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Abstract

The synaptic connections between neurokinin 1 (NK1) receptor-like immunoreactive (LI) neurons and c-aminobutyric acid
(GABA)-, glycine (Gly)-, serotonin (5-HT)- or dopamine-b-hydroxylase (DBH, a specific marker for norepinephrinergic
neuronal structures)-LI axon terminals in the rat medullary dorsal horn (MDH) were examined under electron microscope by
using a pre-embedding immunohistochemical double-staining technique. NK1 receptor-LI neurons were observed
principally in laminae I and III, only a few of them were found in lamina II of the MDH. GABA-, Gly-, 5-HT-, or DBH-LI axon
terminals were densely encountered in laminae I and II, and sparsely in lamina III of the MDH. Some of these GABA-, Gly-, 5-
HT-, or DBH-LI axon terminals were observed to make principally symmetric synapses with NK1 receptor-LI neuronal cell
bodies and dendritic processes in laminae I, II and III of the MDH. The present results suggest that neurons expressing NK1
receptor within the MDH might be modulated by GABAergic and glycinergic inhibitory intrinsic neurons located in the MDH
and 5-HT- or norepinephrine (NE)-containing descending fibers originated from structures in the brainstem.
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Introduction

The medullary dorsal horn (MDH) receives inputs from small-

diameter thin-myelinated Ad and unmyelinated C fibers that

convey preferentially nociceptive information from the orofacial

structures mainly through cranial nerves, such as trigeminal (V),

facial (VII), glossopharyngeal (IX) and vagus (X) nerves [1].

Within the superficial laminae (laminae I and II) of the MDH, the

primary afferent inputs terminate onto projection neurons and

interneurons that send their axons outside and within the nucleus,

respectively, to participate in the integration and transmission of

nociceptive information from orofacial region to higher brain

centers [2,3,4]. Glutamate is the main excitatory substance

released by primary afferents. Primary afferent terminals contain

excitatory substances, including pain related neuropeptides, such

as substance P (SP) and calcitonin gene-related peptide (CGRP),

which contribute to the orofacial nocieciptive processing [4,5].

The initial integrative processing of nociceptive information in

both spinal and medullary dorsal horns also involves inhibitory

local circuits, in which c-aminobutyric acid (GABA) and glycine

(Gly) play fundamental roles as neurotransmitters [6,7]. Local

inhibitory interneurons in the dorsal horn are critical for

controlling the excitability at the segmental level and thus

determine how nociceptive information is relayed to higher brain

structures [8]. Many studies have demonstrated that these

inhibitory interneurons play essential roles in modulating the

nociceptive transmission in the dorsal horn [6,9,10]. In addition,

the superficial laminae of the dorsal horn receive dense descending

inputs, including serotoninergic and norepinephrinergic systems,

originating from the rostral ventromedial medulla (RVM),

including the nucleus raphe magnus (NRM) and its surrounding

reticular formation and locus ceruleus in the brainstem, respec-

tively [11,12]. These descending systems act on both presynaptic

and postsynaptic sites to control the gain of neuronal excitability in

nociceptive transmission [13,14]. There is considerable evidence

that the monoamines can act non-synaptically [15]. In the spinal

and medullary dorsal horns, neurokinin 1 (NK1) receptor (SP

receptor)-like immunoreactivities have been found principally in

laminae I and III [16], from which the major pathways relaying

noxious information to the thalamus, namely the spinothalamic

tract and trigeminothalamic tract, originate [1]. These results

suggest that NK1 receptor-containing neurons in the superficial

laminae might receive nociceptive information conveyed by SP-

containing primary afferent fibers and transmit it to the thalamus,

thus fall into the projection neurons category.

The MDH is cytoarchitecturally and functionally similar to the

spinal dorsal horn [1], but the circuity study in the MDH is very

much limited compared with that in the spinal dorsal horn.
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Functional studies have revealed that GABA, Gly, 5-HT and NE

are mainly involved in the antinociceptive effects [6,17,18,19],

however, there has been little evidence on the connections which

they formed with (NK-1R-LI) projection neurons. Therefore, the

present study was performed to elucidate the relationship by

immunohistochemical dual stainings for GABA-, Gly-, 5-HT- or

NE-containing terminals and NK1 receptor-like immunoreactive

(LI) neurons in the MDH.

Materials and Methods

Twenty adult male Wistar rats (weighing 250–300 g) were used

in the present study. The Ethics Committee for Animal

Experiments of the Fourth Military Medical University (Xi’an,

P. R. China) approved all animal work (Permit number: 10001).

According to the guidelines of the International Association for the

Study of Pain (Zimmermann, 1983), all efforts were made to

minimize the number of animals used and their suffering. During

all surgical procedures, the rats were anesthetized by intraperito-

neal injection of sodium pentobarbital (45 mg/kg) dissolved in

0.9% (w/v) saline.

Immunofluorescence histochemistry
Ten rats were perfused transcardially with 150 ml of 0.01 M

phosphate buffered-saline (PBS, pH 7.4) followed by 500 ml of 4%

paraformaldehyde in 0.1 M phosphate buffer (PB, pH 7.4). The

brainstems were removed and postfixed in the same fixative for

2 hours at 4uC. They were then cryoprotected in 30% sucrose in

0.1 M PB overnight at 4uC. The lower medulla oblongata was cut

into frontal sections at 30 mm thickness with a freezing microtome

(Kryostat 1720; Leitz, Mannheim, Germany). All sections were

washed briefly with 0.01 M PBS and divided into six groups. The

sections in the first dish were mounted onto gelatin-coated slides

and stained lightly with 5% Neutral Red to observe the

cytoarchitecture and to identify the boundaries of MDH laminae.

Sections from the second to fifth dishes were incubated with one of

the following antibody mixtures at room temperature overnight:

(1) rabbit against GABA antiserum (1 mg/ml, A2052; Sigma, St.

Louis, MO) and guinea-pig against NK1 receptor antiserum

(1 mg/ml, AB5800; Chemicon, Temecula, CA); (2) rabbit against

Gly antiserum (1 mg/ml, AB139; Chemicon) and guinea-pig

against NK1 receptor antiserum (1 mg/ml; Chemicon); (3) rabbit

against 5-HT antiserum (0.3 mg/ml, 20080; DiaSorin, Stillwater,

MN) and guinea-pig against NK1 receptor antiserum (1 mg/ml;

Chemicon); (4) rabbit against DBH antiserum (0.5 mg/ml,

AB1585; Chemicon) and guinea-pig against NK1 receptor

antiserum (1 mg/ml; Chemicon). The antibodies were diluted to

their working concentrations in 0.01 M PBS containing 5% (v/v)

normal goat serum (NGS), 0.3% (v/v) Triton X-100, 0.05% (w/v)

NaN3 and 0.25% (w/v) carrageenan (PBS-NGS, pH 7.4). After

rinsing three times in PBS, the slides were then incubated for

4 hours with biotinylated goat anti-rabbit IgG (1:200 dilution;

Vector, Burlingame, CA) in PBS-NGS. The slides were rinsed

with PBS and then incubated with Alexa Fluor 488 conjugated

goat anti-guinea pig IgG (1:400 dilution; Molecular Probes,

Eugene, Oregon), and Texas Red-labeled avidin D (1:200 dilution;

Vector) for 4 hours in PBS containing 0.3% Triton X-100. The

slides were then rinsed in PBS and cover-slipped with a mixture of

5% (v/v) glycerin and 2.5% (w/v) triethylene diamine in 0.1 M

PBS. The sections were observed with a confocal laser-scanning

microscope (Fluoview 1000, Olympus, Tokyo, Japan), using laser

beams of 543 and 488 nm with appropriate emission filters for

Texas Red (590–610 nm) and Alexa 488 (510–525 nm), respec-

tively. Digital images were captured using FLUOVIEW software

(Olympus, Tokyo, Japan). The average diameters of NK1-

immunopositive neurons were calculated by averaging the major

diameter with the minor diameter; the major and minor diameters

were the longest and shortest axes, respectively. A total of 96

neurons were measured in 10 animals to calculate the density of

the different types of inputs contacting NK1 receptor-LI neurons

per mm. The neurons measured were mostly located in lamina I.

The density of inputs contacting NK1 receptor-LI neurons was

measured for the entire soma for each cell and the proximal

dendrites of the NK1 receptor-LI neurons. Proximal dendrites

were defined as those within 30 mm of the soma. A mixture of

normal rabbit and guinea pig sera was used to replace the first

specific rabbit and guinea pig primary antibodies to incubate the

sections from the sixth dish. The following staining procedures

were same as those mentioned above. No immunopositive staining

was found on these sections.

Immuno-electron microscopy
Ten rats were anesthetized and perfused transcardially through

the ascending aorta with 100 ml of 0.01 M PBS, followed by

500 ml of fixative containing 4% (w/v) paraformaldehyde, 0.05%

(v/v) glutaraldehyde and 15% (v/v)-saturated picric acid in 0.1 M

PB. The brains were removed and postfixed in the same fresh

fixative for 4–6 hours at 4uC, and then put into 30% sucrose in

0.1 M PB (pH 7.4) overnight at 4uC. The lower medulla

oblongata was cut into frontal sections at 50 mm thickness with a

vibratome (Microslicer DTM-1000; Dosaka EM, Kyoto, Japan).

All sections were washed briefly with 0.01 M PBS and divided into

five groups.

Sections from the first to fourth dishes were collected in

individual vials containing a mixture of 25% (w/v) sucrose and

10% (v/v) glycerol in 0.05 M PB (pH 7.4) for 30 minutes,

respectively. In order to enhance the penetration of antibodies

in the subsequent immunohistochemical staining procedures, the

sections were freeze-thawed in liquid nitrogen. The sections were

then washed three times in 0.05 M Tris-HCl buffered-saline (TBS;

pH 7.4), incubated with 20% (v/v) normal goat serum in TBS for

30 minutes to block the non-specific immunoreactivity. Subse-

quently, sections first to fourth dishes were processed for

immunohistochemical double-staining of GABA and NK1 recep-

tor, Gly and NK1 receptor, 5-HT and NK1 receptor, or DBH and

NK1 receptor according to the immunohistochemical double-

staining procedures by using avidin-biotin-horseradish peroxidase

complex (ABC) method for GABA, Gly, 5-HT and DBH and pre-

embedding immuno-nanogold technique for NK1 receptor,

respectively. Sections in each dish were incubated with one of

the following mixtures of the antibodies respectively at room

temperature overnight: (1) rabbit against GABA antiserum

(1.5 mg/ml, A2052; Sigma, St. Louis, MO) and guinea-pig against

NK1 receptor antiserum (1.5 mg/ml, AB5800; Chemicon, Teme-

cula, CA); (2) rabbit against glycine antiserum (1.5 mg/ml, AB139;

Chemicon) and guinea-pig against NK1 receptor antiserum

(1.5 mg/ml; Chemicon); (3) rabbit against 5-HT antiserum

(0.5 mg/ml, 20080; DiaSorin, Stillwater, MN) and guinea-pig

against NK1 receptor antiserum (1.5 mg/ml; Chemicon); (4) rabbit

against DBH antiserum (0.8 mg/ml, AB1585; Chemicon) and

guinea-pig against NK1 receptor antiserum (1.5 mg/ml; Chemi-

con). The incubation medium was 0.05 M TBS containing 2% (v/

v) normal goat serum (TBS-NGS, pH 7.4). After being washed

with 0.05 M TBS (pH 7.4), the sections were incubated for 14–

16 hours at room temperature with a mixture of goat antibody

against guinea pig IgG conjugated to 1.4 nm gold particles (1:100;

Nanoprobes, Stony Brook, NY) and 10 mg/ml biotinylated donkey

anti-rabbit IgG (Jackson Immuno Research, West Groove, PA)
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diluted with TBS-NGS (pH 7.4). Then all sections were washed

with 0.01 M TBS (pH 7.4), post-fixed with 1% (w/v) glutaralde-

hyde in 0.1 M PB (pH 7.4) for 10 minutes and finally washed

briefly with distilled water. Subsequently, silver enhancement was

done in the dark with HQ Silver Kit (Nanoprobes). Then, the

sections were incubated at room temperature with ABC Elite kit

(1:50; Vector, Burlingame, CA) in 0.05 M TBS (pH 7.4) for

3 hours. Furthermore, the sections were processed for peroxidase

reaction. The sections were incubated at room temperature with

0.05 M Tris-HCl buffer (pH 7.6) containing 0.02% diaminoben-

zidine (DAB; Dojin, Kumamoto, Japan) and 0.0003% (v/v) H2O2

for 20–30 minutes, and then placed into 0.1 M PB (pH 7.4)

containing 1% (w/v) OsO4 for 1 hour. Subsequently, the sections

were counterstained with 1% (w/v) uranyl acetate in 70% ethanol

for 1 hour. After dehydration, the sections were mounted on

silicon-coated glass slides and flat embedded in epoxy resin

(Durcupan; Fluka, Buchs, Switzerland). Once the resin had

polymerized, the flat-embedded sections were examined under a

dissection microscope. Four-to-five regions of the MDH that

contained dense GABA-, Gly-, 5-HT- or DBH-LI terminals and

NK1 receptor-LI neuronal cell bodies or dendritic processes were

selected from each brain stem, and these small pieces of laminae I,

II and III of the MDH were cut out with fresh razor blades. The

samples of the selected tissue pieces were cut into 50–70-nm-thick

ultrathin sections (silver sections) on an ultramicrotome (LKB,

Bromma, Sweden). The ultrathin sections were mounted onto

single-slot grids (6–8 sections per grid) coated with piloform

membrane (Agar Scientific, Stansted, UK) and examined with an

electron microscope (CM100, Philips, Eindhoven, the Nether-

lands). A total of 10–15 grids from each region were examined

under the electron microscope and one or two grids were used for

quantification. A total of 80 grids from different regions of the ten

brain stems were for quantification. Electron micrographs were

developed in the dark room and were not computer processed.

A mixture of normal rabbit and guinea pig sera was used to

replace the first specific rabbit and guinea pig primary antibodies

to incubate the sections from the fifth dish. The following staining

procedures were same as those mentioned above. No immunopo-

sitive staining was found on the sections.

Results

Contacts revealed by immunofluroscent labeling
Many NK1 receptor-like immunoreactive (LI) neurons with

well-developed dendritic processes were observed in the medullary

dorsal horn (MDH). In the MDH, NK1 receptor-LI neurons were

often oval, fusiform, or irregular in shape, and different in size.

Most of the immunoreactive cells with soma areas .200 mm2. The

NK1 receptor-immunoreactivity products were distributed mainly

along the plasma membrane of somas and contiguous primary

dendrites (Fig. 1 A, B, C, D). Most NK1 receptor-LI neurons were

located in laminae I and III. The dendrites of NK1 receptor-LI

neurons in lamina I ramify mainly within lamina I, some of them

extended ventrally into laminae II and III. In lamina II, only a few

NK1 receptor-LI neurons were sparsely encountered, whereas the

dendrites of these NK1 receptor-LI neurons extended laterally into

lamina I and/or ventrally into lamina III. Some large NK1

receptor-LI neurons were found in lamina III with their long

dendritic processes extending dorsally into lamina II and some of

them even occasionally extending into lamina I.

GABA-, Gly-, 5-HT- and DBH-LI fibers and terminals were

densely encountered in laminae I, II and III, especially in lamina

II. A few GABA- and Gly-LI neuronal cell bodies were located

principally in lamina II. Quite long 5-HT-LI and DBH-LI fibers

covered with many bead-like varicosities were also observed in

laminae I, II and III (Fig. 1 A9, B9, C9, D9). Some of the GABA-,

Gly-, 5-HT- and DBH-LI boutons were closely apposed to the

membrane of NK1 receptor-LI somata and dendrites (Fig. 1A0,

B0, C0, D0). We observed 96 NK1 receptor-LI neurons contacting

GABA-, Gly-, 5-HT- and DBH - LI terminals obtained with the

confocal microscope in a stack of images at different (z) planes.

The average number of the different types of terminals in contact

with NK1 receptor-LI somata and dendrites per mm were

calculated. The range of the number of contacts seen per cell

was .200 mm2, and the length of proximal dendrites analysed was

within 30 mm of the soma. Overall, the density of GABA-, Gly-, 5-

HT- or DBH-LI terminals in contact with NK1 receptor-LI

somata was higher than the density of contacts on dendrites

(Fig. 2), and the densities of contacts from monoamine-containing

axons were fewer than those from GABA or glycine axons (Fig. 2).

Synaptic connections revealed with immuno-electron
microscopy

Electron microscopy revealed that typical nano-gold-labeled

products, after enhancement with the HQ Silver Kit, were black

round or oval particles with high electron densities and usually

found underneath the plasma membrane of the cell bodies and

large dendritic processes of neurons, which indicated the location

of NK1 receptor (Figs. 3, 4, 5). GABA-, Gly-, 5-HT- and DBH-LI

axonal terminals, usually filled with synaptic vesicles, were

characterized by the presence of electron dense DAB reaction

products adhering to the outer surface of cell organelles such as

mitochondria, synaptic vesicles and the inner surface of the plasma

membrane.

Axonal terminals exhibiting GABA- or Gly-like immunoreac-

tivities were usually filled with pleomorphic synaptic vesicles in

which the flattened synaptic vesicles were predominant and made

symmetric synaptic contacts with dendritic processes and neuronal

somatic profiles labeled with nano-gold particles which indicated

the location of the NK1 receptor. There is no marked difference

between the thickening of the pre- and post- synaptic membranes.

In laminae I, II and III, GABA-LI terminals were found making

synaptic connections with somatic profiles and dendritic processes

(Fig. 3) of NK1 receptor-LI neurons. One hundred and twenty one

synapses made by GABA-LI terminals were observed (Table 1), of

which, 97% (117/121) were symmetric synapses and the rest 3%

(4/121) were asymmetric ones. The majority of these synapse

made by GABA-containing terminals and somatic profiles (21%,

25/121) or dendritic processes (79%, 96/121) of the NK1

receptor-LI neurons were found in lamina I, only a few of them

were found in laminae II and III (Table 1).

Gly-LI terminals were located throughout laminae I, II and III,

but they were highest density in lamina II. Gly-LI axonal terminals

were occasionally found to form synaptic connections with NK1

receptor-LI neuronal somatic profiles (Fig. 4a) and frequently with

dendritic profiles (Fig. 4b). We also found 81 Gly-LI terminals in

synaptic contacts with NK1 receptor-containing somatic profiles

and dendritic processes (Table 1), of which, 96% (78/81) were

symmetric synapses, and the rest 4% (3/81) were asymmetric ones.

The majority of these synapse made by Gly-containing terminals

and somatic profiles (15%, 12/81) or dendritic processes (85%,

69/81) of the NK1 receptor-LI neurons were found in lamina I,

only a few of them were found in laminae II and III (Table 1).

In the MDH, 5-HT- or DBH-LI were only found in axonal

processes and their terminals. Axonal terminals exhibiting 5-HT-

or DBH-like immunoreactivities were usually filled with pleomor-

phic synaptic vesicles in which the small spherical synaptic vesicles

were predominant and made symmetric synaptic contacts with

Synaptic Connections of the Neurokinin 1 Receptor
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NK1 receptor-LI dendritic processes and somatic profiles. In

laminae I, II and III, 5-HT-LI terminals were found to make

synaptic connections with somatic profiles and dendritic processes

(Fig. 5a) of NK1 receptor-LI neurons. Sixty four synapses made by

5-HT-LI terminals were observed (Table 1), of which, 94% (60/

64) were symmetric synapses and the rest 6% (4/64) were

asymmetric synapses. The thickening and density is much more

pronounced in the post- than pre-synaptic membrane. Such

synapses are designated asymmetric synapses (Fig. 6). The majority

of these synapses made by 5-HT-containing terminals and NK1

receptor-LI neurons were found in lamina I, only a few of them

were found in laminae II and III .

DBH-LI terminals were principally observed in lamina I and

sparsely found in laminae II and III. DBH-LI axonal terminals were

occasionally found to form synaptic connections with NK1 receptor-

LI somatic profiles and frequently with dendritic profiles (Fig. 5b). We

also found 38 DBH-LI terminals in synaptic contacts with NK1

receptor-containing somatic profiles and dendritic processes (Table 1),

of which, 92% (35/38) were symmetric synapses (Fig. 4), and the rest

8% (3/38) were asymmetric synapses (Fig. 6).

Discussion

NK1 receptor-containing neurons in the MDH and NK1
receptor system involved in nociceptive transmission

After the antiserum against NK1 receptor was raised from

rabbit [16], many studies have been carried out, especially on the

distributions [16], fiber connections [6,20,21–24], and chemical

natures [25] of the NK1 receptor-containing neurons. NK1

receptor is expressed predominantly in neurons of the central

nervous system (CNS). In the rat MDH, neurons with intense

NK1 receptor-immunoreactivities are located in laminae I and III

[16]. The NK1 receptor is associated with projection neurons, it is

also expressed by interneurons in the dorsal horn, and therefore it

is not certain that the NK1 receptor-immunoreactive dendrites

and cell bodies examined in this study belong to projection

neurons. In fact, a recent study [26] has reported that in the rat

lumbar spinal cord, cells in lamina I with a high level of NK1

receptor expression are probably all projection cells. Since the

level of expression of the receptor is likely to be similar on cell

bodies and dendrites of individual neurons, the dendrites that we

Figure 1. Immunofluorescent double labeling of c-aminobutyric acid (GABA)-, glycine (Gly)-, serotonin (5-HT)- or dopamine-b-
hydroxylase (DBH) with neurokinin 1 (NK1) receptor in the MDH of adult rats. NK1 receptor immunoreactivity is mainly distributed along
the cellular and dendritic membrane of the MDH neurons (green), GABA, Gly, 5-HT or DBH - ir boutons (red) are in close apposition to NK1R-ir somas
and dendrite (arrows). Scale bars, 10 mm ( A–D, A9–D9, A0–D0).
doi:10.1371/journal.pone.0023275.g001
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observed, and which presumably had strong NK1 receptor

expression, were likely to have originated from projection neurons.

And NK1 receptor-immunoreactive cell bodies were likely to

belong to projection neurons.

NK1 receptors are distributed throughout the cellular and

dendritic membrane of neurons, at which SP containing primary

afferent fibers make synaptic contacts [3,4,27]. NK1 receptors are

activated by SP released following noxious stimuli and ablation of

NK1 receptor-containing neurons with a substance P–saporin

conjugate prevents the development of hyperalgesia [28,29]. It has

been suggested that NK1 receptor-LI neurons within superficial

layers of the spinal dorsal horn play a critical role in transmiting

and enhancing nociception [25]. Previous evidence has shown that

most NK1 receptor-LI neurons show receptor internalization

following noxious stimuli [30], which is important for intracellular

signaling of nociception.

Local inhibitory inputs to NK1 receptor-LI projection
neurons in the MDH

MDH is involved principally in orofacial nociceptive transmis-

sion to higher brain structures, including thalamic regions [31].

The incoming information is processed by complex circuits

involving inhibitory interneurons, and is transmitted to projection

neurons for relaying to several brain areas [6]. Despite the

importance of NK1 receptor-LI projection neurons in processing

pain, the synaptic connections of the NK1 receptor-LI neurons in

the MDH are still poorly understood. Studies have demonstrated

that NK1 receptor-LI projection neurons in lamina I and lamina

III in the spinal dorsal horn are densely innervated by peptidergic

primary afferents, most of which contain SP [6]. In the present

study, we found that NK1 receptor-LI neurons in the MDH

received GABAergic and glycinergic inputs. These electron

microscopic data have provided direct morphological evidence

that GABA- and Gly-containing inhibitory neurons are involved in

regulating the activities of NK1 receptor-LI neurons in processing

orofacial nociceptive information.

GABA as one major classical inhibitory transmitter, has been

observed in neurons, particularly within interneurons, fibers and

terminals in the superficial part of the dorsal horn [6]. Local

inhibitory interneurons in the MDH are significantly important in

controlling the flow of nociceptive information and blocking

inhibitory transmission in the spinal dorsal horn can lead to

allodynia [32]. The present study has demonstrated that a large

number of GABA- (97%) and Gly (96%)-LI boutons make

symmetric synapses with NK1 receptor-LI somata or dendrites.

These represent the morphological bases for inhibitory inputs to

the NK1 receptor-LI projection neurons. It indicates that

inhibitory local interneurons modulate orofacial nociceptive

Figure 2. The density of the different types of inputs contacted
with NK1 receptor-LI neurons ( /mm). Histogram showing input to
NK1 receptor-LI somata and dendrites obtained with the confocal
microscope.
doi:10.1371/journal.pone.0023275.g002

Figure 3. Electron micrographs of two adjacent sections,
showing a GABA-immunoreactive axon terminal (GABA) visu-
alized by peroxidase immunoreaction products that makes
symmetric synapses with a NK1R-immunopositive dendrite
(NK1R) revealed by silver grains in the MDH. Arrowheads indicate
symmetric post-synaptic dense substance (PSD).
doi:10.1371/journal.pone.0023275.g003

Figure 4. Electron micrographs showing the Gly-immunoreac-
tive axon terminals (Gly) visualized by peroxidase immunore-
action products making symmetric synapses with NK1R-
immunopositive cell body (NK1R; A) or dendrite (NK1R; B
and C) revealed by silver grains in the MDH, respectively.
Arrowheads indicate symmetric post-synaptic dense substance (PSD).
doi:10.1371/journal.pone.0023275.g004
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transmission. GABA can produce both presynaptic inhibition of

primary afferents through axoaxonic synapses and postsynaptic

inhibition of neurons mediated by axosomatic and axodendritic

synapses [33]. In vivo study demonstrated that NK1 receptor-LI

projection neurons had been under strong GABAergic control

[34] and injection of the selective GABAA receptor antagonist is

sufficient to produce hyperalgesia [32,35]. We speculate that NK1

receptor-LI projection neurons might be modulated by GABA-

containing axons from interneurons via GABAA receptor by

postsynaptic inhibition [32,35,36]. In addition, GABA-containing

axons which originate from RVM also project to the dorsal horn

[37,38].

Gly is another major inhibitory neurotransmitter in the CNS. It

acts on the strychnine-sensitive glycine receptors (GlyR). GlyR are

pentameric chloride channel composed of a and b subunits

[39,40]. Activation of GlyR generates inhibitory postsynaptic

potentials (IPSPs). Administration of GlyR antagonists produces

behavioural signs of allodynia [32,35]. Some lamina I projection

neurons that express gephyrin, a GlyR a1 and b subunit-

associated protein, are either devoid of NK1 receptor or

expressing NK1 receptors at a very low level [41]. These

projection neurons are under powerful inhibitory control presum-

ably from glycinergic local neurons. In this study, we found that

NK1 receptor-LI neurons also received glycine input and previous

study suggested a distinct expression of GlyRa3 in the superficial

dorsal horn where nociceptive afferents terminate [39]. Thus, we

speculate that the Gly which act on NK1 receptor-LI projection

neurons is mediated at least partly via GlyR a3 subunits. Some

GABAergic neurons in the superficial dorsal horn neurons are

enriched with Gly-like immunoreactivity [6], and these are

thought to use Gly as a co-transmitter. It is possible that GABA

and Gly co-released at the same time from the same axonal

terminal to act on NK1 receptor-LI projection neurons.

Figure 5. Electron micrographs showing a serotonin -immuno-
reactive axon terminal (5-HT; A) and a dopamine-b-hydroxy-
lase-immunopositive axon terminal (DBH; B) visualized by
peroxidase immunoreaction products making symmetric syn-
apses with two NK1R-immunopositive dendrites (NK1R) re-
vealed by silver grains in the MDH, respectively. Arrowheads
indicate symmetric post-synaptic dense substance (PSD).
doi:10.1371/journal.pone.0023275.g005

Table 1. Synaptic types between GABA-, glycine-, 5-HT- and DBH-immunoreactive terminals and NK1R-immunopositive somatic
profiles and dendritic processes in MDH.

NK1R (+) somatic profiles NK1R (+) dendritic processes Total

Symmetric
synapses

Asymmetric
synapses

Symmetric
synapses

Asymmetric
synapses

Symmetric
synapses

Asymmetric
synapses

GABA (+) 24 (20%) 1 (1%) 93 (77%) 3 (2%) 117 (97%) 4 (3%)

Glycine (+) 11 (14%) 1 (1%) 67 (83%) 2 (2%) 78 (96%) 3 (4%)

5-HT (+) 10 (16%) 0 (0%) 50 (78%) 4 (6%) 60 (94%) 4 (6%)

DBH (+) 8 (21%) 1 (3%) 27 (71%) 2 (5%) 35 (92%) 3 (8%)

doi:10.1371/journal.pone.0023275.t001

Figure 6. Electron micrographs showing a serotonin -immuno-
reactive axon terminal (5-HT; A) and a dopamine-b-hydroxy-
lase-immunopositive axon terminal (DBH; B) visualized by
peroxidase immunoreaction products making asymmetric
synapses with two NK1R-immunopositive dendrites (NK1R)
revealed by silver grains in the MDH, respectively. Arrowheads
indicate synaptic active zones.
doi:10.1371/journal.pone.0023275.g006
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Descending pain-modulating inputs to NK1 receptor-LI
neurons in the MDH

In addition to local excitatory and inhibitory inputs, NK1

receptor-LI projection neurons also received descending serotonin

(5-HT)- or norepinephrine (NE)-containing inputs from the

brainstem. It has been indicated that orofacial nociceptive

transmission is also modulated by these inputs. In the CNS,

serotoninergic inputs come mainly from raphe nuclei, and

norepinephrinergic inputs originate from locus ceruleus in the

brainstem, respectively, but 5-HT- and NE-containing fibers and

terminals are localized throughout the CNS [11,12]. The

descending control systems are involved in nociceptive and

antinociceptive circuits [36]. Descending control systems alter

the behavior of projection neurons in several ways: a synapsing

directly on the projection neurons; b influencing the primary

afferent inputs; c modulating interneurons’ activities [36]. We

have found that a large number of 5-HT-LI terminals (94%) and

NE-LI terminals (92%) contact or synapse with NK1R-LI somata

and dendrites. These findings are morphological evidence that the

descending control systems exert their function via direct synapse

on project neurons in the MDH.

5-HT-LI terminals mainly originate from the RVM, including

NRM and its surrounding reticular formation [12]. Serotonergic

descending pathways from brainstem form an endogenous

analgesic system. Electrophysiological data demonstrated that 5-

HT induced inhibition on SP-sensitive (putative NK-1 receptor

expressing) dorsal horn neurons in vitro [42]. We have found that

5-HT-LI terminals contact with NK1 receptor-LI somata and

dendrites in the superficial dorsal horn. 5-HT exerts its actions

through binding with 5-HT1 to 5-HT7 receptors. Most of these

receptors are G protein-coupled receptors. The 5-HT3 receptor

subtype is a voltage-dependent cation channel complex [43]. The

5-HT3 receptor subtype involves in facilitating nociceptive pain via

disinhibitory mechanisms. The 5-HT5a receptor involves in

stimulation-produced opioid analgesia via postsynaptic mechanism

[36]. Moreover, 5-HT1 and/or 5-HT7 receptors which are

expressed on the fibers are also involved in modulating nociceptive

transmission [36]. More effort should be put in elucidating which

5-HT receptor subtye(s) is (are) involved in mediating serotonin

function on to NK1 receptor LI projection neurons.

NE-containing neuronal cell bodies are encountered principally

in the locus ceruleus underneath the fourth ventricle at the caudal

pontine region [44]. Its receptors are divided into two main

categories, alpha- and beta-adrenoceptors. Alpha-adrenoceptors

are divided into subtypes 1A, 1B, 1D, 2A, 2B, and beta-

adrenoceptors into subtypes1–3 [44]. Pharmacological studies

indicated that administration of various synthetic adrenoceptor

agonists produced different effects on pain responses [44]. Alpha-

2A-adrenoceptor is located on primary afferent terminals and

involves in the control of pain through presynaptic inhibition

[36,44]. Alpha-2-adrenoceptor is present on pain-relay neurons

and involves in nociceptive information through postsynaptic

inhibition. Alpha-1-adrenoceptor involves in activation of GA-

BAergic and glycinergic inhibitory interneurons and alpha-2C-

adrenoceptors in the dorsal horn may also contribute to pain

regulation [44]. Our results have showed that the NE descending

system directly synapsed on NK1 receptor-LI projection neurons.

Further investigations are required to elucidate which subclass of

receptors are involved in this procedure.

There have been studies in the spinal dorsal horn showing

synapses from axons containing GABA [45], norepinephrine [46]

or 5-HT [47] on projection neurons in lamina I, however, our

results have demonstrated that neurons with NK1 receptor-

immunoreactivity received not only local GABAergic and

Glycinergic inhibitory inputs from interneurons but also descend-

ing 5-HT- or NE-containing inputs from brainstem in laminae I,

II and III of the MDH. The density of GABA-, Gly-, 5-HT- or

DBH-LI terminals in contact with NK1 receptor-LI somata was

different from the density of contacts on dendrites, and this may

reflect functional differences. It therefore provides direct anatom-

ical evidence and quantitative study within the MDH. Previous

studies have demonstrated that GABAergic and Glycinergic

neurons in the rat MDH could be activated directly by SP-fibers

[48]. SP containing primary afferent fibers also make synaptic

contacts with neurons with NK1 receptor-immunoreactivity.

Thus, NK1 receptor-LI neurons might be an important, but not

the exclusive player in orofacial nociceptive and antinociceptive

circuits. However, there is relatively little information about NK1

receptor-LI neurons that express other receptors and ion channels.

Further investigations should focus on identifying their neuro-

chemical features.
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