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Alzheimer’s disease (AD) is a common neurodegenerative disease with an often seen prodromal mild cognitive impairment (MCI)
phase, wherememory loss is the main complaint progressively worsening with behavior issues and poor self-care. However, not all
patients clinically diagnosed with MCI progress to the AD. Currently, several high-dimensional classification techniques have
been developed to automatically distinguish among AD, MCI, and healthy control (HC) patients based on T1-weighted MRI.
However, thesemethod features are based on wavelets, contourlets, gray-level co-occurrencematrix, etc., rather than using clinical
features which helps doctors to understand the pathological mechanism of the AD. In this study, a new approach is proposed
using cortical thickness and subcortical volume for distinguishing binary and tertiary classification of the National Research
Center for Dementia dataset (NRCD), which consists of 326 subjects. Five classification experiments are performed: binary
classification, i.e., AD vs HC, HC vs mAD (MCI due to the AD), and mAD vs aAD (asymptomatic AD), and tertiary classification,
i.e., AD vs HC vs mAD and AD vs HC vs aAD using cortical and subcortical features. Datasets were divided in a 70/30 ratio, and
later, 70% were used for training and the remaining 30% were used to get an unbiased estimation performance of the suggested
methods. For dimensionality reduction purpose, principal component analysis (PCA) was used. After that, the output of PCA was
passed to various types of classifiers, namely, softmax, support vector machine (SVM), k-nearest neighbors, and näıve Bayes (NB)
to check the performance of the model. Experiments on the NRCD dataset demonstrated that the softmax classifier is best suited
for the AD vs HC classification with an F1 score of 99.06, whereas for other groups, the SVM classifier is best suited for the HC vs
mAD, mAD vs aAD, and AD vs HC vs mAD classifications with the F1 scores being 99.51, 97.5, and 99.99, respectively. In
addition, for the AD vs HC vs aAD classification, NB performed well with an F1 score of 95.88. In addition, to check our proposed
model efficiency, we have also used the OASIS dataset for comparing with 9 state-of-the-art methods.

1. Introduction

Alzheimer’s disease (AD) is the most usual neurodegener-
ative dementia and a rapidly growing health problem, which
is the main reason for causing dementia in the elderly
population [1]. A conclusive analysis can only be made
postmortem and requires histopathological confirmation of
neurofibrillary tangles and amyloid plaques. Early and

correct diagnosis of AD is not only difficult but also vital
from the perspective of future treatments.

Although there is currently no treatment for AD, there
are several promising pharmacologic compounds in ad-
vanced stages of development, and it is expected that a
treatment will be soon available. One of the factors that have
been speculated to be the cause of lack of success in de-
veloping disease-modifying treatments thus far is the
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inability to correctly differentiate patients at the mild cog-
nitive impairment (MCI) stage who will progress on to
develop AD from those that have MCI symptoms that are
due to other causes. A potentially promising treatment for
ADmay not be beneficial when administered to those whose
MCI symptoms are not due to AD, causing an apparently
promising treatment to be considered a failure. Another
reason for distinguishing those patients with prodromal AD
at the MCI stage is that interventions early in the course of
the disease may help delay the onset and/or mitigate the risk
of full-blown AD [2], whereas interventions later in the
course of the disease may limit the disease but would not be
able to reverse the pathology-induced neuronal loss after it
has already occurred. Hence, diagnosis of presymptomatic
AD in the MCI stage is a highly important task, which will
become even more crucial and urgent when curative
treatment becomes available. Such diagnosis can also be
valuable for those whose MCI is due to causes other than
AD, as these causes may be easier to determine and manage.
Hence, neuroimaging improves the positive predictive value
of the diagnosis and involves measurements by structural
MRI to test medial temporal lobe atrophy (MTL) and
positron emission tomography using fluorodeoxyglucose
(FDG) or amyloid markers. MTL structures are fundamental
for the creation of new memories and are centrally related to
the growth of AD [3]. Specifically, MTA atrophy and allied
episodic memory impairment are trademark features of AD,
and they both progressively lessen over the course of the
disease [4]. Normally, MTA is determined by using vertex-
based [5], voxel-based [6], and ROI-based [7] approaches.

In this study, the focus is on binary and tertiary clas-
sification between AD, HC, mAD (MCI due to AD), and
aAD (asymptomatic AD) using structural MRI. By using the
atrophy measure from sMRI scans, the intensity and stage of
the neurodegeneration can be determined. 0ese studies
include morphometric approaches, such as the region of
interest (ROI) and volume of interest (VOI) of gray matter
voxels for the automatic segmentation of sMRI images, and
the sMRI volume measurement of the hippocampus and the
medial progressive lobe [8]. Various machine-learning
methods have been used to differentiate binary and ter-
tiary classification between AD, HC, mAD, and aAD. As
suggested in [9, 10], only using amyloid imaging biomarker
may be less sensitive in tracing AD progression, mainly in
the symptomatic stage, recent consensus statements have
underlined the importance of a biomarker of neuro-
degeneration, which is a critical component of AD patho-
physiology in the prodromal and early dementia stages, and
also from [11], atrophy on sMRI reflects on cumulative loss
and shrinkage of the neuropil [12–14]. 0ese indicate that a
volumetric measure of cortical thickness and subcortical
volume is one essential biomarker for early detection of the
AD. Cortical thickness analysis establishes as another widely
accepted approach to measure gray matter atrophy in the
AD, and cortical thinning has been found in MCI and AD.
Despite evidence for subcortical amyloid and neurofibrillary
tangle formation in AD [15], MRI research has drawn its
attention to AD-related subcortical structure changes only
recently. Advanced segmentation techniques now permit the

quantification of subcortical volumes and provide the basis
for subcortical shape analysis. Measurement of structural
changes based on brain MRI scans has previously been used
to classify AD patients versus cognitively normal (CN)
subjects and to predict the risk of progression from MCI to
the AD. Jha et al. [16] proposed a method for diagnosis of the
AD using complex dual-tree wavelet principal coefficients
transform (DTCWT). 0ey have used two datasets, OASIS
and ADNI, for the validation of their results. An extreme
learning machine was used as a classifier, and an accuracy of
90.26%, sensitivity of 90.27%, and specificity of 90.27% were
achieved for the 2D ADNI dataset, and an accuracy of
95.75%, a sensitivity of 96.59%, and a specificity of 93.03%
were achieved for the OASIS dataset. Chyzhyk et al. [17] uses
a lattice independent component analysis (LICA) technique
for the feature section stage with combine kernel trans-
formation of the data. 0eir approach improved the gen-
eralization of the dendritic computing classifiers. 0en, they
apply their proposed model on the OASIS dataset for
classification of AD patients with normal subjects, and their
model achieve 74.75% accuracy, 96% sensitivity, and 52.5%
specificity. Khajehnejad et al. [18] uses the manifold-based
semisupervised learning method for early diagnosis of the
AD. 0ey have used the OASIS dataset for experiment, and
their proposed method yield accuracy of 93.86%, sensitivity
of 94.65%, and specificity of 93.22%. Jha and Kwon [19]
proposed an AD detection method using sparse autoen-
coder, scale conjugate gradient, and softmax output layer
with fine-tuning. 0ey have used the OASIS dataset and
achieved an accuracy of 91.6%, 98.09% of sensitivity, and
84.09% of specificity. Islam and Zhan [20] proposed an
ensemble of a deep convolutional neural network for early
detection of AD. Here, they have used DenseNet-121,
DenseNet-161, and DenseNet-169 deep learning models
for classification of the OASIS dataset, and later, they have
used their proposed ensemble model, which was fused with
deep learning for classification of the same dataset. 0eir
proposed method yields 93.18% of accuracy, 94% of pre-
cision, 93% of sensitivity, and 92% of F1 score. Farhan et al.
[21] proposed a model, which uses two extracted features of
the brain: first features are the volume of GM,WM, and CSF
and second features are the (l h/rh) area of the hippocampus.
In addition, later, they have used four different classifiers
(SVM, MLP, j48, and ensemble of classifiers) to evaluate the
classification accuracy. An ensemble of classifiers has got the
high accuracy compared to other classifiers with 93.75%
accuracy for combined features. Lama et al. [22] proposed a
binary and a tertiary classification between AD, MCI, and
NC using sMRI data from the ADNI dataset. A regularized
extreme learning machine (RELM) was used as a classifier,
and an accuracy of 77.30% for binary classification (AD vs
NC) and 76.61% for tertiary classification (AD vs NC vs
MCI) were obtained; cortical thickness features were used in
the experiment. Based on a large subgroup of ADNI data,
Cuingnet et al. [23] compared ten sMRI-based feature ex-
traction techniques and their ability to distinguish between
clinically relevant subject groups. 0ese methods comprised
five voxel-based techniques, three methods based on cortical
thickness and two techniques based on the hippocampus.
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Optimum sensitivity and specificity values were (81%, 95%)
for AD vs HC, (70%, 61%) for S-MCI vs P-MCI, and (73%,
85%) for HC vs P-MCI. Zhang et al. [24] proposed a
multimodal classification approach by employing a
multiple-kernel support vector machine (SVM) based on
biomarkers including sMRI, PET, and cerebrospinal fluid
(CSF) to distinguish AD (or MCI) and normal control (NC)
subjects. For the binary classification (AD vs NC andMCI vs
NC) results, their suggested model had high accuracy for AD
classification, whereas for MCI classification, satisfactory
accuracy was obtained. More recently, Cho et al. [25]
conducted an experiment on 72 MCIc and 131 MCInc
subjects using the incremental learning technique based on
spatial frequency, which shows the representation of cortical
thickness data. In addition, their proposed method yielded
better results than the ten benchmark techniques for MCIc
vs. MCInc classification as reported in [23], and a sensitivity
of 63% and a specificity of 76% were obtained. Wolz et al.
[26] used four different automated feature extraction
techniques (namely, hippocampal volume, TBM, cortical
thickness, and manifold-based learning) to analyze struc-
tural MRI data of 834 ADNI AD, MCI, and healthy control
(CTL) subjects. 0e extracted features were used to compare
the performance of two classifiers, namely, LDA and SVM,
for AD classification and MCI prediction. 0e best accuracy
for AD versus CTL classification was obtained by combining
all extracted features and utilizing a LDA classifier, that is, an
accuracy of 89% (sensitivity and specificity of 93% and 85%,
respectively). Similarly, using combined features and the
LDA classifier resulted in the highest accuracy of 68%
(sensitivity and specificity of 67% and 69%, respectively) for
classification of MCI-converter and MCI-stable subjects.
When different feature types were studied individually, the
TBM features yielded the best result.

Compared to earlier work, this study aims at establishing
the enhancement in accuracy and constancy that can be
attained by combining more than one MR-based feature.
Here, we are going to investigate a combined feature of
cortical thickness and subcortical volume in the AD and
aADwith stable cognitive abilities compared toHC as well as
in mAD which converted to AD. NRCD data were used to
test the potential combination of diverse MR-based features
for improving classification accuracy. For evaluation, all 326
NRCD dataset images provided by the dementia center of
Chosun University hospital were used and NeuroI [27]
which was developed at NRCD was also used. Specifically,
the binary classifications AD vs HC, HC vs mAD, and mAD
vs aAD and the tertiary classifications AD vs HC vs mAD
and AD vs HC vs aAD were used. To this end, four rep-
resentative classifiers are presented and compared, using an
efficient feature selection approach, including SVM, k-
nearest neighbors (KNN), näıve Bayes (NB), and softmax
classifiers, for themulticlass classification of various stages of
the AD progression.

2. Materials and Methods

2.1. Subjects. 0e data utilized in this research were obtained
from the National Research Center for Dementia (NRCD).

All the patients for whom preprocessed images were available
were selected. 0e dataset contained 326 subjects: 81 AD
subjects (39 males, 42 females; age± SD� 71.86± 7.09 years,
range� 56–83 years; education level� 7.34± 4.88, range� 0–
18), 171 cognitively normal health control (HC) subjects (83
males, 88 females; age± SD� 71.66± 5.43, range� 60–85;
education level� 9.16± 5.54, range� 0–22), 39 patients with
mAD (MCI who had converted to AD) (25 males, 14 females;
age± SD� 73.23± 7.09, range� 49–87; education level�
8.20± 5.19, range� 0–18), 35 patients with aAD (MCI who
had not converted) (15 males, 20 females; age± SD�

72.74± 4.82, range� 61–83; education level� 7.88± 6.30,
range� 0–18).

Table 1 shows the demographics of the 326 study sub-
jects. Statistical significant differences in demographics and
clinical variables between the study groups were measured
using Student’s unpaired t-test. In this study, the significance
level was set to 0.05, which is a standard alpha value. 0ere
were more females in all groups except for the mAD group.
0e education level was highly dissimilar in the pairwise
comparisons between all other study groups. Compared to
the patients in all other groups, AD patients had significantly
a lower education level.

To obtain unbiased estimations of the performance, the
set of contestants was randomly split into two parts in a 70/
30 ratio for training and testing. 0e algorithm was trained
on a training code, and the measures of the group perfor-
mance were evaluated in terms of accuracy, sensitivity,
specificity, precision, and F1 score using an independent test
set.

2.2.MRIAcquisition. Standard 3T T1-weighted images were
obtained using the volumetric 3D MPRAGE protocol with
resolution 1mm× 1mm× 1mm (voxel size). 0ese were N4
bias correction images.

2.3. Feature Selection. Subcortical volumetric and cortical
thickness measures have been widely used for classification
purposes. From [28], we can say that cortical thickness is a
direct index of atrophy and is, therefore, a potentially
powerful candidate in the diagnosis of AD. In this experi-
ment, cortical thickness and subcortical volume are
extracted using Freesurfer (v5.3). In total, 110 features were
extracted from 3D sMRI T1-weighted image. Freesurfer is a
set of tools for analysis and visualization of cortical (Fig-
ure 1) and subcortical (Figure 2) brain imagining data.
Freesurfer was designed around an automated workflow that
includes several standard image processing phases which are
necessary to achieve a final brain parcellation image within
the subject’s space; however, manual image editing is also
allowed after each stage to ensure quality control (http://
surfer.nmr.mgh.harvard.edu/fswiki). At first, a good quality
of T1-weighted sMRI image volume is passed to the Free-
surfer pipeline, and after that, Freesurfer performs a series of
steps, start from motion artifact correction, affine trans-
formation (12 degrees of freedom) to Talairach image space,
nonuniform intensity normalization for intensity in-
homogeneity correction, and removal of nonbrain tissues.
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0e remaining brain image volume is intensity normalized
to tie with the Freesurfer atlas image intensity histogram,
which is followed by a nonlinear warping of the atlas brain
image to subject brain image. A warped Atlas 3D brain
image in the subject space is utilized in atlas-based tissue
segmentation, for labelling subcortical brain structures, like
brain stem, cerebellum, and cerebral cortex. 0e next step in
Freesurfer is to generate topologically correct cortical surface
representation per hemisphere, like gray-white matter
segmentation [29], and the third segments of 34 ROIs based
on anatomic landmarks [30].

Freesurfer also provides the ability to construct a
surface-based morphometry (SBM) for representations of
the cortex, from which neuroanatomic volume, cortical
thickness, and surface area can be derived. Cortical surface
lies either at the WM/GM tissue interface or at the GM/CSF
tissue interface. Each hemisphere’s cortical surface repre-
sentation is mapped automatically to a standard spherical
coordinate system. Key components of the surface mapping
include surface inflation with minimal metric distortion,
topology correction, projection to spherical coordinates, and
SBM warping to correctly align anatomical homologous
points. Mapping to the standard spherical coordinate system
defined by Freesurfer atlas brain allows for automated an-
atomical parcellation of cortex into gyral regions. Surface
parcellation is then extended to GM volume, yielding par-
cellation of GM tissue sheet and regional cortical volumes.
0e precise matching of a morphologically homologous
cortical location for each patient was obtained by plotting
the atlas-based cortical surface on a sphere aligning the
cortical patterns. Table 2 presents an overview of the features

calculated for all 326 available NRCD images. After the
preprocessing stage, all the data extracted by Freesurfer were
normalized to zero mean and unit variance for each feature,
as shown in Figure 3 using standard scalar function of Scikit-
learn library. 0at is, given the data matrix X, where rows
represent subjects and columns represent features, the
normalized matrix with elements x(i, j) is given by

Xnorm,(i,j) �
x(i,j) −mean xj􏼐 􏼑

std xj􏼐 􏼑
, (1)

where Xj is the jth column of the matrix (X). Subsequently,
principal component analysis (PCA) was performed [31],
which is a dimensionality reduction technique whereby the
features are mapped onto a lower dimensional space. PCA is
a feature selection process generating new features that are
linear combinations of the initial features. PCA maps the
data in a d-dimensional space to a new k-dimensional
subspace with k< d. 0e new k variables are called principal
components (PC), and each principal component has
maximum variance eliminating the variance that is already
accounted for in all succeeding components. Consequently,
the first component has a larger variance than the com-
ponents that follow. 0e principal components can be de-
fined by the following equation:

PCi � a1b1 + a2b2 + · · · + adbd, (2)

where PCi is a principal component in i, xd is an original
feature in d, and ad is a numerical coefficient of xd. 0e
number of principal components is always less than or equal
to the number of original observations.

0e obtained principal components for AD vs HC are
shown in Figure 4. 0e number of components was de-
termined by maintaining the variance greater than 99%. In
total, there were 110 features; however, not all features were
required for convergence. As can be seen in Figure 4, the first
principal component achieved 99% of the variance com-
pared to the other features. 0erefore, the values that were
obtained first were taken as a principal component for AD vs
HC. Likewise, for other binary and tertiary classification, the
same procedure was followed.

2.4. Classification Method. Once the sMRI-based features
were extracted from the automated toolbox in both cortical
and subcortical regions, feature vectors containing mean-
centered voxel intensities were created combining all
features. 0e classification approach we design is aimed to
combine two sources of features: cortical thickness and

Table 1: Demographic characteristics of the studied population (from the NRCD database).

Group Number of subjects Age
Gender

Education
M F

AD 81 71.86± 7.09 [56–83] 39 42 7.34± 4.88 [0–18]
mAD 39 73.23± 7.34 [49–87] 25 14 8.20± 5.19 [0–18]
aAD 35 72.74± 4.82 [61–83] 15 20 7.88± 6.30 [0–18]
HC 171 71.66± 5.43 [60–85] 83 88 9.16± 5.54 [0–22]
Values are specified as mean± standard deviation [range].

Figure 1: Cortical thickness showing left and right hemisphere of
pial and white surface.
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subcortical volume. 0ese features are used for global
decision framework to discriminate AD with other groups.
0e overall diagram of the approach is presented in Fig-
ure 3. Here, our aim is early classification of an AD from
other groups by using combined features of cortical
thickness and subcortical volume of the same subjects. Our
aim is to classify binary and tertiary groups. Moreover,
classification is the problem of categorizing to which a new
set of observation belongs, based on a training dataset
whose group affiliation is already known. Moreover, we
know that different classifiers follow a different mathe-
matical function for classification. 0at is why we have
used four best machine-learning classifiers, which are in

practice like SVM and its variants, KNN, NB, and softmax
classifiers, to know which classifier learns our model ac-
curately to classify the different groups, and we also
compared their results. All classification methods give a
decision output.

2.5. SVM. 0is is the most common classification method to
analyze sMRI data [23]. SVM [32] is the most commonly
used algorithm in AD research for multivariate classification
[26].0ismethod is based on choosing a critical point for the
classification task. Support vectors are the elements of the
data that are relevant in the splitting into two classes. 0e

Table 2: Features used in this study.

Methods Number of features Descriptions

Cortical thickness and subcortical volume
segmentation 110

Based on group-level statistical analysis measure of
subcortical segmentation volume and cortical

thickness

(a) (b) (c)

Figure 2: Subcortical brain segmentation.

3D input image

Skull stripping and its
slices White and pial surface

Cortical thickness and subcortical volume
segmentation feature measure

Normalization

PCA

5-fold stratified K-fold CV

Classifier Cross-validation

Feature selection

Diagnosis output

AD

HC
KNN

Naïve Bayes

Softmax classifier

SVM
aAD

mAD

(e)
(a)

(b)

(h) (g)

(d)(c)

(f)

+

Figure 3: Workflow of proposed method: (a) 3D input image, (b) skull stripping, (c) white and pial surface, (d) cortical thickness and
subcortical volume segmentation features, (e) feature selection (f) cross validation, (g) various classifiers, and (h) diagnosis output.
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SVM algorithm determines the parameters of the decision
function that maximizes the margin between the training
examples and the class boundary, as shown in Figure 5. A
number of nonlinear SVM approaches have also been used,
such as kernel SVM and multikernel SVM [33].

0e main concept of kernel techniques is to map the
input data, which are linearly nonseparable into a higher
dimensional feature space, where they are more likely to be
linearly separable.

2.6. KNN. Cover and Hart proposed KNN in 1968 [34],
which is one of the simplest machine-learning algorithms. It
is an extension of the simple nearest neighbor technique.
KNN classifies an unknown sample depending on the “vote”
of the k-nearest neighbors rather than the single nearest
neighbor.

0e main steps of KNN implementation are as follows:

(1) Similarity assessment: the similarity between the
test sample and each sample of the training set is
calculated. In general, the resemblance can be
measured by, for instance, the Euclidean distance,
the Manhattan distance, the Jacquard similarity
coefficient, and the correlation coefficient. Among
these, the Euclidean distance method is the most
widely used. For a given feature sample
test(xj1, xj2, . . . , xji) and training set feature
train(xj1, xj2, . . . , xjn), the Euclidean distance is
calculated as follows:

dj �

���������������

􏽘

n

i�1
testji − trainjn􏼐 􏼑

􏽶
􏽴

, (3)

where n is the number of feature vectors, j is the
number of training and testing trials, and dj is the
Euclidean distance between the jth sample of the
training set and a test sample.

(2) In the second step, the neighbor’s nearest distances
should be determined and sorted in ascending order.

0ere are several methods (like elbow method and
thumb rule) which help us to achieve the best k value
for KNN. 0e optimum k value will always vary
depending on the dataset, so it should be as big as
that its noises will not disturb the prediction highly
and as low as that one factor will not dominate
another. 0en, the selection of the value will directly
affect the classification result and should thus be
carefully made.

(3) In the third step, the “vote and classify” method is
applied, whereby the test sample is classified to a
class according to the voting result of each
category.

2.7. NB. NB is a machine-learning technique that has been
utilized for over 50 years in biomedical informatics [35, 36].
0ese classifiers are a family of simple “probabilistic clas-
sifiers” based on Bayes’ theorem with strong independence
assumptions between their features. An NB classification
model is easy to construct, with no complex iterative pa-
rameter approximation, which makes it particularly useful
for large datasets. Despite its simplicity, the NB model often
performs unexpectedly well and is widely used for classifi-
cation because it often outperforms several more sophisti-
cated classification approaches. Bayes’ theorem is used to
determine the posterior probability p(c/x) from p(c), p(x),
and p(x/c). 0e NB classifier assumes that the effect of the
parameter of a predictor (x) on a specified class (c)

is autonomous compared with the other predictor’s pa-
rameters. 0is assumption is called class-conditional
independence:

p
c

x
􏼒 􏼓 �

p(x/c)p(c)

p(x)
, (4)

where p(c/x) � p(x1/c)∗p(x2/c)∗ · · · ∗p(xn/c)∗p(c) ·

p(c/x) is the posterior likelihood of the class (target), given
the predictor (attribute); p(c) is the prior probability of the
class; p(x/c) is the probability of the predictor given the
class; and p(x) is the prior probability of the predictor.
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2.8. Softmax Classifier. Softmax regression is a generalized
form of logistic regression that can be used in multiclass
classification problems where the classes are mutually ex-
clusive.0e earlier linear regression model [19, 37] produces
continuous or unbounded y values. To proceed from ar-
bitrary values y ∈ Rc to normalized probability values,
p ∈ Rc is estimated for a single instance and exponentiation
and normalization are used as follows:

pi �
expyi

􏽐
c
c�1expyc

, (5)

where i, c ∈ 1, . . . , C{ } is the range over the classes, pi refers
to the probabilities, and yi and yc refer to the value of a
single instance. 0is is called the softmax function, which
takes the vector of arbitrary real-valued scores in y and
transforms it into a vector of values ranging between 0 and
1 that later sum to 1. A model that converts the un-
normalized values at the end of a linear regression to
normalized probabilities for classification is called softmax
classifier. Here, the softmax layer takes the learned rep-
resentation pi and interprets it to the output class. A
probability score pi is also assigned to the output class. 0e
softmax classifier understands the scores inside the output
vector y as the un-normalized log likelihoods for each
specific class and then replaces the hinge losses with a
cross-entropy loss that has the form:

Li � −log pi( 􏼁, (6)

where Li is the loss of cross entropy of the network. Ex-
ponentiation of these quantities yields the (un-normalized)
likelihoods, and their division performs the normalization
so that their probabilities sum to 1. In probabilistic terms,
the negative log probability of the accurate class is mini-
mized, which can be regarded as performing maximum
likelihood estimation (MLE). A fine feature of this ob-
servation is that the regularization term R (W) can now be
interpreted as the full loss function as approaching from a
Gaussian prior over the weight matrix W, where we are
executing the maximum a posteriori (MAP) estimation
instead of MLE.

3. Results and Discussion

3.1. Background. In this study, the proposed method is
presented using SVM, KNN, NB, and softmax classifiers.
0e details are shown in Figure 3. 0e proposed idea is to
combine two extracted features, namely, cortical thickness
and subcortical volume, from Freesurfer toolbox to dif-
ferentiate between AD vs other groups. For early pre-
diction, we perform a binary and tertiary classification
using the AD, HC, mAD, and aAD datasets to check how
well our proposed method has performed on the sMRI 3D
image. At the preprocessing stage, normalization was
performed for each case. Moreover, the PCA di-
mensionality reduction technique is utilized to find the
optimal number of principal components for each classi-
fication, as shown in Figure 4 for AD vs HC. Different
numbers of principal components were obtained for dif-
ferent cases. In addition, stratified K-Fold (SKF) cross-
validation (CV) was used to confirm the robustness of the
classification results. Four different types of classifiers were
used to obtain the test sample accuracy, sensitivity, spec-
ificity, precision, and F1 score.

3.2. Evaluation. To obtain unbiased estimations of the
performance, the set of subjects was randomly separated into
two parts in a 70/30 ratio for training and testing. 0e
training set was utilized to determine the optimal hyper-
parameters of each classifier or method and later, to train the
classifier. Subsequently, the testing set was used to evaluate
the classification performance. 0e training and testing
datasets were identical for all techniques. On the training set,
SKF CV was used to estimate the optimal hyperparameters.
Two kernel parameters c and c for radical basic function
SVM and one kernel value c for linear SVMwere required to
be determined according to the Libsvm library. 0e SVM
algorithm performs poorly on the experimental data when
the default parameter values are selected. 0erefore, the grid
search method was utilized to determine the optimal pa-
rameters for c and c before they were used for training. 0e
pair (c and c) with the highest cross-validation accuracy was

f1

f2

Max.
marg

in

Max.
marg

in Optimal hyperplane

(a)

Not 
max. 

margin

Not 
max. 

margin

f1

f2

(b)

Figure 5: SVM optimal hyperplane.
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chosen as the best values. In the present study, the search
scales for these two values were set as follows: c � 1 to 10
and c � (1e−4, 1e−2, 0.0001) for all cases.

In addition, the obtained values of c and c for all cases are
shown in Table 3. For each method, the obtained best-suited
optimized value was set to the hyperparameters, which were
later utilized to train the classifier using the training groups,
and the performance of each resulting classifier was then
assessed on the testing set. 0ereby, unbiased evaluations of
the performances of eachmethod were obtained, whereas for
KNN classifier, we have used the elbowmethod to decide the
k value. As we know that in the elbow method, if one plots
the percentage of variance explained by the cluster against
the number of clusters, the first cluster will add much in-
formation (explain a lot of variances), but at some point, the
marginal gain will drop, giving an angle in the graph. So, the
number of clusters is chosen at this point. First, we plot the
elbow curve using the Matplotlib library. Moreover, in our
case, we provide a range of 1 to 251 for AD vs HC classi-
fication problem (which represents the number of subjects
for each classification). 0erefore, when we plot the graph,
the k value from the graph where there is a bend tells us how
many clusters are there.

0e performance of a binary and multiclass classifier can
be understood using confusion matrix, as shown in Table 4.
0e performance of the system was assessed using the SVM,
KNN, NB, and softmax classifiers for each precise test in-
cluding binary and tertiary classification tasks. 0e diagonal
elements of the matrix show the number of correct pre-
dictions made by the classifier.0ese elements can be further
separated into true positive (TP) and true negative (TN),
thus indicating the correctly identified controls. Similarly,
the number of incorrectly classified subjects may be char-
acterized by false negative (FN) and false positive (FP).
Accuracy measures the number of examples that were
correctly labeled by the classifier, that is,

acc �
TP + TN

TP + TN + FP + FN
. (7)

However, for a dataset with unstable class distribution,
calculating only the accuracy may result in a misleading
estimation of the performance. 0erefore, four additional
performance metrics should be calculated, namely, speci-
ficity, sensitivity, precision, and F1 score.0ey are defined as
follows:

sen �
TP

TP + FN
, (8)

spe �
TN

TN + FP
, (9)

ppv �
TP

TP + FP
, (10)

F1 score �
2TP

2TP + FP + FN
. (11)

Sensitivity (8) indicates the accuracy of the prediction
group, and specificity (9) indicates the accuracy of the

prediction of the absence group. Sensitivity measures the
success rate for a particular class, i.e., within a class, the
percentage of correctly determined subjects (by the classi-
fication algorithm) to be in the class. Specificity provides a
measure for those not in the class, i.e., it is the percentage of
those not in the class that were found not to be in the class.
Precision (10) (which is also termed as positive predictive
value (PPV)) is the fraction of relevant occurrences among
the retrieved occurrences, and F1 score (11) (which is also
called F score or F measure) is a quantity related to a test’s
accuracy.

To evaluate whether each technique performs signifi-
cantly better than a random classifier, McNemar’s chi-
squared test was used and its significance level was kept
to 0.05, which is a benchmark value. McNemar’s test ex-
amines the difference between proportions in paired ob-
servations. It was used to evaluate the difference between
the proportions of accurately classified subjects,
i.e., accuracy. 0e corresponding contingency chart is
shown in Table 5.

3.3. Classification Results. Both binary and tertiary clas-
sification methods were used to measure the classification
performance in obtaining cortical and subcortical
features.

0e obtained results of the classification tests are shown
in Tables 6–10 for AD vs HC, HC vs mAD, mAD vs aAD
(binary), AD vs HC vs mAD, and AD vs HC vs aAD
(tertiary), respectively. 0e classification report for each
case and the performance are shown in Figure 6. All
programs were executed in 64-bit Python 3.6 environment
on Intel(R) Core(TM) i3-7100 at 3.90Hz and 8GB of RAM
running Ubuntu 16.04 LTS. 0e model may be imple-
mented on any computer in which Python 3.6 is
compatible.

3.3.1. Binary Classification: AD vs HC, HC vs mAD, and
mAD vs aAD

AD vs HC. 0e classification results for AD vs HC are
summarized in Table 6 and Figure 6(a). For each case, the
dataset was divided into two parts in a 70/30 ratio. All

Table 3: Best obtained c and c values using the grid search method.

Group C value Gamma value
AD vs HC 1 0.0025
HC vs mAD 1 0.005600000000000001
mAD vs aAD 1 0.005
AD vs HC vs mAD 6 0.0096
AD vs HC vs aAD 3 0.0088

Table 4: Confusion matrix.

True class
Predicted class

G2 G2
G1 TP FN
G1 FP TN
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methods performed significantly better, and their P value
was smaller than the conventional 0.05. 0e assumption was
that there were significant dissimilarities between the two
parts. 0e difference between AD and HC was 64.47% with
95% confidence interval from 56.87% to 72.08%, and it was
highly significant (P< 0.000001). Softmax classified AD vs
HC with a high accuracy of 99.34, sensitivity of 98.14,
specificity of 100, precision of 100, and F1 score of 99.06.

HC vs mAD. 0e classification report for HC vs mAD is
summarized in Table 7 and Figure 6(b). In this case, all
techniques achieved significantly better P value than chance
(P< 0.05); however, SVM classified HC vs mAD highly
significantly (P< 0.000001) with an accuracy of 99.2, sen-
sitivity of 99.02, specificity of 100, precision of 100, and F1
score of 99.51.

mAD vs aAD.0e classification results for mAD vs aAD
are summarized in Table 8 and Figure 6(c). Here, three
methods performed significantly better than chance, and
their p value was less than the conventional value (P< 0.05);
however, KNN had a P value greater than the conventional
value. SVM had a P value significantly better than the other
three methods and classified mAD vs aAD with a high
accuracy of 97.77, sensitivity of 100, specificity of 95.23,
precision of 96, and F1 score of 97.95.

3.3.2. Multiclass Classification. For multiclass classification,
accuracy may be a misleading indication of the performance;
thus, in this case, the F1 score metric is particularly useful.

AD vs HC vs mAD. 0e classification results for AD vs
HC vs mAD are summarized in Table 9, and the plot is
shown in Figure 6(d). In this case, SVM classified AD vs HC
vs mAD with an accuracy of 99.42, sensitivity of 99.18,
specificity of 99.5, precision of 99.99, and F1 score of 99.43.
0e F1 score indicates a high correct percentage; it can be
claimed that SVM classified AD vs HC vs mAD more
accurately.

AD vs HC vs aAD.0e classification results for AD vs HC
vs aAD are summarized in Table 10 and are shown in
Figure 6(d). It can be seen that NB classified the multiclass
case significantly more accurately, with an accuracy of 96.53,
sensitivity of 95.88, specificity of 97.64, precision of 95.88,
and F1 score of 95.88.

3.3.3. Comparing with Others’ State-of-the-Art Methods.
As we know the NRCD dataset is not available publicly,
that is why we apply our proposed method on the OASIS
dataset which can be downloaded from (https://www.
oasis-brains.org/). 0e OASIS database was launched in
2007 as a public-private partnership. OASIS provides
brain-imaging dataset, which is freely available for sharing
and data study. 0is dataset consists of a cross-sectional
group of 416 patients, which covers the adult lifespan aged
from 18 to 96 including individuals with early-phase
Alzheimer’s disease (AD). 0e subjects are right-handed,
and they include both men and women. From 416 subjects,
100 included subjects above the age of 60 have been
identified with the very mild-to-mild AD and the
remaining 316 are diagnosed as normal. All structural
sMRI scans used in this experiment were acquired from
1.5T scanners.

At first, we extracted 110 (cortical and subcortical)
features from all 416 subjects using the same Freesurfer
version which is used for the NRCD dataset. After that, we
followed the same procedure that we had applied for the
NRCD dataset. As can be seen from Table 11, all methods
performed significantly better, and their P value was smaller

Table 5: Contingency table for the McNemar’s test.

Group 2: correctly
classified

Group 2:
misclassified

Group 1: correctly classified A B
Group 1: misclassified C D

Table 6: Classification results for AD vs HC.

AD vs HC ACC SEN SPEC PRE F1
score

McNemar’s
test

Softmax
classifier 99.34 98.14 100 100 99.06 P< 0.000001

SVM 98.02 97.87 98.05 95.83 96.84 P< 0.000001
KNN 98.68 98.11 98.98 98.11 98.11 P< 0.000001
Naı̈ve Bayes 98.40 100 99.04 97.91 98.94 P< 0.000001

Table 7: Classification results for HC vs mAD.

HC vs mAD ACC SEN SPEC PRE F1
score

McNemar’s
test

Softmax
classifier 96.03 100 84.37 94.94 97.4 P � 0.000113

SVM 99.2 99.02 100 100 99.51 P< 0.000001
KNN 98.41 100 93.1 97.97 98.97 P � 0.000002
Naı̈ve Bayes 97.61 100 90 96.96 98.46 P � 0.000008

Table 8: Classification results for mAD and aAD.

mAD vs aAD ACC SEN SPEC PRE F1
score

McNemar’s
test

Softmax
classifier 95.55 100 90.9 92 95.83 P � 0.000121

SVM 97.77 100 95.23 96 97.95 P< 0.000001
KNN 93.33 92 95 95.83 93.87 P � 1
Naı̈ve Bayes 93.33 100 86.95 88 93.61 P � 0.000488

Table 9: Classification results for AD vs HC vs mAD.

AD vs HC vs mAD ACC SEN SPEC PRE F1 score
Softmax classifier 89.71 92.67 95.76 86.38 89.42
SVM 99.42 99.18 99.5 99.99 99.43
KNN 98.52 97.46 98.7 99.23 98.33
Naı̈ve Bayes 98.28 99.07 99.32 96.55 97.79

Table 10: Classification results of AD vs HC vs aAD.

AD vs HC vs mAD ACC SEN SPEC PRE F1 score
Softmax classifier 84.39 90 87.35 83.36 86.69
SVM 95.37 91.63 96.16 96.56 94.03
KNN 91.9 88.17 93.86 92.15 90.12
Naı̈ve Bayes 96.53 95.88 97.64 95.88 95.88
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than the conventional 0.05. 0e assumption was that there
were significant dissimilarities between these two parts. Our
proposed method achieved a better result with 98.40% of
accuracy, 93.75% of sensitivity, 100% of specificity, 100% of
precision, and 96.77% of F1 score with softmax classifier. It
can also be seen that SVM follows the softmax classifier in
terms of performance.

To further demonstrate the usefulness of our proposed
method, we compared it with 9 state-of-the-art approaches
as shown in Table 12. 0e result in Table 12 shows that Jack
et al. [11] used the kernel-LICA-DC method to classify the
AD vs HC and achieved a classification accuracy of 74.25%,
a sensitivity of 96%, and a specificity of 52.5%. Jha et al. [19]
used (deep learning method) sparse autoencoder technique
to classify the classification problem and achieved a clas-
sification accuracy of 91.6%, a sensitivity of 98.09%, and a
specificity of 84.09%. In both of these cases, they have
achieved decent accuracy but their specificity is very low
compared to our proposed method. Likewise, Islam and
Zhang [20] used an ensemble of deep convolutional neural
networks technique and achieved a classification accuracy
of 93.18% and a specificity of 93%. Farhan et al. [21] used an
ensemble of a classifier for the classification of AD vs HC
and achieved a classification accuracy of 93.75%, a
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Figure 6: Classification report of each group with the performance measure of accuracy, sensitivity, specificity, precision, and F1 score: (a)
AD vs HC, (b) HC vs mAD, (c) mAD vs aAD, (d) AD vs NC vs mAD, and (e) AD vs NC vs aAD.

Table 11: Classification results for AD vs HC.

AD vs HC ACC SEN SPEC PRE F1
score

McNemar’s
test

Softmax
classifier 98.40 93.75 100 100 96.77 P< 0.000001

SVM 97.60 96.55 97.91 93.33 94.91 P< 0.000001
KNN 88.70 96.0 85.17 87.80 82.70 P< 0.000001
Naı̈ve Bayes 94.40 86.36 96.11 82.60 84.44 P< 0.000001
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sensitivity of 100%, and a specificity of 87.5%. Despite using
deep learning and ensemble classifier methods, their ac-
curacy, sensitivity, and specificity are low compared to our
proposed method. Khajehnejad et al. [18] used the semi-
supervised technique for classification and achieved an
accuracy of 93.86%, a sensitivity of 94.65%, and a specificity
of 93.22%. Jha et al. [16] used the extreme learning machine
method for classification of AD vs HC with dual-tree
wavelet principal coefficients and achieved an accuracy
of 95.27%, a sensitivity of 96.59% and a specificity of
93.03%. And, Lama et al. [22] used cortical features for
early detection of AD and RELM for classification and
achieved an accuracy of 77.88%, a sensitivity of 68.85%, and
a specificity of 83.54%. Despite using new methods for
classification, their classification performance is very low
compared to our results as shown in Table 12. As can be
seen from Table 12, our proposed method using softmax
classifier has outperformed all state-of-the-art methods and
achieved an accuracy of 99.34%, a sensitivity of 98.14%, and
a specificity of 100% for the NRCD dataset, and for the
OASIS dataset, our proposed method achieved an accuracy
of 98.40%, a sensitivity of 93.75%, and a specificity of 100%.
Additionally, to enhance the performance results, we have
compared with the performance results of the proposed
method and the image analysis system [27] as shown in
Figure 7.

4. Discussion

In this study, different techniques for the classification of
subjects with AD and mAD based on anatomical T1-
weighted MRI were compared. To assess and compare
their performance, five experiments were conducted: AD vs
HC, HC vs mAD, mAD vs aAD (binary classification), AD
vs HC vs mAD, and AD vs HC vs aAD (multiclass clas-
sification). 0e set of subjects was randomly split into two
groups in the ratio of 70/30 for training and testing. 0en,
PCA was applied for dimensionality reduction. Sub-
sequently, four classifiers were used to evaluate perfor-
mance. For the SVM classifier, the optimal parameter value
was determined by using a grid search and SKF CV. 0en,
those values were used to train the SVM classifier using the
training dataset, and the testing dataset was evaluated on

the training model to evaluate the performance. Overall,
the radical basic function (RBF) SVM classifier yielded
better result compared with the other methods in several
cases. Regarding the softmax classifier, Adam optimization
was used with learning rate 1e−2, 1000 epochs, and batch
size 50, and it yielded highly satisfactory results for binary
classification, particularly for AD vs HC with an accuracy
of 99.34.

5. Conclusions

A new method for automatic classification of an AD from
MCI (asymptomatic or converted to the AD) and a healthy
group is proposed using combined features extracted from
an automated toolbox, where sMRI scans of NRCD dataset
is used as an input image. Here, four different types of
classifiers (softmax classifier, SVM, KNN, and naı̈ve Bayes)
were used to classify five different types of the classification
problem. 0ese experimental results confirm that the
proposed method had effectively predicted future clinical
changes between (mAD vs aAD) patients, as can be seen in
Table 8. Our proposed model has achieved 97.99% of ac-
curacy, 100% of sensitivity, 95.23% of specificity, 96% of
precision, and F1 score as 97.95% using the RBF-SVM
classifier for mAD vs aAD classification. Efficient and re-
liable outcomes were obtained, which prove the effec-
tiveness of the proposed technique. Comparison of the
results showed that the RBF-SVM classifier achieved highly
satisfactory performance for three cases (HC vs mAD,
mAD vs aAD, and AD vs HC vs mAD), where the NB
classifier was suitable for predicting AD vs HC vs aAD. As
we can say that, our proposed technique to combine
cortical thickness and subcortical volume features of the
same subjects for classification of a binary and tertiary
group performed very well in our dataset as well as in the
OASIS dataset.

In the present study, only cortical thickness and sub-
cortical volume features were considered for the classifica-
tion process. However, in the future, other different types of
features will be used, such as the hippocampus and amygdala
for the classification of the AD. Moreover, longitudinal
datasets will be used for studying the changes over time
between AD, mAD, and aAD. In this study, only NRCD

Table 12: Algorithm performance comparison over OASIS and ADNI MRI data.

Approach Year Dataset Classifier Modalities
AD vs HC

ACC SEN SPEC
Cuingnet et al. [23] 2011 ADNI SVM MRI NA 81% 95%
Cho et al. [25] 2012 ADNI LDA MRI NA 82% 93%
Chyzhyk et al. [17] 2012 OASIS Kernel-LICA-DC MRI 74.25 96 52.5
Lama et al. [22] 2017 ADNI RELM MRI 77.88 68.85 83.54
Jha and Kwon [19] 2017 OASIS Sparse autoencoder MRI 91.6 98.09 84.09
Islam and Zhang [20] 2017 OASIS Ensemble of deep convolutional neural networks MRI 93.18 NA 93
Farhan et al. [21] 2014 OASIS Ensemble of classifier MRI 93.75 100 87.5
Khajehnejad et al. [18] 2017 OASIS Semisupervised classifier MRI 93.86 94.65 93.22

Jha et al. [16] 2018 ADNI ELM MRI 90.26 90.27 90.20
OASIS 95.27 96.59 93.03

Proposed method 2018 NRCD Softmax classifier MRI 99.34 98.14 100
2018 OASIS Softmax classifier MRI 98.40 93.75 100
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dataset was used for research, so in future, we are going to
compare our model with differently available datasets for
early prediction of the AD.

Data Availability

0eNational Research Center for Dementia (NRCD) dataset
was used to support the findings of this study. At first, we
would like to say that NRCD is a private dataset which was
generated in Chosun University hospitals, and it originally
belongs to Chosun University. We cannot share it or open it
online for others due to privacy reasons. Later, to compare
with other recent state-of-the-art methods, we have used
OASIS dataset which was downloaded from https://www.
oasisbrains.org/.
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