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Epidemics generally spread through a succession of waves that
reflect factors on multiple timescales. On short timescales, super-
spreading events lead to burstiness and overdispersion, whereas
long-term persistent heterogeneity in susceptibility is expected
to lead to a reduction in both the infection peak and the herd
immunity threshold (HIT). Here, we develop a general approach
to encompass both timescales, including time variations in indi-
vidual social activity, and demonstrate how to incorporate them
phenomenologically into a wide class of epidemiological models
through reparameterization. We derive a nonlinear dependence
of the effective reproduction number Re on the susceptible pop-
ulation fraction S. We show that a state of transient collective
immunity (TCI) emerges well below the HIT during early, high-
paced stages of the epidemic. However, this is a fragile state that
wanes over time due to changing levels of social activity, and so
the infection peak is not an indication of long-lasting herd immu-
nity: Subsequent waves may emerge due to behavioral changes
in the population, driven by, for example, seasonal factors. Tran-
sient and long-term levels of heterogeneity are estimated using
empirical data from the COVID-19 epidemic and from real-life face-
to-face contact networks. These results suggest that the hardest
hit areas, such as New York City, have achieved TCI following the
first wave of the epidemic, but likely remain below the long-term
HIT. Thus, in contrast to some previous claims, these regions can
still experience subsequent waves.
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The COVID-19 pandemic is nearly unprecedented in the level
of disruption it has caused globally, but also, potentially, in

the degree to which it will change our understanding of epidemic
dynamics and the efficacy of various mitigation strategies. Ever
since the pioneering works of Kermack and McKendrick (1), epi-
demiological models have been widely and successfully used to
quantify and predict the progression of infectious diseases (2–6).
More recently, the important role in epidemic spreading played
by population heterogeneity and the complex structure of social
networks has been appreciated and highlighted in multiple stud-
ies (7–25). However, integration of this conceptual progress into
reliable, predictive epidemiological models remains a formidable
task. Among the key effects of heterogeneity and social network
structure are 1) the role played by superspreaders and super-
spreading events during initial outbreaks (12, 13, 16, 26–29) and 2)
a substantial reduction of the final size of epidemic (FSE) as well
as the herd immunity threshold (HIT) compared to the homoge-
neous case (9, 10, 19–21, 23, 30). The COVID-19 pandemic has
reignited interest in the effects of heterogeneity of individual sus-
ceptibility to the disease, in particular, to the possibility that it
might lower both HIT and FSE (31–35). In studying epidemics in

heterogeneous populations, it is important to emphasize the qual-
itative nature of two important timescales. First, overdispersion is
dominated by short-term patterns of behavior and even accidental
events rather than persistent population behavioral heterogene-
ity. Second, short-term overdispersion is generally assumed to
have a limited impact on the long-term epidemic dynamics, being
important primarily during early outbreaks dominated by super-
spreading events. In this paper, we attempt to provide a multiscale
theory for epidemic progression and show that both overdisper-
sion and persistent heterogeneity affect the overall progression
of the COVID-19 epidemic. The significance of this multiscale
perspective is that it provides a natural formalism to predict the
occurrence and nature of successive epidemic waves, even when
it might seem that a first wave has attained a state which could be
mistaken for herd immunity.

There are several existing approaches to model the effects of
heterogeneity on epidemic dynamics, each focusing on a differ-
ent characteristic and parameterization. In the first approach,
one stratifies the population into several demographic groups
(e.g., by age), and accounts for variation in susceptibility of
these groups and their mutual contact probabilities (2). While
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this approach represents many aspects of population dynamics
beyond the homogeneous and well-mixed assumption, it clearly
does not encompass the whole complexity of individual hetero-
geneity, interpersonal communications, and spatial and social
structures. These details can be addressed in a second approach,
where one analyzes the epidemic dynamics on real-world or
artificial social networks (8, 13, 23, 36, 37). Through elegant
mathematics, it is possible to obtain detailed results in idealized
cases, including the mapping onto well-understood models of
statistical physics such as percolation (9, 38). As demonstrated
in ref. 21, the FSE is a very robust property of the epidemic,
insensitive to fine details of its dynamics (39) defined by 1) dis-
tribution of susceptibilities in the population (20, 30, 40) and 2)
correlations between infectivity and susceptibility. Importantly,
it does not depend on the part of heterogeneous infectivity that
is not correlated with susceptibility. However, these approaches,
so far, have been mostly limited to the analysis of the FSE and
distribution of outbreak sizes on a static social network.

For practical purposes, it is desirable to predict the complete
time-dependent dynamics of an epidemic, preferably by explic-
itly including heterogeneity into classical well-mixed mean-field
compartmentalized models. This approach was developed some
time ago in the context of epidemics on networks (10, 23), and
the resulting mean-field theory effectively reproduces the struc-
ture of heterogeneous well-mixed models extensively studied in
the applied mathematics literature (19–22, 24, 30). The overall
impact of heterogeneity occurs because, as the disease spreads, it
preferentially immunizes the more susceptible individuals, so the
remaining population is less susceptible, and spread is inhibited.
This effect is further enhanced by a positive correlation between
infectivity and susceptibility. In the context of static network
models, this correlation is perfect, since both factors are propor-
tional to the degree of individual nodes. Ref. 24 studied a hybrid
model in which social heterogeneity represented by network
degree was combined with a biological one. These approaches
have been recently applied in the context of COVID-19 (31,
32, 35, 41, 42). The conclusion of these studies was that the
HIT may be well below that expected in classical homogeneous
models.

These approaches to heterogeneity delineate end-members
of a continuum of theories: overdispersion describing short-
term, bursty dynamics (e.g., due to superspreader accidents), as
opposed to persistent heterogeneity, which is a long-term charac-
teristic of an individual and reflects behavioral propensity, for
example, to socialize in large gatherings without prudent social
distancing. Overdispersion is usually modeled in terms of a neg-
ative binomial branching process (12, 13, 16, 26–28). Strictly
speaking, both persistent heterogeneity and short-term varia-
tions contribute to the overdispersion of individual reproduction
number. However, we will see below that the former is likely to
be a much weaker source of variation compared to the latter.
It is also generally presumed that short-term overdispersion is
uncorrelated in time and thus has no effect on epidemic dynam-
ics. Indeed, large variations in an individual’s infectivity would
average out as long as they are not correlated with suscepti-
bility. But, since the initial exposure and secondary infections
are separated by a single generation interval (typically about
5 d for COVID-19), the levels of individual social activity at
those times are expected to be correlated, and (at least partially)
reflect short-term overdispersion. How, then, can one under-
stand the epidemic progression across various timescales, from
early stages of a fast exponential growth to the final state of the
herd immunity?

Below, we present a comprehensive yet simple theory that
accounts for both social and biological aspects of heterogeneity,
and predicts how, together, they modify early and intermedi-
ate epidemic dynamics, as well as global characteristics of the
epidemic such as its HIT. Importantly, early epidemic dynamics

may be sensitive to both persistent heterogeneity and short-term
overdispersion. As a result, the apparent early-stage heterogene-
ity is typically enhanced compared to its long-term persistent
level. This may lead to a suppression of the first wave of the
epidemic due to reaching a novel state that we call transient
collective immunity (TCI) determined by a combination of short-
term and long-term heterogeneity, whose threshold is lower than
the eventual HIT. The implication is that the first wave of an
epidemic ends due to a combination of both persistent hetero-
geneity and whatever mitigation constraints are imposed on the
population. As the latter are relaxed by authorities or through
behavioral changes associated with seasonal factors, subsequent
waves can still occur. Thus, TCI is dramatically different from the
idea of herd immunity due to heterogeneity.

Our starting point is a generalized version of the heteroge-
neous well-mixed theory in the spirit of ref. 10, but we use the
age-of-infection approach (1) rather than compartmentalized
susceptible, infectious, recovered (SIR)/susceptible, exposed,
infectious, recovered (SEIR) models of epidemic dynamics (see,
e.g., ref. 2). Similar to multiple previous studies, we first com-
pletely ignore any time dependence of individual susceptibilities
and infectivities, focusing only on their long-term persistent com-
ponents. This approach implicitly assumes that any short-term
overdispersion (responsible for, e.g., the superspreading phe-
nomenon) is uncorrelated in time and thus effectively averaged
out. This is a valid assumption if the large short-term variations
in individual infectivity are completely uncorrelated with an indi-
vidual’s susceptibility. However, this approximation is hard to
justify in the case of COVID-19. Indeed, if the two are corre-
lated on the timescale of a single generation interval (5 d), this
will strongly affect the overall epidemic dynamics. Therefore, our
initial analysis is eventually expanded to a more general theory
accounting for the nonnegligible effects of short-term overdis-
persion. In the case of persistent heterogeneity, we demonstrate
how the model can be recast into an effective homogeneous
theory that can readily encompass a wide class of epidemiologi-
cal models, including various versions of the popular SIR/SEIR
approaches. Specific innovations that emerge from our analy-
sis are the nonlinear dependence of the effective reproduction
number Re on the overall population fraction S of suscepti-
ble individuals, and another nonlinear function Se that gives an
effective susceptible fraction, taking into account preferential
removal of highly susceptible individuals.

A convenient and practically useful aspect of this approach
is that it does not require extensive additional calibration in
order to be applied to real data. In the effort to make quan-
titative predictions from epidemic models, accurate calibration
is arguably the most difficult step, but is necessary due to the
extreme instability of epidemic dynamics in both growth and
decay phases (43, 44). We find that, with our approach, the entire
effect of heterogeneity is, in many cases, well characterized by
a single parameter which we call the immunity factor λ. It is
related to the statistical properties of heterogeneous susceptibil-
ity across the population and to its correlation with individual
infectivity. The immunity factor determines the rate at which Re

drops during the early stages of the epidemic as the pool of sus-
ceptibles is being depleted: Re ≈R0(1−λ(1−S)). Beyond this
early linear regime, for an important case of gamma-distributed
individual susceptibilities, we show that the classical proportion-
ality, Re =R0S , transforms into a power law scaling relationship
Re =R0S

λ. This leads to a modified version of the result for the
HIT, 1−S0 = 1−R

−1/λ
0 .

Heterogeneity in the susceptibility of individual members of
the population has several different contributions: 1) biological,
which takes into account differences in factors such as strength of
immune response, genetics, age, and comorbidities; and 2) social,
reflecting differences in the number and frequency of close con-
tacts of different people. The immunity factor λ in our model
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combines these sources of heterogeneous susceptibility as well
as its correlation with individual infectivity. As we demonstrate,
under certain assumptions, the immunity factor is simply a prod-
uct of social and biological contributions: λ=λsλb . In our study,
we leverage existing studies of real-life face-to-face contact net-
works (13, 19, 37, 45–48) to estimate the social contribution to
heterogeneous susceptibility, and the corresponding immunity
factor λs . The biological contribution, λb , is expected to depend
on specific details of each infection.

To test this theory, we use empirical data for the COVID-
19 epidemic to independently estimate the immunity factor λ.
In particular, we apply our previously described epidemic model
that features multichannel Bayesian calibration (43) to describe
epidemic dynamics in New York City (NYC) and Chicago from
the start of the epidemic in mid-March until the end of the first
wave around June 15, 2020. This model uses high-quality data on
hospitalizations, intensive care unit (ICU) occupancy, and daily
deaths to extract the underlying Re(S) dependence in each of
two cities. In addition, we perform a similar analysis of data on
individual states in the United States, using data generated by the
model in ref. 49. Using both approaches, we find that the loca-
tions that were severely impacted by the COVID-19 epidemic
show a more pronounced reduction of the effective reproduc-
tion number. This effect is much stronger than predicted by
classical homogeneous models, suggesting a significant role of
heterogeneity. The estimated immunity factor ranges between
four and five. Importantly, this represents a transient value
of the parameter λ observed on intermediate timescales and
dependent on both persistent and short-term heterogeneity. Our
estimates of the long-term value of the immunity factor defined
by persistent heterogeneity only is considerably lower, about two.
This difference explains why achieving the state of TCI after
the first wave of the epidemic does not imply long-term herd
immunity.

Finally, we integrate the persistent heterogeneity theory into
our time-of-infection epidemiological model (43), and project
possible outcomes of the second wave of the COVID-19 epi-
demic during the summer months in NYC and Chicago, using
data up to the end of June 2020. By considering the worst-case
scenario of a full relaxation of any currently imposed mitigation,
we find that the results of the heterogeneity-modified model sig-
nificantly modify the results from the homogeneous mode. In
particular, based on our estimate of the immunity factor, our
model predicts no second wave in NYC immediately after release
of mitigations in June and up to September 2020, indicating that
the TCI has likely been achieved there. Chicago, on the other
hand, has not passed the TCI threshold that we infer, but the
effects of heterogeneity would still result in a substantial reduc-
tion of the magnitude of the second wave there, even under
the worst-case scenario. This, in turn, suggests that the second
wave can be completely eliminated in such medium-hit loca-
tions, if appropriate and economically mild mitigation measures
are adopted, including, for example, mask wearing, contact trac-
ing, and targeted limitation of potential superspreading events,
through limitations on indoor bars, dining, and other venues. We
further investigate the issue of fragility of collective immunity
in heterogeneous populations. By allowing rewiring of the social
network with time, we demonstrate that the TCI may wane, much
like an individual’s acquired immunity may wane due to biolog-
ical factors. This phenomenon would result in the emergence
of secondary epidemic waves after a substantial period of low
infection counts.

Theory of Epidemics in Populations with Persistent
Heterogeneity
Following in the footsteps of refs. 10, 19, 22–24, 30, and 32, we
consider the spread of an epidemic in a population of individuals
who exhibit significant persistent heterogeneity in their suscep-

tibilities to infection α. This heterogeneity may be biological or
social in origin, and we assume these factors are independent:
α=αbαs . Effects of possible correlations between αb and αs

have been discussed in ref. 24. The biologically driven heteroge-
neous susceptibility αb is shaped by variations of several intrinsic
factors such as the strength of individuals’ immune responses,
age, or genetics. In contrast, the socially driven heterogeneous
susceptibility αs is shaped by extrinsic factors, such as differ-
ences in individuals’ social interaction patterns (their degree in
the network of social interactions). Furthermore, individuals’ dif-
ferent risk perceptions and attitudes toward social distancing
may further amplify variations in socially driven susceptibility
heterogeneity. We only focus on susceptibility that is a persis-
tent property of an individual. For example, people who have
elevated occupational hazards, such as health care workers, typi-
cally have higher, steady values of αs . Similarly, people with low
immune response, highly social individuals (hubs in social net-
works), or scofflaws would all be characterized by above-average
overall susceptibility α.

In this work, we group individuals into subpopulations with
similar values of α and describe the heterogeneity of the over-
all population by the probability density function (pdf) of this
parameter, f (α). Since α is a relative measure of individ-
ual susceptibilities, without loss of generality, we set 〈α〉≡∫∞

0
αf (α)dα= 1. Each person is also assigned an individual

reproduction number Ri , which is an expected number of peo-
ple that this person would infect in a fully susceptible population
with 〈α〉= 1. Accordingly, from each subpopulation with sus-
ceptibility α, there is a respective mean reproductive number
Rα to which we refer as infectivity throughout this study. Any
correlations between individual susceptibility and infectivity will
significantly impact the epidemic dynamics. Such correlations
are an integral part of most network-based epidemiological
models, due to the assumed reciprocity in underlying social
interactions, which leads to Rα≈α (9, 10, 23). In reality, not
all transmissions involve face-to-face contacts, and biological
susceptibility need not be strongly correlated with infectivity.
Therefore, it is reasonable to expect only a partial correlation
between α and Rα.

Let Sα(t) be the fraction of susceptible individuals in the
subpopulation with susceptibility α, and let jα(t) =−Ṡα be the
corresponding daily incidence rate per capita in that subpop-
ulation. At the start of the epidemic, we assume everyone is
susceptible to infection: Sα(0) = 1. The course of the epidemic
is described by the following age-of-infection model:

− dSα
dt

= jα(t) =αSα(t)J (t) [1]

J (t) =

∫ ∞
0

〈RαK (τ)jα(t − τ)〉 dτ. [2]

Here t is the physical time, and τ is the time since infection for
an individual; 〈. . .〉 represents averaging over α with pdf f (α).
J (t) is the force of infection, that is, per capita incidence rate in
a fully susceptible subpopulation with α= 1. Rα is the previously
introduced infectivity, that is, the mean reproductive number of
the subpopulation with susceptibility α. K (τ) is the pdf of the
generation interval, which we assume to be independent of α, for
the sake of simplicity. The homogeneous version of the age-of-
infection model was introduced in the early days of mathematical
epidemiology in the classical paper by Kermack and McKendrick
(1). It is based on the observation that the force of infection,
J (t), is defined by the number of previously infected individu-
als. The contribution of each individual depends on his/her time
since infection τ and is weighted by the infectivity profile K (τ).
As shown in ref. 50, the rate of the exponential growth of the
epidemic can be inferred from the Laplace transform of K (τ).
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Well-known compartmentalized models correspond to specific
functional forms of K (τ), such as the exponential distribution
for the SIR model.

According to Eq. 1, the fraction of susceptibles in the
subpopulation with any given α can be expressed as

Sα(t) = exp(−αZ (t)). [3]

Here Z (t)≡
∫ t

0
J (t ′)dt ′. The total susceptible fraction of the

population is related to the moment generating function Mα

of the distribution f (α) (i.e., the Laplace transform of f (α))
according to

S(t) =

∫ ∞
0

f (α)e−αZ(t)dα=Mα(−Z (t)). [4]

Similarly, the effective reproductive number Re can be expressed
in terms of the parameter Z ,

Re(t) =
1

〈α〉

∫ ∞
0

αRαf (α)e−αZ(t)dα. [5]

Note that, for Z = 0, this expression gives the basic reproduc-
tion number R0 = 〈αRα〉/〈α〉. This result is reminiscent of the
well-known result (23) R0 = 〈kinkout〉/〈kin〉 for epidemic spread
on a directed network with in and out degrees kin (analogue of
our susceptibility α) and kout (analogue of Rα). Note that, due to
our choice of normalization 〈α〉= 1, the prefactor in Eq. 5 can be
omitted. Since both S and Re depend on time only through Z (t),
Eqs. 4 and 5 establish a parametric relationship between these
two important quantities during the time course of an epidemic.
In contrast to the classical case when these two quantities are
simply proportional to each other, that is, Re =SR0, the relation-
ship in the present theory is nonlinear due to heterogeneity. Eq.
5 was derived by substituting Eq. 1 into Eq. 2. This leads to the
renewal equation for J (t) of the same form as in a homogeneous
problem,

J (t) =

∫ ∞
0

dτK (τ)Re(t − τ)J (t − τ). [6]

Furthermore, by averaging Eq. 1 over all values of α, one
arrives at the following heterogeneity-induced modification to
the relationship between the force of infection and incidence
rate:

dS

dt
=−SeJ . [7]

Here

Se(t) =

∫ ∞
0

αf (α)e−αZ(t)dα=−dMα(−Z (t))

dZ
[8]

is the effective susceptible fraction of the population, which is
less than S , due to the disproportionate removal of highly sus-
ceptible individuals. Just as with Re , it is a nonlinear function
of S , defined parametrically by Eqs. 4 and 8. Further general-
ization of this theory for the time-modulated age-of-infection
model is presented in SI Appendix. There, we also discuss the
adaptation of this approach for the important special case of a
compartmentalized SIR/SEIR model.

One of the striking consequences of the nonlinearity of Re(S)
is that the effective reproduction number could be decreasing at
the early stages of an epidemic significantly faster than predicted
by homogeneous models. Specifically, for 1−S(t)'Z (t)� 1,
one can linearize the effective reproduction number as

Re ≈R0(1−λ(1−S)). [9]

We named the coefficient λ the immunity factor because it quan-
tifies the effect that a gradual buildup of population immunity
has on the spread of an epidemic. The classical value of λ is one,
but it may be significantly larger in a heterogeneous case. By lin-
earizing Eq. 5 in terms of 1−S 'Z � 1 and dividing the result
by R0 = 〈αRα〉, one gets

λ=
〈α2Rα〉
〈αRα〉

. [10]

As one can see, the value of the immunity factor thus depends
both on the statistics of susceptibility α and on its correlation
with infectivity Rα.

We previously defined the overall susceptibility as a combi-
nation of biological and social factors: α=αsαb . Here αs is a
measure of the overall social connectivity or activity of an indi-
vidual, such as the cumulative time of close contact with other
individuals averaged over a sufficiently long time interval (known
as node strength in network science). Since the contribution of
interpersonal contacts to an epidemic spread is mostly recipro-
cal, we assume Rα≈αs . On the other hand, in our analysis, we
neglect a correlation between biological susceptibility and infec-
tivity, as well as between αb and αs . Under these approximations,
the immunity factor itself is a product of biological and social
contributions, λ=λbλs . Each of them can be expressed in terms
of leading moments of αb and αs , respectively,

λb =
〈α2

b〉
〈αb〉2

= 1 +CV 2
b [11]

λs =
〈α3

s 〉
〈αs〉〈α2

s 〉
= 1 +

CV 2
s (2 + γsCVs)

1 +CV 2
s

. [12]

These equations follow from Eq. 10 in the limit Rα = const and
Rα≈α, respectively. Although these equations resemble clas-
sical results for R0 in heterogeneous networks (8–10, 23), here
they describe a completely different effect of suppression of Re

in response to depletion of susceptible population S . That is why
λs in Eq. 12 is proportional to the third moment of αs instead
of the second moment in the case of R0 = 〈αRα〉≈α2

s . Note that
the biological contribution to the immunity factor depends only
on the coefficient of variation CVb of αb . On the other hand,
the social factor λs depends on both the coefficient of variation
CVs and the skewness γs of the distribution of αs . Due to our
normalization, 〈αs〉〈αb〉≈ 〈αsαb〉= 〈α〉= 1.

The relative importance of biological and social contribu-
tions to the overall heterogeneity of α may be characterized by
a single parameter χ. For a log-normal distribution of αb , χ
appears as a scaling exponent between infectivity and suscepti-
bility: Rα≈αχ (see SI Appendix for details). The corresponding
expression for the overall immunity factor is λ= 〈α2+χ〉/〈α1+χ〉.
The limit χ= 0 corresponds to a predominantly biological source
of heterogeneity, that is, λ≈λb = 1 +CV 2

α , where CVα is the
coefficient of variation for the overall susceptibility. In the oppo-
site limit χ= 1, population heterogeneity is primarily of social
origin; hence λ≈λs is affected by both CVα and the skewness
γα of the pdf f (α). The biological contribution λb depends on
specific biological details of the disease and thus is unlikely to be
as universal and robust as the social one. For the COVID-19 epi-
demic, there is no strong evidence of a wide variation in attack
rates unrelated to social activity, geographic location, or socioe-
conomic status. For instance, there is very little age variability
in COVID-19 prevalence as reported by the NYC Department
of Health (51) based on the serological survey that followed
the first wave of the epidemic. Therefore, below, we will largely
ignore possible biological heterogeneity, and focus on social
heterogeneity.

4 of 12 | PNAS
https://doi.org/10.1073/pnas.2015972118

Tkachenko et al.
Time-dependent heterogeneity leads to transient suppression of the COVID-19 epidemic, not herd

immunity

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015972118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015972118/-/DCSupplemental
https://doi.org/10.1073/pnas.2015972118


PO
PU

LA
TI

O
N

BI
O

LO
G

Y

So far, our discussion has focused on the early stages of epi-
demics, when the Re(S) dependence is given by a linearized
expression Eq. 9. To describe the nonlinear regime, we consider
a gamma-distributed susceptibility: f (α)≈α1/η−1 exp(−α/η),
where η=CV 2

α . In this case, according to Eqs. 4 and 5, Re , Se ,
and S are related by scaling relationships (see SI Appendix),

Se(S) =S1+η [13]

and
Re(S) =R0S

λ. [14]

The exponent λ= 1 + (1 +χ)CV 2
α = 1 + (1 +χ)η coincides with

the early-epidemics immunity factor defined in Eqs. 9 and 10
for a general case. Note that, without correlation (χ= 0), both
scaling exponents would be the same; this result has been previ-
ously obtained for the SIR model in ref. 30 and more recently
reproduced in ref. 41 in the context of COVID-19. The scal-
ing behavior Re(S) is shown in Fig. 1 for λ= 3± 1. While this
range is arbitrary, it includes the empirical values of λ estimated
below. This function is dramatically different from the classical
linear dependence Re =SR0. To emphasize the importance of
this difference, Eq. 14 immediately leads to a major revision of
the classical result for the HIT 1−S0 = 1− 1/R0. S0 is the frac-
tion of susceptible population at which the growth stops, while
1−S0 is the relative size of the epidemic at that time. By setting
Re = 1 in Eq. 14, we obtain

1−S0 = 1−
(

1

R0

)
1/λ. [15]

Nonlinear modifications to homogeneous epidemiological mod-
els similar to Eqs. 13 and 14 have been proposed in the past
as plausible descriptions of heterogeneous populations in var-
ious contexts. Specifically, they were used as empirical fits to
simulations of the SIR model on small-world networks (19), as
well as to the behavior of the Agent-Based Model on realis-
tic urban contact networks (18). A conceptual explanation of

the origin of a nonlinear relation between S and Re was pro-
posed in refs. 19 and 30. However, the scaling law similar to
Eqs. 13 and 14 has not been derived except in a special case
of the SIR model without correlation between susceptibility
and infectivity (30). As we were finalizing this paper for public
release, a preprint by Aguas et al. (52) appeared online that inde-
pendently obtained our Eqs. 14 and 15 for gamma-distributed
susceptibilities. The same result has also been recently obtained
in ref. 42. Our approach is more general: It provides the exact
mapping of a wide class of heterogeneous well-mixed models
onto homogeneous ones, and provides a specific relationship
between the underlying statistics of α and Rα and the nonlin-
ear functions Re(S) and Se(S). Of course, our methodology
has the same limitations as the original heterogeneous well-
mixed approximation (10). This approximation was shown to
provide an adequate description for many classes of networks
(19). Additional corrections may still arise, for example, due to
clustering and other network structure not captured in its degree
(α) distribution.

Our focus on the gamma distribution is well justified by the
observation that the social strength αs is approximately expo-
nentially distributed, that is, it is a specific case of the gamma
distribution with η=CV 2

α = 1 (see more discussion of this in the
next section). A moderate biological heterogeneity would lead to
an increase of the overall CVα, but the pdf f (α) will still be close
to the gamma distribution family. From the conceptual point of
view, it is nevertheless important to understand how the function
Re(S) would change if f (α) had a different functional form. In
SI Appendix, we present analytic and numerical calculations for
two other families of distributions: 1) an exponentially bounded
power law f (α)≈ e−α/α+/αq (q ≥ 1, with an additional cutoff
at lower values of α), and 2) the log-normal distribution. In addi-
tion, we give an approximate analytic result that generalizes Eq.
14 for an arbitrary skewness of f (α). This generalization works
remarkably well for all three families of distributions analyzed
in this work. As suggested by Eqs. 11 and 12, as the distribution
becomes more skewed, the range between the χ= 0 and χ= 1
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curves broadens. For instance, for distributions dominated by
a power law, f (α)≈ 1/αq , with 3< q < 4 and χ= 1, λ diverges
even though CVα remains finite. This represents a crossover to
the regime of so-called scale-free networks (2≤ q ≤ 3), which are
characterized by zero epidemic threshold yet strongly self-limited
dynamics: The epidemic effectively kills itself by immunizing the
hubs on the network (10, 23, 53).

Role of Short-Term Variations in Social Activity
Short-term overdispersion in transmission is commonly pre-
sumed to have no effect on the overall epidemic dynamics, aside
from the early outbreak often dominated by superspreaders.
This would indeed be the case if overdispersed transmission
were completely uncorrelated with individual susceptibility. But,
since the timescale for an individual’s infectivity (about 2 d)
is comparable to a single generation interval (about 5 d) for
the COVID-19 epidemics, ignoring such correlations appears
unreasonable. We therefore developed a generalization of the
theory presented in the previous section, that takes into account
a time dependence of individual susceptibilities and infectivities,
as well as temporal correlations between them. The theory is pre-
sented, using a path integral formulation, in SI Appendix. Here
we present several important results directly related to the tran-
sient suppression of an epidemic and differentiate these effects
from herd immunity.

Since fast variations are primarily caused by bursty dynamics
of social interactions (54–57), and since heterogeneous biological
susceptibility appears subdominant in the context of COVID-19,
we set αb = 1 for all individuals. So α has a purely social origin.
Let ai(t) =αi + δai(t) be the time-dependent susceptibility of
a person, which we associate with a variable level of social activ-
ity. Here δai(t) represents the time-dependent deviation of ai(t)
from its persistent long-term average αi . Note that index i labels
individuals rather than population groups. The level of social
activity quantified by ai(t) also determines individual infectiv-
ity a(t)R around time t . Interestingly, even the classical result
for the basic reproduction number in a heterogeneous system,
R0 =R〈α2〉, needs to be modified due to correlated short-term
variations in social activity,

R0 =R
(
〈α2〉+ δa2

i

)
. [16]

Here the bar ¯. . . represents averaging over individual members
of the population indexed by i , in contrast with 〈. . . 〉, averaging
over all subgroups with various values of persistent heterogeneity
α.

In the time-dependent generalization of our theory, Re and
S no longer have a fixed functional relationship between them.
Instead, this relationship becomes nonlocal in time. For instance,
our result for the suppression of Re at the early stages of the epi-
demic is still formally valid, but the effective value of immunity
factor λ becomes time dependent, and Eqs. 9 and 10 become

λeff(t) =λ∞+
1

1−S(t)

∫ ∞
0

δλ(t , t ′)J (t − t ′)dt ′ [17]

λ∞=
〈α3〉+αiδa2

i

〈α2〉+ δa2
i

[18]

δλ(t , t ′) =
δa2

i (t)δai(t − t ′)

〈α2〉+ δa2
i

. [19]

Constant λ∞ reflects suppression of Re due to the buildup of
the long-term collective immunity. On the other hand, the time-
dependent term δλ(t ′) leads to an additional suppression of Re

over intermediate timescales. This term has likely played a signif-

icant role in shaping the transient self-limiting dynamics during
the first wave of COVID-19 epidemic in some hard-hit locations.

Note that, according to Eq. 17, δλ(t ′) is being averaged with
the weight proportional to the force of infection J (t − t ′), since
1−S(t)≈

∫∞
0

J (y − t ′)dt ′. Since δλ(t , t ′) decreases with time
difference t ′, its effect on λeff should be the strongest during the
initial period of fast exponential growth. The initial suppression
of the epidemic is caused by the combined effect of mitigation
measures and both terms in λeff . Since λeff >λ∞, the popula-
tion may reach the state of TCI earlier than the actual long-term
herd immunity determined by persistent heterogeneity. How-
ever, this state is fragile and may wane with time. Specifically,
as J (t) drops after the first wave, the second term in Eq. 17
gradually decays, bringing λeff(t) closer to λ∞. According to
Eq. 19, it is the correlation time of bursty social activity δa(t)
that sets the timescale over which this TCI state deteriorates,
and the new epidemic wave may get ignited. The relationship
between this relaxation time and the duration of a single epi-
demic wave also determines the typical value of λeff during
that wave.

Despite a large number of empirical studies of contact net-
works (54–57), information about the temporal correlations in
α(t) or its proxies remains limited. On the other hand, much
more is known about parameters of persistent heterogeneity.
Recently, real-world networks of face-to-face communications
have been studied using a variety of tools, including Radio-
frequency identification (RFID) devices (45), Bluetooth and
Wi-Fi wearable tags, and smartphone apps (46, 47), as well as
census data and personal surveys (13, 37, 48). Despite coming
from a wide variety of contexts, the major features of con-
tact networks are remarkably robust. In particular, pdfs of both
the degree (the number of contacts per person) and the node
strength plotted in log–log coordinates appear nearly constant,
followed by a sharp fall after a certain upper cutoff. This behav-
ior is generally consistent with an exponential distribution in
fs(αs) (19, 46, 48), f (α)≈ e−α/〈α〉. That sets the value of η=
CV 2

α ≈ 1. If not for short-term overdispersion, that would yield
λ= 〈α3

s 〉/〈α2
s 〉= 3!/2! = 3 according to Eq. 12. However, with

temporal effects taken into account, the buildup of long-term
collective immunity is determined by λeff(∞) =λ∞. In order to
estimate it, we make a simple model assumption that the short-
term overdispersion for a particular individual is proportional to
the persistent value of that person’s social activity: δa2

i ≈αi . This
leads to

λ∞= 1 + η(1 +χ∗). [20]

Here χ∗= 〈α2〉/ai(t)2 is a parameter that measures the rela-
tive strength of persistent heterogeneity and the overdispersion
on the timescale of a single generation interval. Note that, for-
mally, we recover our original result for λ in the purely persistent
case, with χ∗ replacing the parameter χ that originally quantified
the correlation between infectivity and susceptibility. By assum-
ing the limit of strong short-term overdispersion (χ∗� 1), we
obtain λ∞≈ 2. This estimate is consistent with numerical simula-
tions of the agent-based epidemiological model on urban contact
networks carried out in ref. 18.

As shown in SI Appendix, the very same value of λ∞ should
be used as a scaling exponent for long-term behavior of Re(S).
Therefore, HIT is set by Eq. 15 with λ=λ∞≈ 2. Its value is plot-
ted vs. R0 in Fig. 2, along with the homogeneous result, and the
estimated threshold of TCI. To estimate the corresponding tran-
sient immunity factor λeff , we analyze the empirical data for the
first wave of the COVID-19 epidemic, below.

Application to the COVID-19 Epidemic
The COVID-19 epidemic reached the United States in early
2020, and, by March, it was rapidly spreading across multiple
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states. The early dynamics was characterized by a rapid rise
in the number of cases, with doubling times as low as 2 d. In
response to this, the majority of states imposed a broad range of
mitigation measures including school closures, limits on public
gatherings, and stay-at-home orders. In many regions, especially
the hardest-hit ones like NYC, people started to practice some
degree of social distancing even before government-mandated
mitigation. In order to quantify the effects of heterogeneity on
the spread of the COVID-19 epidemic, we apply the Bayesian
age-of-infection model described in ref. 43 to NYC and Chicago
(see SI Appendix for details). For both cities, we have access
to reliable time series data on hospitalization, ICU room occu-
pancy, and confirmed daily deaths due to COVID-19 (51, 58–60).
We used these data to perform multichannel calibration of our
model (43), which allows us to infer the underlying time progres-
sion of both S(t) and Re(t). The fits for Re(S) for both cities
are shown in Fig. 3A. In both cases, a sharp drop of Re that
occurred during the early stage of the epidemic is followed by
a more gradual decline. For NYC, there is an extended range
over which Re(S) has a constant slope in logarithmic coordi-
nate. This is consistent with the power law behavior predicted by
Eq. 14, with the slope corresponding to transient immunity factor
λeff = 4.5± 0.05. Chicago exhibits a similar behavior but over a
substantially narrower range of S . This reflects the fact that NYC
was much harder hit by the COVID-19 epidemic. Importantly,
the range of dates we used to estimate the immunity factor cor-
responds to the time interval after state-mandated stay-at-home
orders were imposed, and before the mitigation measures began
to be gradually relaxed. The signatures of the onset of the mitiga-
tion and of its partial relaxation are clearly visible on both ends
of the constant-slope regime. To examine the possible effects
of variable levels of mitigation on our estimates of λeff , in SI
Appendix, we repeated our analysis in which Re(t) was corrected
by Google’s community mobility report in these two cities (61)
(see SI Appendix). Although the range of data consistent with the

constant slope shrank somewhat, our main conclusion remains
unchanged. This provided us with a lower-bound estimate for the
transient immunity factor: λeff = 4.1± 0.1.

To test the sensitivity of our results to details of the epi-
demiological model and choice of the region, we performed an
alternative analysis based on the data reported in ref. 49. In that
study, the COVID-19 epidemic was modeled in each of the 50 US
states and the District of Columbia. Because of the differences in
population density, level of urbanization, use of public transport,
etc., different states were characterized by substantially different
initial growth rates of the epidemic, as quantified by the basic
reproduction number R0. Furthermore, the time of arrival of the
epidemic also varied a great deal between individual states, with
states hosting major airline transportation hubs being among the
earliest ones hit by the virus. As a result of these differences, at
any given time, the infected fraction of the population differed
significantly across the United States (49). We use state level esti-
mates of Re(t), R0, and S(t) as reported in ref. 49 to construct
the scatter plot Re(t0)/R0 vs. S(t0) shown in Fig. 3B, with t0
chosen to be the last reported date in that study, May 17, 2020.
By performing the linear regression on these data in logarith-
mic coordinates, we obtain the fit for the slope λeff = 5.3± 0.6
and for S = 1 intercept around 0.54. In SI Appendix, Fig. S3, we
present an extended version of this analysis for the 10 hardest-
hit states and the District of Columbia, which takes into account
the overall time progression of Re(t) and S(t), and gives similar
estimate λeff = 4.7± 1.5. Both estimates of the immunity factor
based on the state data are consistent with our earlier analysis of
NYC and Chicago. In light of our theoretical picture, this value
of this transient immunity factor, λeff ' 4, is set by the pace of the
first epidemic wave in the United States. As expected, it exceeds
our estimate of λ∞≈ 2 associated with persistent heterogeneity
and responsible for the long-term herd immunity.

We can now incorporate this transient level of heterogene-
ity into our epidemiological model, and examine how future
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Fig. 3. Correlation between the relative reduction in the effective repro-
duction number Re(t)/R0 (y axis) with the susceptible population S(t). (A)
The progression of these two quantities for NYC and Chicago, as given
by the epidemiological model described in ref. 43. (B) The scatter plot of
Re(t0)/R0 and S(t0) in individual states of the United States, evaluated in ref.
49 (t0 is the latest date covered in that study).

projections change as a result of this modification. This is done
by plugging scaling relationships given by Eqs. 13 and 14 into
the force of infection and incidence rate equations of the orig-
inal model. These equations are similar to Eqs. 6 and 7, but
also include time modulation due to the mitigation and a pos-
sible seasonal forcing (see SI Appendix for more details). After
calibrating the model by using the data streams on ICU occu-
pancy, hospitalization, and daily deaths up to the end of May,
we explore a hypothetical worst-case scenario in which any mit-
igation is completely relaxed as of June 15, in both Chicago and
NYC. In other words, the basic reproduction number R0 is set
back to its value at the initial stage of the epidemic, and the
only factor limiting the second wave is the partial or full TCI,
Re =R0S

λ. The projected daily deaths for each of the two cities
under this (unrealistically harsh) scenario are presented in Fig. 4
for various values of λ. For both cities, the homogeneous model
(λ= 1, blue lines) predicts a second wave which is larger than
the first one, with an additional death toll of around 35, 000 in
NYC and 12, 800 in Chicago. The magnitude of the second wave

is greatly reduced by heterogeneity, resulting in no second wave
in either of the two cities for λ= 5 (black lines). Even for a mod-
est value λ= 3 (red lines), which is less than our estimate, the
second wave is dramatically reduced in both NYC and Chicago
(by about 90% and 70%, respectively).

Note that our predictions about the second wave in NYC
and Chicago have been made based on the data up to June
10, 2020 and extended up to early September 2020. The real
epidemic dynamic in both cities during this time interval was
consistent with the “no second wave” scenario shown in Fig.
4. However, one must be warned against using it to put form
bounds on λeff , since we considered the worst-case scenario
of full release of mitigation to prepandemic levels. In real-
ity, some mitigation measures, for example, mask wearing and
social distancing, stayed in place. Ultimately, second waves broke
out in both cities in the late fall. The mechanisms leading
to gradual degradation of the TCI state are described in the
next section.

Fragility of TCI
One of the consequences of the bursty nature of social interac-
tions is that the state of TCI gradually wanes due to changes
of individual social interaction patterns on timescales longer
than a single generation interval. This may be viewed as a
slow rewiring of social networks. In the context of the COVID-
19 epidemic, individual responses to mitigation factors such as
stay-at-home orders may differ across the population. When mit-
igation measures are relaxed, individual social susceptibility αs

inevitably changes. The impact of these changes on collective
immunity depends on whether each person’s αs during and after
the mitigation are sufficiently correlated. For example, the TCI
state would be compromised if people who practiced strict self-
isolation compensated for it by an above-average social activity
after the first wave of the epidemic has passed.

To illustrate the effects of postmitigation rewiring of social
networks, we consider a simple modification of the heteroge-
neous model with no persistent heterogeneity (α= 1 for every-
one) and exponentially distributed instantaneous levels of social
activity ai(t). This corresponds to λeff(0) = 3 and λeff(∞) =
λ∞= 1. In this model, each individual completely changes the set
of his/her social connections at some timescale τs . These changes
destroy heterogeneity, giving rise to gradual relaxation of suscep-
tible fraction Sa toward its overall mean value S . To model this,
we modify Eq. 1 to include a simple relaxation term,

Ṡa =−αSaJ −
1

τs
(Sa −S) . [21]

Epidemiological models with rewiring of underlying social net-
works have been studied before (62) (see ref. 63 for a review), but
under a constraint that the individual level of social activity quan-
tified by network degree is preserved. In contrast, the dynamics
described above stems from the individual level of social activity
αs changing in time.

We simulate the full heterogeneous SIR model (see SI
Appendix for details) in which Eq. 1 was replaced with Eq.
21. Fig. 5 shows the results of this simulation, where the first
wave of the epidemic is mitigated, thereby reducing the effec-
tive reproduction number R0 = 2.5. During the course of the
mitigation, R0 is multiplied by µ= 0.7. After the mitigation mea-
sures have been lifted at the end of the first wave, the population
is positioned slightly below the TCI threshold, preventing the
immediate start of the second wave. However, gradual rewiring
of the social network with time constant τs = 150 d ultimately
results in the second and even the third wave of the epidemic
(Fig. 5). Fig. 5, Inset shows Re(t) plotted as a function of S(t)
in this epidemic. Note that each of the waves follows the power
law relationship between Re(t)≈S(t)λ predicted by Eq. 14.
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Fig. 4. Projections of daily deaths under the hypothetical scenario in which any mitigation is completely eliminated as of June 15, 2020, for (A) NYC and
(B) Chicago. Different curves correspond to different values of the transient immunity factor λeff = 1 (blue), 3 (red), 4 (green), and 5 (black lines). The model
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Since constant rewiring eliminates correlations in individual
social activity on scales longer than τs , the epidemic stops after
multiple waves bring the total fraction of infected individuals
close to the unmodified (homogeneous) HIT 1/R0. Note, how-
ever, that, in this case, there is almost no overshoot, and thus the
final size of the epidemic is reduced compared to the case of a
purely homogeneous and unmitigated epidemic.

Discussion
In this work, we have demonstrated how the interplay between
short-term overdispersion and persistent heterogeneity in a pop-
ulation leads to dramatic changes in epidemic dynamics on
multiple timescales, transient suppression of the epidemic dur-
ing its early waves all the way up to the state of long-term herd
immunity. First, we developed a general approach that allows
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for the persistent heterogeneity to be easily integrated into a
wide class of traditional epidemiological models in the form of
two nonlinear functions Re(S) and Se(S), both of which are
fully determined by the statistics of individual susceptibilities and
infectivities. Furthermore, Re(S) is largely defined by a single
parameter, the immunity factor λ, introduced in our study. Like
susceptibility itself, λ has two contributions: biological and social
(Eqs. 11 and 12).

We then expanded our approach to include effects of time
dependence of individual social activity, and, in particular, of
likely correlations over the timescale of a single generation
interval. While our results for purely persistent heterogeneity
confirmed and corroborated that HIT would be suppressed com-
pared to the homogeneous case, addition of temporal variations
led to a dramatic revision of that simple narrative. Both persis-
tent heterogeneity and short-term overdispersion contributions
lead first to a slowdown of a fast-paced epidemic, and to its
medium-term stabilization. However, this state of TCI is fragile
and does not constitute long-term herd immunity. HIT is indeed
suppressed, but only due to the persistent heterogeneity. This
suppression is significantly weaker than the initial stabilization
responsible for the TCI state reached after the first wave of a
fast-paced epidemic.

Among other implications of the TCI phenomenon is the sup-
pression of the so-called overshoot. Namely, it is well known
that most models predict that an epidemic will not stop once
HIT is passed, ultimately reaching a significantly larger cumu-
lative attack rate, FSE. Multiple prior studies (9, 10, 20, 21,
30, 34) have shown that FSE would be suppressed by persis-
tent heterogeneity, similarly to HIT. In SI Appendix, we present
a simple result that unifies several previously studied limiting
cases, and gives an explicit equation for the FSE for the gamma-
distributed susceptibility and variable level of its correlation with
infectivity. However, because of the transient suppression of the
early waves of the epidemic discussed in this work, the over-
shoot effect would be much weaker or essentially eliminated. For
instance, our simple rewiring model demonstrates how the epi-

demic, after several waves, ultimately reaches HIT level, but does
not progress much beyond it (Fig. 5). The FSE result may still be
used, but primarily as an estimate for the size of the first wave
of an (unmitigated) epidemic. In that case, the transient value of
immunity factor λeff should be assumed.

By applying our theory to the COVID-19 epidemic, we found
evidence that the hardest-hit areas, such as NYC, have likely
passed TCI threshold by the end of the first wave, but are less
likely to have achieved real long-term herd immunity. Other
places that had intermediate exposure, such as, for example,
Chicago, while still below the TCI threshold, have their effec-
tive reproduction number reduced by a significantly larger factor
than predicted by traditional epidemiological models. This gives
a better chance of suppressing the future waves of the epidemic
in these locations by less disruptive measures than those used
during the first wave, for example, by using masks, social distanc-
ing, contact tracing, control of potential superspreading events,
etc. However, similar to the case of NYC, transient stabilization
of the COVID-19 epidemic in Chicago will eventually wane. As
for the permanent HIT, although suppressed compared to clas-
sical value, it definitely has not yet been passed in those two
locations.

In a recent study (35), the reduction of HIT due to hetero-
geneity has been illustrated using a toy model. In that model,
25% of the population was assumed to have their social activ-
ity reduced by 50% compared to a baseline, while another
25% had their social activity elevated twofold. The rest of the
population was assigned the baseline level of activity. Accord-
ing to Eq. 12, the immunity factor in that model is λ= 1.54.
For this immunity factor, Eq. 15 predicts HIT at S0 = 64%,
55%, and 49%, for R0 = 2, 2.5, and 3, respectively. Despite
the fact that the model distribution is not gamma shaped,
these values are in a very good agreement with the numeri-
cal results reported in ref. 35: S0 = 62.5%, 53.5%, and 47.5%,
respectively.

Thus there is a crucial distinction between the persistent het-
erogeneity, short-term variations correlated over the timescale
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Table 1. Effects of heterogeneity on suppression of the effective reproduction number Re in
selected locations

Attack rate, 1− S, % Re suppression

Location Deaths, per 1,000 (refs.) Estimated Seroprevalence (refs.) Transient Long-term

NYC 2.1 (51) 30 23 (68) 0.24 to 0.33 0.50 to 0.58
Lombardy 1.7 (69) 24 23 (70, 71) 0.33 0.58
London 0.9 (72) 13 13 (73) 0.58 0.75
Chicago 0.9 (58) 13 20 (74) 0.41 to 0.58 0.64 to 0.75
Stockholm 0.9 (75, 76) 13 12 (76) 0.58 0.75

The transient and long-term suppression coefficients Re/R0 are calculated using λeff = 4 and λ∞ = 2, respec-
tively. Fraction of susceptible population S as of early June 2020 is estimated from the cumulative reported
death count per capita, assuming the infection fatality rate of 0.7% (67). This estimate is supplemented by
seroprevalence data for late spring–early summer 2020.

of a single generation interval, and overdispersion in transmis-
sion statistics associated with short-term superspreading events
(12, 13, 16, 26–28). In our theory, a personal decision to attend
a large party or a meeting would only contribute to persistent
heterogeneity if it represents a recurring behavioral pattern.
On the other hand, superspreading events are shaped by short-
time variations in individual infectivity (e.g., a person during
the highly infectious phase of the disease attending a large
gathering). Hence, the level of heterogeneity inferred from the
analysis of such events (12, 27) would be significantly exagger-
ated and should not be used to estimate the TCI threshold
and HIT. Specifically, the statistics of superspreading events is
commonly described by the negative binomial distribution with
dispersion parameter k estimated to be in the range 0.1 to 0.3
for COVID-19 (28, 64, 65). This is much stronger overdispersion
than the value k = 1 estimated from persistent heterogeneity,
based on the exponential distribution of α. Thus, persistent
heterogeneity is a weaker source of variation compared to short-
term variations. According to ref. 12, this is consistent with the
expected value of the individual-level reproduction number Ri

drawn from a gamma distribution with the shape parameter
k ' 0.1 . . . 0.3. This distribution has a very high coefficient of
variation, CV 2 = 1/k ' 3 . . . 10. In the case of a perfect correla-
tion between individual infectivity and susceptibilityα, this would
result in an unrealistically high estimate of the immunity factor:
λ= 1 + 2CV 2 = 1 + 2/k ' 7 . . . 20. For this reason, according to
our perspective and calculation, the final size of the COVID-19
epidemic may have been substantially underestimated in ref. 31.
Similarly, the degree of heterogeneity assumed in other recent
studies (32, 52) is considerably larger than our estimates. Based
on our analysis, the value of the immunity factor λ depends on
the pace of the epidemic and on the timescale under consid-
eration. We estimated its long-term value (responsible for the
permanent HIT) as λ∞≈ 2. However, the transient values are
expected to be higher, especially during the first several waves
of COVID-19 in select locations, characterized by large growth
rates. Our analysis of the empirical data in NYC and Chicago
indicates that the slowdown of the epidemic dynamics in those
locations was consistent with λ≈ 4. In Table 1, we present our
estimates of the factor by which Re is transiently suppressed as
a result of depletion of susceptible population in selected loca-
tions in the world, as of early June 2020, as well as the predicted
long-term suppression related to acquisition of a partial herd
immunity.

Finally, we summarize the assumptions and limitations of our
study. First, we assume a long-lasting biological immunity of
recovered individuals. Second, our approach is based on the
well-mixed approximation in which geographic heterogeneity as
well as nontrivial properties of the contact network (cluster-
ing, degree–degree correlations, etc.) are ignored. In addition,
our description of transient epidemic dynamics is based on the
approximation of a constant λeff , while gradual degradation of
TCI with time is illustrated using a simplified model, Eq. 21. A
generalization of the present model including explicit description
of stochastic social activity is needed (see ref. 66). Further-
more, additional calibration based on long-term empirical data
is required before our approach can be used for reliably guiding
policy decisions during an epidemic.

Population heterogeneity manifests itself at multiple scales. At
the most coarse-grained level, individual cities or even countries
can be assigned some level of susceptibility and infectivity, which
inevitably vary from one location to another, reflecting differ-
ences in population density and its connectivity to other regions.
Such spatial heterogeneity will result in self-limiting epidemic
dynamics at the global scale. For instance, hard-hit hubs of the
global transportation network, such as NYC during the COVID-
19 epidemic, would gain full or partial TCI, thereby limiting the
spread of infection to other regions during future waves of the
epidemic. This might be a general mechanism that ultimately
limits the scale of many pandemics, from the Black Death to the
1918 influenza.

Data Availability. All study data are included in the article and SI
Appendix.
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