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Silicon, carbon�s closest neighbor in the periodic table,
forms strong covalent bonds with carbon. Due to the more
electropositive nature of silicon, carbon�silicon bonds are
however more polarized and, hence, more vulnerable to
nucleo- and electrophilic attack, respectively, as compared to
carbon�carbon bonds. Such fragility of carbon�silicon bonds
had been realized a century ago for the first time by the
pioneer of silicon chemistry, Frederick S. Kipping.[1] His
serendipitous discovery of the acid-mediated cleavage of
C(sp2)�Si bonds in arylsilanes (= protodesilylation) was
further advanced by Colin Eaborn,[2] and eventually stream-
lined by Ian Fleming for the synthesis of alcohols from
arylsilanes[3] [Eq. 1]. The overall procedure is the now called
Tamao–Fleming oxidation (gray box).[4] Unactivated tetraal-
kylsilanes were found to be too unreactive though, and the
oxidative degradation of trialkylsilyl groups, especially the
Me3Si group, as masked hydroxy groups is still elusive.[5]

Following a similar strategy, several attempts have been
made for the demethylation of trimethylsilane derivatives
employing strong Brønsted acids [Eq. 2]. In 1953, Sommer
and co-workers reported a concentrated sulfuric acid-aided
synthesis of aliphatic organosiloxanes through the cleavage of
one methyl group from the trimethylsilyl moiety.[6a] Kinetic
studies confirmed a pseudo-first order character of the
reaction, involving an “electrophilic attack” on the carbon
center followed by the formation of methane and a (at least
formally) silylium-ion intermediate in the rate-determining
step.[6b] Later, a series of experiments was described by
O�Brien on the stepwise protolytic cleavage of C(sp3)�Si
bonds in tetra- and trialkylsilanes employing acid systems
stronger than concentrated sulfuric acid, including HSO3F/
SbF5/SO2, HSO3F/SO2, and HSO3F.[7] The downside of these
approaches is the difficulty of isolating the products from
super acidic media. Independent reports by Olah[8] and
Demuth[9] about the electrophilic demethylation overcame
this problem. By using triflic acid, one of the methyl groups in
tetramethylsilane is selectively protonated, affording trime-
thylsilyl triflate in almost quantitative yield. Our laboratory
recently showed that Reed�s carborane acids are also capable
of performing selective protonation of one alkyl group,
thereby providing access to various counteranion-stabilized
silylium ions.[10] As to nucleophilic demethylation, hard
oxygen nucleophiles have been mostly employed[11] but,
unless intramolecular, modest substrate specificity has so far
limited synthetic applications [Eq. 3].

By clever combination of those electro- and nucleophilic
activation strategies, Matsunaga, Yoshino, and co-workers
accomplished the chemoselective C(sp3)�Si bond cleavage in
tetraalkylsilanes using iodine tris(trifluoroacetate) (ITT) and
merged their new method with the aforementioned oxidative
degradation of the heteroatom-substituted silicon intermedi-
ate [Eq. 4].[12] That two-step sequence is reminiscent of the
original report on the Fleming oxidation.[3a] The use of an
electrophilic iodine reagent is a judicious choice for such
transformation as evidenced by an early work from Eaborn[13]

[Eq. 5] and an unexpected finding by Shindo and co-work-
ers[14] [Eq. 6].

As outlined in Scheme 1 (top), the computed mechanism
of the demethylation step reveals that in solution the dimeric
ITT complex [ITT]2 first converts into more reactive mono-
meric forms, that is the conformers ITT and ITT’. These then
interact with the tetraalkylated silyl group. A concerted
methyl group transfer from the silicon atom to the iodine(III)
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center and formation of a silicon�oxygen bond leads to the
generation of a silyl trifluoroacetate derivative (TS-I, bot-
tom). For Me4Si, the quantum-chemical calculations demon-
strate an end-on interaction between the highly electrophilic
iodine(III) center and one of the methyl groups. The same
mechanistic picture had recently been drawn by Qu and
Oestreich for the protolytic demethylation of Me4Si.[10] The
end-on interaction of the proton with the back lobe of the
s(C�Si) orbital in TS-II was found to be energetically more
favorable than a side-on interaction with the inner lobe as in
TS-III (DDG� = 5.6 kcal mol�1, bottom).

The methodology introduced by the Matsunaga labora-
tory shows tremendous functional group tolerance, ranging
from any type of carbonyl functionalities to various hetero-
cycles (Scheme 2). Several densely functionalized molecules
are compatible with both the demethylation and the oxidative

degradation steps. Aside from Me3Si, the work also includes
examples of Et3Si and tBuMe2Si; their dealkylation proceeds
with lower yields.

Matsunaga, Yoshino, and co-workers have solved a long-
standing challenge in synthetic methodology, that is, the
oxidative degradation of a carbon�silicon bond in unactivated
fully alkylated silanes. This brings the “unpopular” Me3Si
group back to life,[5] thereby significantly expanding the
selection of masked hydroxy groups beyond Me2PhSi and
heteroatom-substituted Tamao-type silyl groups. This work is
complementary to the traditional protolysis approach but
with unprecedented functional group tolerance. Although this
methodology is currently limited to tetraalkylsilanes, it will be
exciting to see future advances towards the chemoselective
cleavage of C(sp3)�Si over C(sp2)�Si and C(sp)�Si bonds.
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Scheme 1. Concerted nucleophile-assisted electrophilic demethylation
of a silicon atom by an electrophilic iodine reagent and, for compar-
ison, protonation of a C(sp3)�Si bond.

Scheme 2. Selected examples of the chemoselective cleavage of a -
C(sp3)�Si bond in unactivated tetraalkylsilanes with ITT followed by
oxidative degradation of another C(sp3)�Si bond. TBAF = tetra-n-butyl-
ammonium fluoride, Boc= tert-butoxycarbonyl.
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