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Abstract

With the rapid advances in next-generation sequencing (NGS), datasets for DNA polymor-

phisms among various species and strains have been produced, stored, and distributed.

However, reliability varies among these datasets because the experimental and analytical

conditions used differ among assays. Furthermore, such datasets have been frequently dis-

tributed from the websites of individual sequencing projects. It is desirable to integrate DNA

polymorphism data into one database featuring uniform quality control that is distributed

from a single platform at a single place. DNA polymorphism annotation database (DNApod;

http://tga.nig.ac.jp/dnapod/) is an integrated database that stores genome-wide DNA poly-

morphism datasets acquired under uniform analytical conditions, and this includes unifor-

mity in the quality of the raw data, the reference genome version, and evaluation algorithms.

DNApod genotypic data are re-analyzed whole-genome shotgun datasets extracted from

sequence read archives, and DNApod distributes genome-wide DNA polymorphism data-

sets and known-gene annotations for each DNA polymorphism. This new database was

developed for storing genome-wide DNA polymorphism datasets of plants, with crops being

the first priority. Here, we describe our analyzed data for 679, 404, and 66 strains of rice,

maize, and sorghum, respectively. The analytical methods are available as a DNApod work-

flow in an NGS annotation system of the DNA Data Bank of Japan and a virtual machine

image. Furthermore, DNApod provides tables of links of identifiers between DNApod geno-

typic data and public phenotypic data. To advance the sharing of organism knowledge,

DNApod offers basic and ubiquitous functions for multiple alignment and phylogenetic tree

construction by using orthologous gene information.
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Introduction

Genome-wide DNA polymorphism datasets are powerful tools that help to resolve biological

questions. With the development of microarray and next-generation sequencing (NGS) tech-

nologies, genome-wide DNA polymorphisms have been studied intensively for the past 10

years. DNA polymorphisms can affect the phenotype of an organism and are useful as DNA

markers, and a combination of genome-wide DNA marker sets and phenotypic data gathered

for populations can be used to reveal loci underlying phenotypes through genome-wide associ-

ation studies (GWAS) [1–3]. Moreover, the combination of genome-wide DNA marker and

phenotype datasets is used in breeding programs, and modern programs have adopted the

marker-assisted selection (MAS) approach. However, MAS frequently fails to identify quanti-

tative trait loci that produce small effects. For overcoming this drawback, genomic selection,

which predicts phenotypic information based on high-density DNA markers, has received

attention as a useful technology for accelerating breeding [4,5]. Furthermore, genome-wide

DNA marker sets can be used to construct haplotypes for the regions of interest and aid in

phylogenetic studies [6,7].

With the emergence and explosive growth of NGS, large amounts of de novo assembled

genome sequence and resequencing data are being rapidly produced at a low cost. Genome-

wide DNA polymorphisms of various strains have been identified by comparison with reference

genome sequences [8,9], and genome-sequencing projects using NGS have sequenced not only

representative strains of species but also several other strains and identified genome-wide DNA

polymorphisms [10–12]. Furthermore, the large genomics projects such as wheat have clarified

variation structures among multiple strains using NGS sequencers [13–16]. Integration of these

large-scale datasets with datasets generated for individual strains promotes the reuse of data.

However, the reliability of these DNA polymorphism datasets varies widely among individual

studies because of differences in the quantity and quality of raw data, versions of the reference

genomes, data format, and evaluation algorithms. These variations cause difficulty in compar-

ing non-uniform DNA polymorphisms between studies through simple aggregation. Moreover,

DNA polymorphism datasets cannot be readily collected because they are frequently distributed

from dispersed websites maintained by individual sequencing projects.

DNA polymorphism databases generated for various species enable the study of non-model

and model organisms sharing orthologous genes. Currently, certain databases are available

that contain the DNA polymorphisms of various species, such as dbSNP [17], Gramene [18],

Ensembl Plant [19], and EVA (http://www.ebi.ac.uk/eva/). However, these databases cannot

ensure unified experimental and analytical conditions because they merely collect the DNA

polymorphism datasets contributed by individual sequencing projects.

Raw NGS data for individual studies can be stored in and retrieved from authorized data-

banks, such as the DNA Data Bank of Japan (DDBJ) Sequence Read Archive (SRA) [20].

DDBJ SRA data have been exchanged among the DDBJ SRA, the National Center for Biotech-

nology Information (NCBI) SRA, and the European Bioinformatics Institute (EBI) European

Nucleotide Archive (ENA). SRAs contain datasets of several types, such as datasets from

whole-genome shotgun (WGS) sequencing, transcriptome analysis, and epigenetics and meta-

genomics studies. These datasets serve as valuable data sources for further biological big-data

mining, and several databases and tools have been developed through the re-analysis of SRA

data and made available on distinct websites. For example, the Plant Omics Data Center and

ATTED-II contain databases that were developed by re-analyzing gene-expression profiles

from transcriptome data in SRAs, and they have generated comprehensive co-expression data

from these gene-expression profiles [21,22]. A previous study has presented a conventional

pipeline for detecting poly(A) and cluster sites by using the expression information obtained
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from the re-analysis of transcriptome data in SRAs [23]. Furthermore, epigenetics data in

SRAs have been reused: the NCBI Epigenomics database has been constructed as a compre-

hensive database of whole-genome epigenetic datasets by selecting epigenetics-specific data

from the Gene Expression Omnibus and SRAs and re-analyzing these datasets [24], and Sra-

Tailor is a software package designed for processing and visualizing epigenetics data in SRAs

[25]. However, to the best of our knowledge, no secondary database or tool is currently avail-

able for genome-wide DNA polymorphisms in SRAs.

Here, we present DNA polymorphism annotation database (DNApod), an integrated data-

base of genome-wide DNA polymorphisms detected under uniform analytical conditions

from NGS-generated WGS datasets in SRAs. This database was developed in order to provide

genome-wide DNA polymorphisms of plants, with crop plants being the top priority. In this

first study, we describe datasets of rice, maize, and sorghum homozygous single-nucleotide

polymorphisms (SNPs) and homozygous insertion or deletion (InDel) polymorphisms that

present high potential for serving as DNA markers. The analytical methods are available as a

DNApod workflow in the DDBJ Read Annotation Pipeline (DDBJ pipeline) [26] and a virtual

machine image. Furthermore, the database facilitates multiple-alignment and phylogenetic-

tree analyses performed with the amino acid sequences of orthologous genes by using DNA-

pod genotype datasets and the uploaded original data of users. Moreover, DNApod provides

tables of identifier (ID) links between DNApod genotypic data and public phenotypic data.

Thus, DNApod holds considerable potential to accelerate studies conducted using genome

sequences of multiple species.

Materials and methods

Collection of WGS data from SRAs

DNApod genotypic data are re-analyzed WGS datasets extracted from SRAs. To obtain an

overview of the registered data on rice, maize, and sorghum in SRAs, we searched the SRAs by

using the ENA database search engine [27]. We performed searches by using NCBI taxonomy

IDs, including child taxonomy, such as strains. The taxonomy IDs included 4,527, 4,575, and

4,557 IDs of rice, maize, and sorghum, respectively. Next, the sample accessions were counted

using a library strategy, such as using the WGS, RNA-seq, and ChIP-seq libraries, which is

described in SRA experimental metadata. We applied manual curation to screen WGS libraries

out of the SRA samples labeled as OTHER and whole-genome amplification (WGA). Raw

NGS reads were downloaded from DDBJ and ENA.

Construction of uniform-base-quality datasets

SRAs contain datasets of heterogeneous base quality archived as raw NGS data from individual

sequencing projects (S1 Fig). From datasets featuring heterogeneous base quality values

(QVs), DNA polymorphisms of non-uniform quality might be detected. Therefore, we con-

structed raw NGS read datasets with unified QVs by using the original perl script of the DDBJ

pipeline. First, low-quality bases with QVs in Phred scale under 19 are trimmed from the 5’

and 3’ ends, and trimmed reads with a length under 24 are removed. Finally, trimmed reads

for which the ratio of the QV under 14 is over 30% are removed. In the case of a paired-end

read, the pair is discarded when one read of the pair is removed in one of the previous steps.

Detection of DNA polymorphisms

Unified-QV reads were mapped against the reference genome of each species by using Bur-

rows–Wheeler Alignment tool (BWA) ver. 0.6.1-r104 [28] with default options (Table 1), and
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multiple-mapped reads were removed (i.e., pairs were retained when both reads or one of the

reads mapped uniquely, and other pairs were discarded). We detected homozygous SNPs/

InDels by using SAMtools mpileup ver. 0.1.18 [29] with default options, bcftools view ver.

0.1.18 with SNP calling (-c), call genotypes at variant sites (-g) and output potential variant

sites only (-v), and vcfutils.pl varFilter with a maximal read-depth option of 100 (-D 100). We

distinguished homozygous and heterozygous genotypes by using the genotype field (GT) col-

umn in variant call format (VCF) [30].

Known-gene annotation of DNA polymorphisms

SNPs/InDels were annotated and effects for their known gene structure, such as amino acid

changes, were predicted by using SnpEff ver. 3.6c (build 2014-05-20) [33]. We created the

SnpEff databases by snpEff.jar build command with gene structure information in the general

feature format version 3 (GFF3) files. These GFF3 files were generated by extracting coding-

sequence features from the GFF3 files distributed by annotation projects (Table 1).

Visualizing the genomic positions of SNPs and InDels

We visualized the distribution of SNPs and InDels on the reference genome by using our origi-

nal perl script with the VCF files of homozygous SNPs or homozygous InDels.

Creating the amino acid sequences

Our original perl script extracts mRNA-coding regions from the GFF3 file and generates

mRNA-coding sequences in which reference genome bases at homozygous SNP sites are

replaced with bases from a given VCF record, by using “FastaAlternateReferenceMaker” of the

Genome Analysis Toolkit (GATK) v3.1–1 [34]. In addition, the perl script converts the nucleo-

tide sequences to amino acid sequences.

Rice DNA polymorphism coordinate conversion

DNApod provides IRGSP/RAP Build 5-based and RAP IRGSP-1.0-based rice DNA polymor-

phism datasets. We mapped DNA polymorphism coordinates from rice IRGSP Build 5 to

those of IRGSP-1.0. To this end, we first created a FASTA file of the 100 bp flanking each side

of the DNA polymorphism in the IRGSP Build 5 genome sequence. This FASTA file was

aligned to the genome sequence of IRGSP-1.0 by using BLASTn (BLAST 2.2.31+) [35]. We

extracted BLAST results under the following conditions: (1) identity is 100.0%, (2) alignment

length equals query length, and (3) query uniquely hits to the target. Finally, we created

IRGSP-1.0-based VCFs using our original perl script.

Table 1. The versions of the reference genomes and the gene structure annotation.

Organism Database version

Rice IRGSP/RAP Build 5 (RAP IRGSP-1.0*) [31]

Maize Gramene (MaizeSequence.org release-5b) [18]

Sorghum MIPS/JGI Sbi1.4 [32]

*To enhance user convenience, we mapped DNA polymorphism coordinates from rice IRGSP Build 5 to

IRGSP-1.0. Thus, DNApod supports not only IRGSP/RAP Build 5-based but also RAP IRGSP-1.0-based

genome-wide DNA polymorphism datasets and known-gene annotations for each DNA polymorphism.

doi:10.1371/journal.pone.0172269.t001
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Validation of homozygous SNPs

SRA datasets have been acquired under different experimental conditions. Thus, they reflect

differences in sequence quality and quantity among experiments. From these heterogeneous

datasets, DNA polymorphisms are to be detected with uniform reliability. DNApod employs a

pre-processing step to filter out low QVs to generate uniform-quality NGS datasets. However,

differences in sequence quantity remain an issue. Therefore, we aimed to validate our homozy-

gous SNP detection method with a high-depth and a low-depth dataset. We used the homozy-

gous SNP dataset of the rice line Hitomebore (SRA Sample ID: DRS003820) generated with

MutMap [36] as a verified dataset. The Hitomebore NGS dataset was adopted as a representa-

tive, high-depth dataset, showing 94.6% coverage and 37.0 depth, in DNApod. Coverage is

defined as the percentage of the reference genome bases covered by read alignments. Depth is

defined as the average depth of the reference genome bases covered by read alignments. First,

to validate the high-depth dataset, we compared the Hitomebore homozygous SNP dataset in

DNApod with MutMap data and examined the accuracy rate, which is the concordance rate of

genotypes in the common homozygous SNP sites. Next, for low-depth-dataset validation, we

constructed a low-depth dataset by random extraction of reads from the Hitomebore dataset

and detected the homozygous SNPs. This process was iterated 10 times and the average accu-

racy rate from the low-depth datasets was determined. Furthermore, we examined the average

detection rate, which is the ratio of the number of homozygous SNPs detected from each low-

depth dataset to the number of homozygous SNPs in the Hitomebore high-depth dataset.

To check for read loss, we evaluated for each sample the relationship between the percent-

age of reads removed as multiple-mapping reads and the read length. To this end, we selected

samples under the following conditions: (1) paired-end reads, and (2) if a sample accession has

some experimental accessions, read length is the same among these experimental accessions.

Additionally we calculated the percentage of reads deemed to be multiple-mapping reads.

Link information between DNApod ID and public phenotypic data

We collected public phenotype data from a 44k SNP set [37], 1536 SNP set [38], Panicle Archi-

tecture [39], and High Density Rice Array [40] of the Rice Diversity Project (http://www.

ricediversity.org/index.cfm) and National Institute of Agrobiological Sciences (NIAS) [41].

We manually created a table linking the information of DNApod ID (SRA sample ID) with

phenotypic data with strain name identification.

Orthologous analysis

DNApod offers functions for multiple alignment and phylogenetic tree generation with ortho-

logous gene information. We constructed the orthologous gene datasets with protein IDs of

annotation databases, which the DNApod genotype database uses (Table 1). The structural

definitions of orthologous genes were derived from Plant Genome DataBase Japan [42], which

provides ortholog clusters from Reference Sequences (RefSeq) [43] gene annotation. We

matched the corresponding RefSeq protein IDs with the corresponding protein IDs of the

external database employed by DNApod as follows: (1) We mapped RefSeq protein IDs to

external database protein IDs by comparing amino acid sequences by using BLASTP release

2.2.26 [44] with default options. Only BLASTP results with>95% sequence identity for both

query (RefSeq) length and target (external database) length were considered. (2) For rice and

sorghum, the RefSeq definitions field was described as the external database gene ID. Thus,

from the BLAST result, we adopted the protein IDs of the external databases associated with

the gene ID described in the RefSeq definition fields. Next, we developed a tool for construct-

ing multiple alignments and neighbor-joining trees on the basis of the orthologous genes

DNApod: Polymorphism annotation database
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using amino acid sequences from the DNApod genotype database, using ClustalW2 ver. 2.1

[45] with 1,000 bootstrap replicates and R package ape version 3.4 [46]. Users can compare

amino acid sequences between strains in the DNApod genotype database and their original

strain data optionally. When users set the parameter of organism and upload the homozygous

SNP data as VCF, which can be prepared using the DNApod workflow, DNApod generates

the amino acid sequence file as described under “Creating the amino acid sequences.” DNA-

pod uses implemented as well as user data to generate multiple alignments and neighbor-join-

ing trees.

System architecture and software

DNApod was implemented on a Linux server by using CentOS release 5.9 (Final) with the fol-

lowing environments: Apache ver. 2.2.31, Tomcat ver. 7.0.67, MySQL ver. 5.7.10, and Java ver.

1.7.0_80-b15.

Results

DNApod overview

DNApod genotype datasets comprise DNA polymorphism datasets re-analyzed from NGS

data in SRAs by using unified analytical conditions (e.g., uniformity in the quality of raw data,

reference genome version, and evaluated algorithms). An overview of the data-generation pro-

cess for DNApod is presented in Fig 1. The method used for detecting and annotating DNA

polymorphisms was implemented as a DNApod workflow, which is a new workflow in the

DDBJ pipeline. Users can upload and then analyze their original WGS data by using the graph-

ical user interface of the DDBJ pipeline. The DNApod workflow provides variant call results

and supplementary information files, including visualization files showing the distribution of

SNPs and InDels in the reference genome, annotation files of known-gene annotations such as

synonymous/non-synonymous substitution positions, and amino acid sequence files.

When users seek to change the sensitivity of DNApod genotype datasets, they can reprocess

the data to detect homozygous SNPs and homozygous InDels by using the DDBJ pipeline with

distinct parameter thresholds. Furthermore, DNApod provides a function for orthologous

analysis, which constructs a multiple alignment and phylogenetic tree with amino acid se-

quences in the DNApod genotype database. Users can upload homozygous SNP data in VCF

prepared using the DNApod workflow to compare amino acid sequences between strains in

the DNApod genotype database and their original strain data.

Contents of DNApod genotype datasets

As of April 2016, SRAs contain 10,788, 5,540, and 600 samples for rice, maize, and sorghum,

respectively, based on WGS, RNA-seq, and ChIP-seq libraries as well as others (S1 Table). We

detected homozygous SNPs and homozygous InDels in WGS data extracted from the SRA.

Currently, DNApod holds 1,149 datasets corresponding to 679, 404, and 66 strains of rice,

maize, and sorghum, respectively (S1 Table). Because these datasets contain samples of diverse

subspecies, germplasms, and experimental sources for each species, in Table 2, we present the

DNApod entries according to taxonomic group. DNApod stores information on genomic

structural variation, including homozygous SNPs and homozygous InDels. However, this first

version of DNApod does not provide information of heterozygous SNPs and heterozygous

InDels: It is challenging to detect genome-wide and informative heterozygous SNPs and het-

erozygous InDels contained in all the DNApod genotypic data because the SRA includes a

considerable amount of low-depth data (S3 Fig). The numbers of homozygous SNPs and
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homozygous InDels in DNApod range from, respectively, 1,074 to 2,558,148 and 136 to

327,684 for rice, 83 to 860,729 and 1 to 648,770 for maize, and 52 to 5,151,219 and 131 to

637,746 for sorghum (Table 2). To validate our detection method, we examined the accuracy

rate of homozygous SNP detection in a high-depth and a low-depth dataset. First, we validated

our detection method in the high-depth dataset. We compared the rice Hitomebore line in the

DNApod genotypic data with MutMap data and examined the accuracy rate for common

homozygous SNP sites. DNApod detected 115,895 homozygous SNPs, while MutMap detected

119,042 homozygous SNPs. In total, 100,597 homozygous SNPs were commonly detected by

DNApod and MutMap, and 99.997% of the genotypes were concordant. DNApod and MutMap

detected 15,298 and 18,445 unique homozygous SNPs, respectively. Next, to validate our method

for low-depth data, we constructed 10 low-depth datasets (with an average of coverage 75.8%

and depth of 3.1) from the Hitomebore line read dataset in the SRA, detected homozygous SNPs

from each low-depth dataset (average number of homozygous SNPs: 50,795), and then com-

pared these to MutMap data. The results showed that an average of 49,013 homozygous SNP

Fig 1. Overview of DNApod. DNApod is used to analyze WGS datasets extracted from NGS data of SRAs. Users can analyze their original data by

employing the same process that is used in DNApod and compare orthologous regions between the DNApod genotypic data and their result file.

doi:10.1371/journal.pone.0172269.g001
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sites were in common between a low-depth dataset and MutMap, and the average accuracy rate

was 99.998%. The average the detection rate was 43.828%. These results strongly suggest that

low-depth data do not influence the accuracy of homozygous SNP detection.

After elimination of multiple-hit reads on the genome, 87% of the DNApod genotypic data

showed<5-fold depth with respect to the reference genome (S3 Fig). Low-depth data tend to

generate false-negative results. Additionally, we assessed the read loss through removal of mul-

tiple-mapping reads. Maize showed higher rates of multi-mapped reads, even at the same read

length as that of rice and sorghum (S4 Fig).

The reference genome and annotation versions of rice in DNApod genotype datasets are

IRGSP/RAP Build 5. The latest versions for rice, RAP/IRGSP-1.0, have already been released.

To enhance user convenience, we have mapped the DNA polymorphism coordinates from

rice IRGSP Build 5 to IRGSP-1.0. The number of positions at which DNA polymorphisms

were detected on IRGSP Build 5 was 12,982,438, of which 12,802,573 (98.6%) positions were

mapped on IRGSP-1.0. Thus, we support rice IRGSP-1.0-based genome-wide DNA polymor-

phism datasets and known-gene annotations for each DNA polymorphism.

Overview of the DNApod workflow

The DNApod workflow is implemented in the DDBJ pipeline, which comprises two analysis

components: basic analysis and high-level analysis (Fig 1). In the basic analysis, users can

Table 2. Current entries of DNApod sorted by subspecies class.

Species 1 Subspecies No. of

samples

Coverage, depth No. of homozygous SNPs per

sample

No. of homozygous InDels per

sample

Oryza sativa japonica 250 19.5, 1.60–96.7,

21.8

1,074–1,342,354 136–174,692

Oryza sativa indica 402 21.5, 2.30–92.4,

16.4

76,981–2,412,599 4,680–322,943

Oryza sativa 17 23.4, 2.00–88.8,

15.1

38,695–2,321,990 2,058–283,134

Oryza rufipogon 5 86.0,16.0–91.7,

15.3

950,660–2,140,218 125,912–268,523

Oryza nivara 5 86.3, 15.0–90.5,

14.6

1,638,997–2,558,148 194,857–327,684

Zea mays mays 385 0.10, 1.00–91.5,

29.7

83–7,205,121 1–648,770

Zea mays mexicana 3 0.50, 1.10–72.5,

7.70

130–7,103,576 6–552,260

Zea mays parviglumis 15 26.8, 2.00–72.6,

4.80

458,451–5,352,491 17,441–403,880

Zea luxurians 1 26.8, 3.20 860,729 35,526

Sorghum bicolor bicolor 53 8.20, 50.6–93.4,

22.9

52–2,278,524 131–324,993

Sorghum bicolor drummondii 1 86.2, 19.3 1,708,354 258,027

Sorghum bicolor verticilliflorum 2 80.6, 18.0–84.3,

42.0

2,390,239–2,691,724 338,231–387,838

Sorghum bicolor 8 86.3, 12.0–91.8,

40.2

257,418–1,701,789 122,536–313,349

Sorghum

propinquum

2 67.2, 31.5–67.8,

34.9

4,332,194–5,151,219 633,150–637,746

1 NCBI taxonomy IDs—Oryza sativa: 4530, Oryza rufipogon: 4529, Oryza nivara: 4536, Zea mays: 4577, Zea luxurians: 15945, Sorghum bicolor: 4558 and

Sorghum propinquum: 132711

doi:10.1371/journal.pone.0172269.t002

DNApod: Polymorphism annotation database

PLOS ONE | DOI:10.1371/journal.pone.0172269 February 24, 2017 8 / 19



upload their original WGS data to the DDBJ pipeline server by FTP. The user data are pre-pro-

cessed to remove low-QV sequences and mapped to the reference genomes. The result file

from the basic analysis is used as input for the high-level analysis, in which DNApod detects

DNA polymorphisms, visualizes their distribution on the reference genome, and annotates

them with known gene structures. The DNApod workflow service configuration is shown

in Fig 2. The basic analysis is offered as a web service (http://p.ddbj.nig.ac.jp/) (Fig 2B). The

high-level analysis is configured in the Galaxy platform, which is implemented in the virtual

machine image by Pitagora-Galaxy (http://www.pitagora-galaxy.org/) (Fig 2C). The respective

tools for high-level analysis are encapsulated in the Docker container (https://www.docker.

com), and Galaxy runs these Docker containers (S2 Fig). Users download the virtual machine

image from DNApod workflow help page and launch it through Oracle VirtualBox (https://

www.virtualbox.org) on their personal computer (S2 Fig). Furthermore, users can test-use the

Fig 2. DNApod workflow service configuration. (A) The DNApod workflow can be accessed from the “DNApod workflow” menu on the DNApod

websites, (B) The basic analysis is offered as a web service. (C) The high-level analysis is configured in the Galaxy platform, which is implemented in

the virtual machine image. Users download this virtual machine image from the DNApod workflow help page and launch the virtual machine image via

Oracle Virtualox. (D) Pitagora-Galaxy provides the galaxy server for users to test-use DNApod.

doi:10.1371/journal.pone.0172269.g002
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high-level analysis on the Pitagora-Galaxy server (http://try.pitagora-galaxy.org/galaxy/)

(Fig 2D).

DNApod components and web interface

Main components. DNApod includes four components: “Genotype database,” “DNApod

workflow graphical user interface,” “Phenotype database,” and “Orthologous analysis.” The

use of these components is described in the “Help” menu in DNApod.

Genotype database. The genotype database is accessible from menu items (Fig 3A). The

“Select an organism” screen is displayed (Fig 3B), and the analytical method used for detecting

homozygous SNPs and InDels is indicated in this screen. The “Summary” screen is displayed

upon selection of an organism, which can be surveyed in this screen; the summary includes

the species, subspecies, and strain names, coverage, depth, and numbers of homozygous SNPs

and InDels (Fig 3C). Data can be filtered by species and subspecies names and type, such as

cultivar, wild accession, or landrace, strain name, coverage, and depth. Users can bulk down-

load the data per organism. For additional information and data download, an “Analytical

Details” screen is displayed when “SRA sample ID” is clicked; this screen presents the informa-

tion described in the “Summary” screen and information regarding experiments: SRA experi-

ment ID, layout (such as paired- or single-end layout), read length, number of reads, number

of QV-filtered reads, and map rate (Fig 3D). Users can download data for DNA polymor-

phisms, including variant call files, visualization files showing the distribution of SNPs/InDels

on the reference genome, known-gene annotation files for each DNA polymorphism such as

synonymous/non-synonymous substitution positions, and the amino acid sequence files. Vari-

ant call files are supplied in VCF, a versatile format used by various genome browsers, such as

Integrative Genomics Viewer [47].

DNApod workflow graphical user interface. Users can analyze their own NGS data

under the curative conditions of the DNApod workflow through a DNApod graphical user

interface. The DNApod website describes the DNApod method for detecting DNA polymor-

phisms, including parameter settings (Fig 2B). The workflow can be accessed from the menus

on the DNApod website (Fig 2A). The DDBJ pipeline (DNApod workflow) basic analysis is

accessible from “Basic analysis” in the menu (Fig 2B). The virtual machine image for high-

level analysis can be downloaded from “High-level analysis (Virtual Machine Image down-

load)” in the menu (Fig 2C). Test runs of high-level analysis can be executed from “High-level

analysis (test-use)” in the menu (Fig 2D). Furthermore, the DNApod workflow has a detailed

help page (Fig 2A), which provides the DNApod workflow overview, a high-level analysis (vir-

tual machine image) download link, the DNApod workflow (DDBJ pipeline basic analysis and

high-level analysis) manual, and trial data.

Phenotype database. The phenotype database is accessible from the menu items (Fig 4A).

DNApod has been collecting public phenotypic data, and distributing the table of linked infor-

mation between DNApod IDs (SRA sample IDs) and phenotypic data. As of April 2016, DNA-

pod genotypic data linked to phenotypic information included 29 rice samples linked to 44k

SNP set, 29 rice samples to 1536 SNP set, 13 rice samples to Panicle Architecture, and 22 rice

samples to High Density Rice Array of the Rice Diversity Project (http://www.ricediversity.

org/index.cfm). Moreover, DNApod contains the phenotypic information for 28 rice samples,

26 maize samples, and 6 sorghum samples linked to National Institute of Agrobiological Sci-

ences (NIAS) Genebank (Fig 4B). Link information can be downloaded (Fig 4C).

Orthologous analysis. Orthologous region alignment is accessible from the menu (Fig

5A). When a transcript ID of rice, maize, or sorghum is input, the information for the ortholo-

gous group of the specified transcript is displayed together with a RefSeq protein ID and
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RefSeq definition (Fig 5B and 5C). Transcripts and strains are selected as query data for the

orthologous analysis. Strains can be filtered by species, subspecies, and strain names and the

Fig 3. Statistics and analytical information of DNApod genotypic data. (A) Menu items leading to the genotype database and DNApod workflow,

(B) “Select an organism” screen, (C) “Summary” screen, and (D) “Analytical Details” screen.

doi:10.1371/journal.pone.0172269.g003

DNApod: Polymorphism annotation database

PLOS ONE | DOI:10.1371/journal.pone.0172269 February 24, 2017 11 / 19



ID, which is the accession ID of the resource center. If a user uploads own homozygous SNP

data in VCF prepared by the DNApod workflow, DNApod facilitates amino acid sequence

comparison based on DNApod genotypic data and the user data (Fig 5D). Moreover, if neces-

sary, users can set the analytical parameters such as ClustalW2 and Phylogeny. Thus, users can

obtain multiple FASTA files as a query file, result information files consisting of multiple-

alignment files, and tree-image files (Fig 5E).

Discussion

We have developed DNApod, a readily reusable database of genome-wide DNA polymor-

phisms featuring homogeneous reliability; the database was developed by detecting DNA poly-

morphisms under unified analytical conditions by using WGS datasets extracted from SRAs.

DNApod currently describes homozygous SNPs/InDels and known-gene annotations for

these polymorphisms in rice, maize, and sorghum; the polymorphisms can be used as DNA

markers. DNApod provides an analytical workflow for analyzing user NGS data and for ortho-

logous analysis. DNApod is a collection of manually curated public phenotypic data, which are

linked to DNApod IDs (SRA sample IDs).

SRA datasets have been acquired under varying experimental conditions that have included

differences in sequence quality and quantity among experiments. To detect DNA polymor-

phisms with uniform reliability from SRA WGS datasets featuring non-uniform quality, DNA-

pod performs a pre-processing to filter out low QVs and then detects DNA polymorphisms by

using a uniform method with the same threshold. However, the matter of sequence quantity

remains unresolved. The DNApod genotypic data present diverse depths of coverage after the

removal of multiple-hit reads on the reference genome, starting from a minimum of one-read

depth; 87% of the DNApod genotypic data present a<5-fold depth on a reference genome (S3

Fig). Low-depth data might generate false-negatives during the detection of DNA polymor-

phisms. We investigated the relationship between the number of reads lost by removing

Fig 4. Phenotype link information. (A) Menu item leading to the phenotype link database, (B) “Phenotype” database screenshot, (C) a

downloaded table of linked information between DNApod IDs (SRA sample IDs) and public phenotypic data.

doi:10.1371/journal.pone.0172269.g004

DNApod: Polymorphism annotation database

PLOS ONE | DOI:10.1371/journal.pone.0172269 February 24, 2017 12 / 19



DNApod: Polymorphism annotation database

PLOS ONE | DOI:10.1371/journal.pone.0172269 February 24, 2017 13 / 19



multiple-hit reads and read length. Even when the read lengths were the same, maize showed a

markedly lower rate of lost reads in total reads after pre-processing for QV than did rice and

sorghum (S4 Fig). The subfamilies Panicoideae (sorghum and maize) and Ehrhartoideae (rice)

branched from a common ancestor 50 million years ago (MYA), and sorghum and maize

diverged 13.5 MYA [48]. Paleopolyploidy in Panicoideae and Ehrhartoideae occurred follow-

ing a genome polyploidization event 70 MYA. Subsequently, maize underwent a tetraploidiza-

tion event, immediately after which numerous chromosomal breakages and fusions resulted in

a return to the diploid state 12–15 MYA [49,50]. Sorghum has not undergone a genome poly-

ploidization event since 70 MYA [32]. Therefore, maize shows a large syntenic block covering

89% of the genome [51], and this large-scale syntenic block would cause higher multiple-hit

reads than in the case of rice and sorghum. Polyploidy is widespread among plant species. In

soybean, multiple rounds of duplication and diploidization occurred in the genome [52]. In

banana, almost all cultivars are triploid [53], and bread wheat is hexaploid [54]. In this study,

we examined the effect of genome polyploidization events on the lost read rate by removing

the multiple-mapping reads only for maize. However, genome polyploidization events might

increase the lost read rate and genome regions of that cannot be analyzed by the removal of

multiple-hit reads in the genome. If a sample that has undergone genome polyploidization

events is sequenced, the experimental design should focus on read length than on read quan-

tity. Furthermore, the method for removing multiple-hit reads is better to be improved.

In studies conducted using low-depth data, genotype imputation is employed [55,56].

Genotype imputation with haplotype patterns helps with the prediction of uncertain geno-

types, and certain tools have already been developed and used for genotype imputation [57–

59]. DNApod should validate the most relevant methods for genotype imputation. This impu-

tation strategy will facilitate the detection of heterozygous SNPs and InDels and correction of

DNA polymorphisms misdetected because of low-QV reads. When low-depth genotype data-

sets are employed with genotype imputation, DNApod can provide high-density DNA mark-

ers on the genome. This may contribute to the discovery of responsible genes by GWAS and

more accurate phylogeny estimation. In the future, new versions of reference genomes and

known-gene annotations from respective reference databases will be released at an accelerated

pace for both model and non-model organisms. Thus, we plan to update the version of refer-

ence genomes and known-gene annotations in order to enhance the reliability of the DNApod

genotypic data. Furthermore, in DNApod, we plan to provide a function for developing DNA

markers, such as Cleaved Amplified Polymorphic Sequence, by using the DNApod genotypic

data.

We have been collecting phenotypic information. In this study, DNApod collected pheno-

typic information from the NIAS Genebank and Rice Diversity Project, including environ-

mental data such as phenotyping regions and years. This information contributes to the

analysis of environmental and phenotypic data. For almost all of DNApod genotypic data, the

phenotypic information provided was incomplete. Phenotypic and genotypic information is

necessary for breeding programs and GWAS; thus, we anticipate that DDBJ, NCBI, and EBI

will systematically collect both phenotypic and genotypic information in the future.

Public SRA data are increasing drastically [60]. As of March 2016, the number of WGS

entries, which was specified in the SRA study type, was 29,125; this is only the number of stud-

ies, and thus the number of samples will be higher. With this increase of SRA data, DNApod

Fig 5. Function of “Orthologous Analysis” in DNApod. (A) Menu item for an “Orthologous Analysis,” (B) setting parameters: transcript ID,

(C) setting parameters: transcript IDs in orthologous groups of the transcript specified in (B) and strains, (D) setting parameters: original user

data and analytical parameters, and (E) a result screen.

doi:10.1371/journal.pone.0172269.g005

DNApod: Polymorphism annotation database

PLOS ONE | DOI:10.1371/journal.pone.0172269 February 24, 2017 14 / 19



requires to be steadily updated, and the scope of DNApod will be expanded to cover organisms

from bacteria to plants. Thus, DNApod will potentially serve as a valuable data-science infra-

structure element for breeding studies and GWAS by using a combination of phenotypic and

geographic data. Moreover, DNApod will promote the efficient secondary use of public, open-

access data.

Supporting information

S1 Fig. Heterogeneous base-quality raw sequence reads in SRAs. SRAs contain data of vari-

ous quality values among NGS datasets from individual projects. To detect DNA polymor-

phisms with uniform reliability, DNApod performs pre-processing to filter out low quality

values and detects DNA polymorphisms by using a uniform threshold.

(TIF)

S2 Fig. Overview of the Galaxy virtual machine. The high-level analysis is configured in the

Galaxy platform, which is implemented in the virtual machine image. The virtual machine

image of the high-level analysis is launched by the Oracle VirtualBox on the user’s personal

computer. The respective tools in high-level analysis are encapsulated in the Docker container,

and Galaxy runs these Docker containers to execute the job.

(TIFF)

S3 Fig. Data quantity of each sample. Data quantity is described as the depth after the

removal of multiple-hit reads on the genome. The depth of a reference genome is <5-fold in

87% of the DNApod genotypic data.

(TIF)

S4 Fig. Read loss per read length caused by elimination of multiple-hit reads. Maize exhib-

its a more profound effect resulting from read loss than do rice and sorghum after the elimina-

tion of multiple-hit reads. This predicted that a large-scale syntenic block of maize would

cause comparatively higher multiple-hit reads.

(TIF)

S1 Table. Sample number of registered SRA and DNApod by study type. Data as of April

2016. The sample number of the registered SRA was searched using ENA. “Library strategy” is

explained on the DDBJ SRA website (http://trace.ddbj.nig.ac.jp/dra/submission_e.html).

(DOCX)
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27. Silvester N, Alako B, Amid C, Cerdeño-Tárraga A, Cleland I, Gibson R, et al. Content discovery and

retrieval services at the European Nucleotide Archive. Nucleic Acids Res. 2015; 43: D23–D29. doi: 10.

1093/nar/gku1129 PMID: 25404130

28. Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformat-

ics. 2009; 25: 1754–1760. doi: 10.1093/bioinformatics/btp324 PMID: 19451168

29. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format

and SAMtools. Bioinformatics. 2009; 25: 2078–2079. doi: 10.1093/bioinformatics/btp352 PMID:

19505943

30. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and

VCFtools. Bioinformatics. 2011; 27: 2156–2158. doi: 10.1093/bioinformatics/btr330 PMID: 21653522

31. Sakai H, Lee SS, Tanaka T, Numa H, Kim J, Kawahara Y, et al. Rice Annotation Project Database

(RAP-DB): an integrative and interactive database for rice genomics. Plant Cell Physiol. 2013; 54: e6.

doi: 10.1093/pcp/pcs183 PMID: 23299411

32. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, et al. The Sorghum

bicolor genome and the diversification of grasses. Nature. 2009; 457: 551–556. doi: 10.1038/

nature07723 PMID: 19189423

33. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predict-

ing the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melano-

gaster strain w1118; iso-2; iso-3. Fly (Austin). 2012; 6: 80–92.

34. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis

Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res.

2010; 20: 1297–1303. doi: 10.1101/gr.107524.110 PMID: 20644199

35. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture

and applications. BMC Bioinformatics. 2009; 10: 421. doi: 10.1186/1471-2105-10-421 PMID: 20003500

36. Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, et al. Genome sequencing reveals agro-

nomically important loci in rice using MutMap. Nat Biotechnol. 2012; 30: 174–178. doi: 10.1038/nbt.

2095 PMID: 22267009

DNApod: Polymorphism annotation database

PLOS ONE | DOI:10.1371/journal.pone.0172269 February 24, 2017 17 / 19

http://dx.doi.org/10.1038/srep10763
http://www.ncbi.nlm.nih.gov/pubmed/26084265
http://dx.doi.org/10.1186/1471-2164-15-1080
http://www.ncbi.nlm.nih.gov/pubmed/25487001
http://www.ncbi.nlm.nih.gov/pubmed/11125122
http://dx.doi.org/10.1093/nar/gkt1110
http://www.ncbi.nlm.nih.gov/pubmed/24217918
http://dx.doi.org/10.1093/pcp/pcu183
http://www.ncbi.nlm.nih.gov/pubmed/25432969
http://dx.doi.org/10.1007/978-1-4419-5913-3_15
http://www.ncbi.nlm.nih.gov/pubmed/20865494
http://dx.doi.org/10.1093/pcp/pct178
http://dx.doi.org/10.1093/pcp/pct178
http://www.ncbi.nlm.nih.gov/pubmed/24334350
http://dx.doi.org/10.1093/pcp/pcu188
http://www.ncbi.nlm.nih.gov/pubmed/25505034
http://dx.doi.org/10.1007/978-1-4939-2175-1_3
http://www.ncbi.nlm.nih.gov/pubmed/25487201
http://dx.doi.org/10.1093/nar/gks1171
http://www.ncbi.nlm.nih.gov/pubmed/23193265
http://dx.doi.org/10.1111/gtc.12190
http://www.ncbi.nlm.nih.gov/pubmed/25324176
http://dx.doi.org/10.1093/dnares/dst017
http://www.ncbi.nlm.nih.gov/pubmed/23657089
http://dx.doi.org/10.1093/nar/gku1129
http://dx.doi.org/10.1093/nar/gku1129
http://www.ncbi.nlm.nih.gov/pubmed/25404130
http://dx.doi.org/10.1093/bioinformatics/btp324
http://www.ncbi.nlm.nih.gov/pubmed/19451168
http://dx.doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943
http://dx.doi.org/10.1093/bioinformatics/btr330
http://www.ncbi.nlm.nih.gov/pubmed/21653522
http://dx.doi.org/10.1093/pcp/pcs183
http://www.ncbi.nlm.nih.gov/pubmed/23299411
http://dx.doi.org/10.1038/nature07723
http://dx.doi.org/10.1038/nature07723
http://www.ncbi.nlm.nih.gov/pubmed/19189423
http://dx.doi.org/10.1101/gr.107524.110
http://www.ncbi.nlm.nih.gov/pubmed/20644199
http://dx.doi.org/10.1186/1471-2105-10-421
http://www.ncbi.nlm.nih.gov/pubmed/20003500
http://dx.doi.org/10.1038/nbt.2095
http://dx.doi.org/10.1038/nbt.2095
http://www.ncbi.nlm.nih.gov/pubmed/22267009


37. Zhao K, Tung CW, Eizenga GC, Wright MH, Ali ML, Price AH, et al. Genome-wide association mapping

reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun. 2011; 2: 467. doi: 10.

1038/ncomms1467 PMID: 21915109

38. Zhao K, Wright M, Kimball J, Eizenga G, McClung A, Kovach M, et al. Genomic diversity and introgres-

sion in O. sativa reveal the impact of domestication and breeding on the rice genome. PLoS One. 2010;

5: e10780. doi: 10.1371/journal.pone.0010780 PMID: 20520727

39. Crowell S, Korniliev P, Falcão A, Ismail A, Gregorio G, Mezey J, et al. Genome-wide association and

high-resolution phenotyping link Oryza sativa panicle traits to numerous trait-specific QTL clusters. Nat

Commun. 2016; 7: 10527. doi: 10.1038/ncomms10527 PMID: 26841834

40. McCouch SR, Wright MH, Tung CW, Maron LG, McNally KL, Fitzgerald M, et al. Open access

resources for genome-wide association mapping in rice. Nat Commun. 2016; 7: 10532. doi: 10.1038/

ncomms10532 PMID: 26842267

41. Takeya M, Yamasaki F, Uzuhashi S, Aoki T, Sawada H, Nagai T, et al. NIASGBdb: NIAS Genebank

databases for genetic resources and plant disease information. Nucleic Acids Res. 2011; 39: D1108–

D1113. doi: 10.1093/nar/gkq916 PMID: 20952407

42. Asamizu E, Ichihara H, Nakaya A, Nakamura Y, Hirakawa H, Ishii T, et al. Plant Genome DataBase

Japan (PGDBj): a portal website for the integration of plant genome-related databases. Plant Cell Phy-

siol. 2014; 55: e8. doi: 10.1093/pcp/pct189 PMID: 24363285

43. Pruitt KD, Tatusova T, Brown GR, Maglott DR. NCBI Reference Sequences (RefSeq): current status,

new features and genome annotation policy. Nucleic Acids Res. 2012; 40: D130–D135. doi: 10.1093/

nar/gkr1079 PMID: 22121212
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