhibitor tablet, 1% fatty acid free BSA and 100 mM
NEM) to block reduced thiols for 10 min on ice. Lysates were centrifuged at 700× g for 10 min at
4 ◦C, before the supernatant was centrifuged at 7000× g for 10 min at 4 ◦C. Mitochondrial pellets
were resuspended in STE with 5 mM TCEP for 30 min on ice. After washing to remove excess
TCEP, mitochondria were resuspended in 5 mM TCO-PEG3-NEM to label newly reduced thiols [36].
Alamethicin (50 µg/mL) was added to ensure TCO-PEG3-NEM could permeate the inner mitochondrial
membrane. Mitochondria were lysed in PBS (pH 7.3) supplemented with 1.5% (v/v) 20% DDM.
After removing insoluble material by centrifugation (14,000× g for 5 min at 4 ◦C), the supernatant was
incubated with 5 mM 6-methyltetrazine 5 kDa PEG (Tz-PEG5) for 90 min on ice. The catalyst-free
IEDDA Click reaction was terminated by adding Laemmli buffer (4% SDS, 20% Glycerol, 0.004%
Bromophenol blue and 125 mM Tris HCl, pH 6.8) supplemented with 100 mM DTT before samples
were denatured at 80 ◦C for 5 min.

2.8. Redox Mobility Shift Assay

The Redox Mobility Shift Assay and analysis were performed as described in [25]. After following
a standard Western blot protocol [53,54], PVDF membranes were incubated with anti-ATP-α-F1 primary
antibody (1 µg/mL in 3% NFDM TBST) overnight. Washed and incubated with a preabsorbed Alexa
Fluor®750 secondary antibody (Abcam, UK, 1:2000 in 3% NDFM TBST). Membranes were imaged
(excitation: 678–748 nm; emission: 767–807 nm) on an Analytik Jena scanner (Germany).

2.9. Statistical Analysis

Oligomycin sensitive F1-Fo ATP synthase activity data were analysed using independent Student’s
t-tests with alpha ≤ 0.05. TCO-Tz Click PEGylation data were analysed by paired Student’s t-tests
with alpha ≤ 0.05. Statistical analysis was performed on GraphPad Prism (GraphPad Software, USA).
Data are presented as Mean and standard deviation (±).

3. Results

3.1. F1-Fo ATP Synthase Activity is Significantly Greater in Testes Compared to Oocytes

Allen [15] proposes that: oocytes repress OXPHOS to safeguard mtDNA homoplasmy by curtailing
superoxide production. If so, F1-Fo ATP synthase activity should be greater in the soma compared
to the female germline. Sperm, a major cell type in testes, should sacrifice mtDNA homoplasmy by
practicing OXPHOS [15]. Isolating sperm without contaminating somatic tissue (i.e., sertoli cells) is
problematic; a situation abetted by a five orders of magnitude difference in mitochondrial number
between sperm (102) and oocytes (107) in X. laevis [55]. Accordingly, we assessed mitochondrial F1-Fo

ATP synthase activity in oocytes compared to testes. We measured ATP hydrolysis using a glycolytic
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ATP regenerating system in isolated mitochondria treated with alamethicin [49] (Figure 1A). Using
alamethicin to render the inner mitochondrial membrane permeable to ATP placed the rate-limiting
step on the F1-Fo ATP synthase by eliminating the influence of the proton pumps and ATP/ADP
carrier [22]. Oligomycin sensitive F1-Fo ATP synthase activity is significantly (p ≤ 0.0001) lower in
oocytes compared to testes (oocyte: 18.81 ± 15.38; testes: 177.1 ± 37.82 nmol/min−1/mg−1; Figure 1B).
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Figure 1. Oligomycin sensitive F1-Fo ATP synthase activity is significantly greater in testes compared to
oocytes. (A) The F1-Fo ATP synthase hydrolysis ATP to ADP. Pyruvate kinase regenerates ATP by using
phosphoenolpyruvate (PEP) to phosphorylate ADP to ATP. Lactate dehydrogenase reduces pyruvate
to lactate using NADH derived electrons. F1-Fo ATP synthase activity is followed by monitoring the
loss of NADH absorbance at 340 nm. (B). Oligomycin sensitive F1-Fo ATP synthase activity is higher
significantly (p ≤ 0.0001) in testes (n = 6) compared to oocytes (n = 6) in X. laevis. Statistical significance
is indicated by an asterix as assessed by an independent Student’s t-test. (C). Native ATP-α-F1 blot
image showing the F1-Fo ATP synthase is fully assembled in X. laevis oocytes (n = 4). A minor fraction
is present as an F1 subcomplex. Each n is the weighted mean of 10 oocytes.

3.2. The F1-Fo ATP Synthase is Assembled in Oocytes

Sieber and colleagues [45] identified a Coomassie stained band on a native gel that may correspond
to assembled F1-Fo ATP synthase in X. laevis oocytes. To immunologically confirm F1-Fo ATP synthase
assembly, we performed a native blot against the ATP-α-F1 subunit [51,52]. Native blotting reveals the
F1-Fo ATP synthase is assembled in X. laevis oocytes (Figure 1C). F1-Fo ATP synthase disassembly is,
therefore, unlikely to explain low oligomycin sensitive ATP hydrolysis in oocytes. Low activity is also
unlikely to be attributable to low abundance because ATP-β-F1 content is estimated to be 7.1 µM in
X. laevis oocytes [56]. F1-Fo ATP synthase assembly and abundance implies latent enzyme capacity
that may be realised by reversing inhibitory thiol oxidation.

3.3. Several F1-Fo ATP Synthase Subunits are Reversibly Oxidised

If reversible thiol oxidation is inhibitory, then F1-Fo ATP synthase subunits must be reversibly
oxidised. Annotated genome data reveals the F1-Fo ATP synthase contains 18 thiols in X. laevis [42] (see
Table 1). After excluding mitochondrial leader sequences, the F1-Fo ATP synthase likely contains 10–11
thiols depending on whether the L or S chromosome copy of ATP-y-F1 is expressed. Available structures
suggest cysteine residues in ATP-α-F1 (C244, C294), ATP-γ-F1 (C100, C173), OSCP (C139), and subunit c
(C149) are likely fully and/or partially solvent exposed in catalytic state 3A [57] (Figure 2). Assuming a
similar structure in X. laevis, C104 in subunit b may also be solvent exposed. To determine whether
F1-Fo ATP synthase subunits are reversibly oxidised, we used a catalyst-free TCO-Tz immunocapture
approach coupled to redox affinity blotting (Figure 3A). Since the ATP-α-F1 antibody recognises the
assembled complex, we used a heterobifunctional TCO-PEG4-NHS linker to form a stable carbodiimide
bond with primary amines in the ATP-α-F1 antibody. After labelling reversibly oxidised samples with
Biotin-dPEG®3-MAL, samples were incubated with TCO-PEG4-NHS labelled ATP-α-F1 antibody before
6-methyltetrazine substituted agarose was used to capture the synthase. Reversibly oxidised F1-Fo

ATP synthase subunits were detected by Western blot using a streptavidin conjugated fluorophore [36].
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Catalyst-free TCO-Tz immunocapture coupled to redox affinity blotting reveals discrete bands
at ~100, 50, 37, 30, 20–25, and ≤ 10 kDa. Additionally, a distorted band at ~10 kDa was observed,
which may reflect how DDM and SDS interact with hydrophobic proteins. Based on a theoretical
profile constructed from Table 1 (Figure 3B), observed bands likely correspond to ATP-α-F1, ATP-γ-F1,
OSCP, subunit b and g (Figure 3C). For OSCP and subunit g, the observed band reflects reversible C139

and C96 oxidation, respectively, because they contain a single thiol. After excluding mitochondrial
leader sequences, the distorted band is likely an Fo subunit (e.g., subunit c and/or C3). The unassigned
~100 kDa band may represent an interacting protein, hydrophobic aggregate (likely heat induced),
and/or crosslinked subunits. Proteomic profiling of the captured complex will be reported elsewhere.
F1-Fo ATP synthase subunits are reversibly oxidised in oocytes.

Table 1. Cysteine residues in F1-Fo ATP synthase in X. laevis. No annotated information could be found
for ATP synthase subunit epsilon (ATP-ε-F1), subunit DAPIT, ATP synthase F(0) complex subunit C2,
and ATP synthase subunit e (subunit e).

ATP Synthase Subunit Uniprot ID Domain Molecular Weight
(kDa) Cysteine Residues

Subunit a P00849 Fo 25 None
Subunit ACL P03931 Fo 6.5 None

C domain-containing
protein (subunit c) A0A1L8HIH0 Fo 16.9 34 *, 49 *, 84, 149

Coupling factor 6 Q6PG55 Fo 12.3 None
Subunit C3 (subunit c3) Q8AVE1 Fo 14.7 4 *, 131

Subunit f A0A1L8EX92 Fo 10.4 None
Subunit g (subunit g) Q66L24 Fo 11 96

Subunit alpha (ATP-α-F1) Q68EY5 F1 60 244, 294
Subunit beta (ATP-β-F1) A0A1L8HHY6 F1 56.4 9 *@, 20 *, 31 *

Subunit gamma (ATP-γ-F1) Q6INB6 F1 32.4 100, 173 #
Subunit delta (ATP-δ-F1) Q66KY9 F1 16.9 None
Oligomycin sensitivity

conferring protein (OSCP) Q3KQC0 F1 22.8 139

Subunit b (subunit b) Q9IAJ7 F1 28.2 26 *, 104, 235

* Likely in the mitochondrial leader sequence; @ Only present on the L chromosome copy of the protein; # Only
present on the S chromosome copy of the protein.Antioxidants 2020, 9, 215 6 of 14 
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Figure 2. Cysteine residues in bovine Fo-F1 ATP synthase in catalytic state 3A. Numbered cysteine
residues are highlighted in yellow. The key lists the cysteine residue by amino acid number for the
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Figure 3. Several F1-Fo ATP synthase subunits are reversibly oxidised. (A). Catalyst-free trans-cyclooctene-
6methyltetrazine (TCO-Tz) immunocapture coupled to redox affinity blotting workflow. From left to
right: Primary amines in the ATP-α-F1 antibody are labelled with a heterobifunctional NHS-PEG4-TCO
linker. After excess NHS is quenched with Tris (not shown), the labelled antibody is incubated with Biotin
functionalised maleimide labelled reversibly oxidised thiols in mitochondrial membranes to capture the
F1-Fo ATP synthase. Agarose beads substituted with 6-methyltetrazine are then used to selectively
capture the antibody-synthase complex. After washing away contaminants with a spin cup, samples
are boiled, denatured, and reduced to elute subunits for streptavidin blotting. Streptavidin, conjugated
Alexa Fluor™ 647 positive bands denote reversibly oxidised subunits. (B). A predicted reversibly oxidised
subunit profile based on Table 1. (C). Representative image of an experimentally observed reversibly
oxidised subunit profile alongside a molecular weight (MW) ladder. Arrows indicate the predicted identity
of the observed bands. The image shows several F1-Fo ATP synthase subunits are reversibly oxidised.
An unpredicted band at 100 kDa was observed (see main text). Clickable TCO-Tz immunocapture coupled
to redox affinity blotting was performed on five pools of 10 X. laevis oocytes. Each lane represents the
weighted mean of 10 oocytes.

3.4. Reversible ATP-α-F1 Oxidation is Significant in Oocytes

After demonstrating that F1-Fo ATP synthase subunits are reversibly oxidised, we immunologically
verified an observed band. To do so, we assessed whether ATP-α-F1 is reversibly oxidised at
two evolutionary conserved cysteine residues (C244 and C294) using catalyst-free TCO-Tz Click
PEGylation [25]. TCO-Tz Click PEGylation exploits catalyst-free IEDDA chemistry [58–60] to selectively
conjugate a low molecular weight (5 kDa) PEG moiety to reversibly oxidised thiols. Selectively
conjugating PEG imparts an electrophoretic mobility shift to render reversibly oxidised thiols detectable
as mass shifted bands by Western blotting [25,61,62] (Figure 4A). Consistent with our previous work [25],
TCO-Tz Click PEGylation reveals that: 62.9 ± 3.0% of total ATP-α-F1 is reversibly oxidised in oocytes
(Figure 4B). Percent reversibly oxidised ATP-α-F1 is significantly (p = 0.0007) greater than the amount
of reduced ATP-α-F1 (Figure 4C). No significant difference (p = 0.9611) in the contribution of the 5 (49.8
± 10.4%) and 10 (50.2 ± 10.4%) kDa bands to total percent reversibly oxidised ATP-α-F1 was observed
(Figure 4D). TCO-Tz Click PEGylation reveals ~20% (2 out of 10 or 11) of the total thiols in the F1-Fo

ATP synthase are substantially oxidised.
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Figure 4. Reversible ATP-α-F1 oxidation is significant in oocytes. (A). Catalyst-free trans-cyclooctene-
6methyltetrazine (TCO-Tz) Click PEGylation scheme for reversibly oxidised thiols. Left to right:
Reduced thiols are alkylated with NEM. Reversibly oxidised thiols are reduced with TCEP before being
alkylated with TCO-PEG3-NEM (TPN). TPN labelled thiols are incubated with Tz-PEG5 to initiate the
catalyst-free IEDDA Click reaction. Reversibly oxidised thiols are then mass shifted when assessed by
Western Blot owing to a PEG induced electrophoretic mobility shift. (B). Western blot image showing
reversibly oxidised (i.e., mass shifted 5 and 10 kDa bands) relative to reduced ATP-α-F1 (i.e., lower
band) in X. laevis oocytes (n = 5). MW = molecular weight. (C). Percent reversibly oxidised (i.e., mass
shifted) compared to reduced (unshifted) ATP-α-F1 quantified. Percent reversibly oxidised ATP-α-F1 is
significantly (p = 0.0007) greater than the amount of reduced ATP-α-F1. An asterix denotes statistical
significance as assessed by a paired Student’s t-test. (D). Quantified percentage contribution of the 5
and 10 kDa bands to the total mass shifted (i.e., reversibly oxidised) signal. No significant difference
(p = 0.09611) in the contribution of the 5 and 10 kDa band signal was observed as assessed by a paired
Student’s t-test. Each n is the weighted mean of 10 oocytes.

3.5. Reversible Thiol Oxidation Inhibits the F1-Fo ATP Synthase

Having established several subunits are reversibly oxidised, we explored whether F1-Fo ATP
synthase activity is redox regulated. If reversible thiol oxidation inhibits the F1-Fo ATP synthase,
then chemically reducing oxidised thiols using TCEP should increase F1-Fo ATP synthase activity in
oocytes. TCEP significantly (p = 0.0007) increases oligomycin sensitive F1-Fo ATP synthase activity in
oocytes (TCEP: 102.9 ± 44.97; Control: 12.90 ± 7.3 nmol/min−1/mg−1; Figure 5A). Alkylating reduced
thiols with 5 mM NEM means ex vivo thiol oxidation is unlikely to constrain F1-Fo ATP synthase
activity in the control. Previous work excluded the possibility that: 5 mM NEM inhibits F1-Fo ATP
synthase activity [29]. To be sure, we assessed F1-Fo ATP synthase catalysed ATP hydrolysis using
Hr-CNPAGE [51]. In this assay, F1-Fo ATP synthase catalysed ATP hydrolysis is detected as white
lead phosphate precipitates (Figure 5B). TCEP significantly increased (p = 0.0067) F1-Fo ATP synthase
mediated ATP hydrolysis in oocytes (TCEP: 111.8 ± 10.0; Control: 75.0 ± 7.2; Figure 5C).
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Figure 5. Reversible thiol oxidation inhibits the F1-Fo ATP synthase. (A). Chemically reversing thiol
oxidation using TCEP substantially increases F1-Fo ATP synthase activity. Specifically, oligomycin
sensitive F1-Fo ATP synthase activity is significantly greater (p = 0.0007) in TCEP (n = 6) compared to
control oocytes (n = 6) in X. laevis. (B). Inverted Hr-CNPAGE image of F1-Fo ATP synthase mediated
in-gel ATP hydrolysis. No signal is observed in oligomycin treated controls and a decreased signal in
the TCEP condition. (C). Densitometry based quantification reveals a significant (p = 0.0067) increased
F1-Fo ATP synthase mediated ATP hydrolysis in TCEP (n = 3) compared to control oocytes (n = 3) in
X. laevis. Statistical significance is indicated by an asterix as assed by an independent Student’s t-test.
Each n is the weighted mean of 10 oocytes.

4. Discussion

We advance knowledge of reproductive biology by showing, for the first time, that the F1-Fo

ATP synthase is inhibited in X. laevis oocytes. Repressed F1-Fo ATP synthase activity could impair
OXPHOS by uncoupling ∆p from ATP synthesis, but may enhance oocyte viability by constraining ATP
hydrolysis. In considering Allen’s theory [15], low F1-Fo ATP synthase activity would curtail superoxide
production to safeguard mtDNA homoplasmy provided the proton pumps were inhibited. In support,
cytochrome c oxidase (i.e., complex IV) activity is repressed and H2O2 levels are low in X. laevis
oocytes [23,46]. Complete proton pump inhibition is, however, unlikely because oocyte mitochondria
sustain an ∆p and still produce some superoxide [23,63]. Protein binding to shield mtDNA and/or
selectively curtailing superoxide production at single site (e.g., complex I) may, therefore, be required
to safeguard mtDNA homoplasmy. Follow-up studies are required to determine proton pump activity
and superoxide production in X. laevis oocytes using state-of-the-art tools (e.g., MitoNeoD [64]).

Existing literature has firmly established that F1-Fo ATP synthase activity is redox regulated in
somatic mitochondria [26–33]. Current understanding is, however, restricted to isolated organelles
and/or disease models. Whether redox regulation plays a physiological role is, therefore, unclear.
We make a major novel contribution by showing that: chemically reversing protein thiol oxidation
significantly increases F1-Fo ATP synthase activity in X. laevis oocytes. Our result defines a novel
physiological role for mitochondrial reversible thiol oxidation in reproductive biology. Using a redox
switch to inactivate the synthase during oogenesis would only imperil mtDNA homoplasmy if any
damage sustained was unrepaired. Importantly, cells can transduce redox signals without sustaining
oxidative macromolecule damage [65]. The ability of a redox switch to hold the F1-Fo ATP synthase
inactive informs several hypotheses. For example, a protein thiol could regulate the metabolic switch
from a reliance on fermenting glucose to OXPHOS in the developing X. laevis retina [66]. If a such
a developmental Warburg phenotype is redox regulated, it may help rationalise how mitochondrial
oxidative stress rewires metabolism in cancer [67].

Unravelling how reversible thiol oxidation inhibits the F1-Fo ATP synthase in oocytes relies on using
redox proteomics and site-directed mutagenesis to identify the redox switch(es) (i.e., subunit (s) and site
(s)) [68–70]. Disambiguating reversible modification type is also important because S-glutathionylation
and disulfide bonds may inhibit the enzyme by different mechanisms [39]. Biological precedent exists:
ATP-α-F1 S-glutathionylation seems to electrostatically repel nucleotide binding by introducing a bulky
negative charge whereas intermolecular disulfide bonds between ATP-α-F1 and ATP-γ-F1 may impair
conformational flexibility [30]. Reversible thiol oxidation in Fo is likely to inhibit catalysis by disrupting
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the ability to bind protons and/or rotate the c-ring [31,39–41,71]. For example, reversible oxidation
of subunit c at C84 could impede proton transport owing to its proximity to glutamate 58 [72,73].
Reversible thiol oxidation may also protect the F1-Fo ATP synthase from irreversible inactivation
secondary to sulfinic and sulfonic acid formation [25]. If reversible thiol oxidation impacts inhibitor
binding and/or action, then it may lead to oligomycin sensitive enzyme activity being underreported.
Given reversible thiol oxidation can activate several enzymes, it is unwise to assume reversible thiol
oxidation is always inhibitory. Intriguingly, a redox code may exist wherein the biological outcome
varies according to the number of thiols and subunits modified, occupancy (percent oxidation),
and modification type [65].

From a structural perspective, S-glutathionylation could lock the F1-Fo ATP synthase in a
monomeric state by impeding the formation of dimers, especially if they involve intermolecular
disulfide bonds [31]. Alternatively, a negative charge may electrostatically repel dimer interfaces.
Thiols in subunit e and g also regulate the stability and formation of oligomers, which dictate inner
mitochondrial membrane topology [74–76]. For example, F1-Fo ATP synthase dimers shape cristae
to create an efficient proton sink for ATP synthesis [77]. Perhaps, Fo redox state underlies the lack
of mature cristae in oocytes [19]. Teixeira and colleagues [78] found that OXPHOS is dispensable
for germline stem cell differentiation but F1-Fo ATP synthase dimers are essential because they are
required for cristae maturation. The results of their study and the present work raise the possibility of
at least two redox switches: (1) to prohibit dimers; and (2) to inhibit catalysis. Two redox switches
would endow mitochondria with the capacity to differentiate cristae without a catalytically active F1-Fo

ATP synthase. That is, to uncouple cristae differentiation from OXPHOS [78].

5. Conclusions

We conclude that: (1) F1-Fo ATP synthase activity is significantly greater in testes compared to
oocytes; (2) F1-Fo ATP synthase subunits are reversibly oxidised in oocytes; (3) reversible ATP-α-F1 oxidation
at evolutionary conserved cysteine residues (C244 and C294) is substantial (~60% of total ATP-α-F1) in oocytes;
and (4) chemically reversing thiol oxidation significantly increases F1-Fo ATP synthase activity. Reversible
thiol oxidation, therefore, inhibits the mitochondrial ATP synthase in X. laevis oocytes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3921/9/3/215/s1,
Table S1: Materials and reagents used.
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