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ABSTRACT

Osteosarcoma (OS) is themost common primary

malignancy of bone and patients with

metastatic disease or recurrences continue to

have very poor outcomes. Unfortunately, little

prognostic improvement has been generated

from the last 20 years of research and a new

perspective is warranted. OS is extremely

heterogeneous in both its origins and

manifestations. Although multiple associations

have been made between the development of

osteosarcoma and race, gender, age, various

genomic alterations, and exposure situations

among others, the etiology remains unclear and

controversial. Noninvasive diagnostic methods

include serummarkers like alkaline phosphatase

and a growing variety of imaging techniques

including X-ray, computed tomography,

magnetic resonance imaging, and positron

emission as well as combinations thereof. Still,

biopsy and microscopic examination are

required to confirm the diagnosis and carry

additional prognostic implications such as

subtype classification and histological response

to neoadjuvant chemotherapy. The current

standard of care combines surgical and

chemotherapeutic techniques, with a

multitude of experimental biologics and small

molecules currently in development and some

in clinical trial phases. In this review, in addition

to summarizing the current understanding of OS

etiology, diagnostic methods, and the current

standard of care, our group describes various

experimental therapeutics and provides

evidence to encourage a potential paradigm

shift toward the introduction of

immunomodulation, which may offer a more

comprehensive approach to battling cancer

pleomorphism.
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INTRODUCTION

Osteosarcoma (OS) is an osteoid-producing

malignancy of mesenchymal origins. This

high-grade tumor is the most common primary

malignancy of bone and is often fatal in both

children and adults.While primary bone cancers

represent less than 0.2% of all cancers [1],

according to the National Cancer Institute SEER

(Surveillance, Epidemiology, and End Results)

program, their frequency has been increasing by

0.3% per year over the last decade [2]. While OS

occurs most frequently in patients between 5

years of age and early adulthood, incidencepeaks

again in the older ([65) populations and has

been associated with pre-existing Paget’s disease

and prior radiation therapy [3–7]. Collectively,

the metaphysis of the lower long bones,

specifically the distal femur and proximal tibia,

are the most commonly involved primary sites,

with patients over 25 displaying a greater variety

of bony locations [3].

Metastatic disease is classified by location as

either pulmonary or extrapulmonary and is the

major cause of OS-related death [8–10]. While

bony metastases are associated with poorer

prognoses (with reports of 13% survival at 5

years [11]), the lung is involved in

approximately 80% of cases [12] and

subsequent respiratory compromise is

responsible for most of the death toll [13].

Compared with a potential cure rate of over

60% in patients presenting with nonmetastatic

disease [12, 14], those with

detectable metastases at the time of diagnosis

(approximately 15–20% [15, 16]) have the

poorest overall prognoses [17–22], with reports

of 5-year survival rates as low as 19% [17, 23].

Moreover, even in the subset of patients free of

primary metastases, 40% will go on to

eventually develop a secondary metastasis [12];

in one study, survival rates of patients with

nonmetastatic high-grade OS with subsequent

metastases were 23% at 5 years and 0% at 4

years for pulmonary and bony metastases,

respectively [24].

In contrast to distant pulmonary and

extrapulmonary metastases, skip lesions (also

known as skip metastases or synchronous

regional bone metastases) are local and yet

potentially more serious metastatic

complications. These small, anatomically

isolated cancerous foci are distinct from the

primary tumor and located either within the

same bone or transarticular to it [25, 26].

Classically, they are associated with extensive

metastatic dissemination, robust therapeutic

resistance, and particularly poor prognoses

[27–29].

Similar to those with metastatic OS, patients

with recurrent disease have comparably dismal

5-year post-relapse-overall-survival (PROS) rates

[18]. In addition, features such as axial tumor

site [30, 31], male sex [30], and advancing age

[31] have all shown correlation with inferior

patient outcomes. Notably, the pre-operative

histologic response to neoadjuvant

chemotherapy, as judged by the extent of

tumor necrosis, offers some of the most

important predictive value regarding overall

patient survival [30, 32–34].

Compliance with Ethics Guidelines

This article is based on previously conducted

studies and does not involve any new studies of

human or animal subjects performed by any of

the authors.

ETIOLOGY AND GENOMICS

OS etiology is complex and not well

understood. The molecular pathogeneses and

genetics of OS are vast and extremely
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heterogeneous [35], with discrepancies in the

literature regarding its demographic and

environmental influences further complicating

the story. Most cases are sporadic; however,

increased risk has been associated with multiple

germline mutation disorders including

hereditary retinoblastoma [36, 37],

Rothmund–Thomson syndrome [38, 39], Li

Fraumeni syndrome [40], and Bloom

syndrome [41], among others.

Classically, alterations in the retinoblastoma

(Rb) gene have been strongly associated with a

predisposition for developing OS [42–44] and

loss of heterozygosity has been reported to

occur in up in 40–70% of cases [45–49].

Additionally, altered p53 loci, which have

been reported to occur in approximately

10–39% of cases [49–59], display synergistic

tumorigenic properties [50, 60–62]. Whole

genome sequencing studies have attempted to

elucidate recurrent chromosomal structural

patterns, most recently with loci at 6p21.3 and

2p25.2 displaying potentially genome-wide

significance [63, 64]. However, despite these

and countless other genetic similarities

discovered across cell lines, OS continues

rapidly modifying its genotype, thus making

potential targeted molecular therapeutics

increasingly impractical. To date, no single

genetic target has proven therapeutically

successful, and this wealth of information has

yet to lead to a significant decrease in mortality

[35].

As per the central dogma, this genotypic

heterogeneity has translated into a wide variety

of macromolecular biomarker expression

profiles with potentially useful clinical

implications. Indeed, phenotypic trends have

been found and characterized across various OS

cell lines. Multiple studies have identified

characteristic protein and mRNA expression

profiles showcasing anomalous levels of ErbB-2

[65, 66], cathepsin D [67], FBXW7 [68], miR-421

[69], and HMGB1 [70], among others. It has also

been suggested that matrix-Gla protein

expression may play a role in facilitating

tumor spread to the lungs [71]. However, as of

yet, the true diagnostic, etiologic, and clinical

significance of these biomarkers is ongoing and

controversial.

Apart from genetic mutations and expression

profiles, studies have also discovered

correlations between poor prognosis (or

increased incidence) and various demographics

such as male gender [72], old age [73, 74],

height [75], and African American descent [76].

Others have suggested an association between

bone growth and incidence rates [75, 77–80],

but the relative strength and importance of this

relationship have been challenged [81].

Environmental factors that have been

associated with increased risk of future OS

development include exposure to radiation

[6, 7], teriparatide usage [82], and

consumption of fluorinated drinking water

during childhood [83, 84]; however, more

recent studies have disputed the latter two

relationships [85–88].

DIAGNOSIS AND PATHOLOGY

Due to the complex nature of primary bone

malignancies, diagnosis of OS is best

accomplished via a comprehensive

multidisciplinary approach [89]. Often, the

first sign of potential bone malignancy is

intermittent pain around the affected area

with or without a palpable mass [90]. When

involving areas around the knee joint, pain

exacerbated by weight bearing may manifest as

a limp; occasionally, patients will present with a

recent bout of bone trauma [91]. As previously

mentioned, any older adult with a history of

Paget’s disease has an increased risk of

Rheumatol Ther (2017) 4:25–43 27



developing OS, most notably of the pelvis [92],

and this transformation is associated with a

poor prognosis [93].

Various serum markers have been

investigated for their utility in diagnosing and

tracking progression and recurrence. Alkaline

phosphatase (ALP) and lactose dehydrogenase

(LDH) are useful serum biomarkers, with ALP

carrying the most diagnostic value in OS

[94, 95]. ALP has also been shown to correlate

positively with tumor volume, which carries

additional useful prognostic implications

[94–96]. LDH has also been shown to correlate

with tumor volume; however, the correlation is

weaker than for ALP and is mainly a result of

nonspecific metabolic demand [95]. If disease is

suspected, the first step is to gather plain

radiographs of the involved bone and adjacent

joint. Any abnormal films then warrant further

radiological investigation of soft tissue

involvement and possible primary lung

metastasis via magnetic resonance imaging

(MRI) and computed tomography (CT),

respectively [97]. Bone scintigraphy (BS) is

often used in conjunction with CT to identify

metastases and the presence or absence of

metastatic disease remains one of the most

important predictors of patient outcome

[97, 98]. For a more detailed, flow chart-style

approach to patient work-up, please refer to the

guidelines put forth by the National

Comprehensive Cancer Network (NCCN) for

bone cancer, Version 2.2017 [99].

Although they have not yet taken the place

of BS in OS diagnosis, various experimental test

procedures such as positron emission

tomography (PET) scans are currently being

investigated for their potentially superior

ability to diagnose and track the progression

of bone cancers. In 2009, Costelloe et al.

demonstrated that combined PET/CT could be

used to reliably predict the progression-free

survival (PFS), overall survival, and extent of

tumor necrosis in OS [100]. Studies have also

suggested enhanced sensitivity with the use of

fludeoxyglucose-(18F-FDG)-PET-CT over BS for

detecting metastases [101]. Hyung-Jun Im et al.

[102] used a similar technique to show that

initial baseline metabolic tumor volume and

total lesion glycolysis have independent

prognostic value in determining survival in

pediatric osteosarcoma populations.

Importantly, combined PET/CT scanning has

been shown to accurately determine the extent

of histological osteonecrosis and may offer a

less-invasive alternative to the typical

biopsy-requiring Huvos grading system [103],

as previously described [104]. Please refer to

Table 1 for a list of test properties, including

sensitivity, specificity, and a brief note on

diagnostic application (as indicated by the

study from which those numbers were

derived). Note, however, that despite the

promising aspects of these non-invasive

techniques, a biopsy is always required to

confirm the diagnosis [105]. As such, proper

disease management mandates tissue collection

with the correct identification of the specific

histologic subtype [106]. While many subtypes

exist and correlate specifically to corresponding

chemotherapeutic responses [107], the unifying

histological feature is the presence of

osteoid-producing malignant cells [105].

Incisional or core needle biopsy is the final

step in the diagnostic process [97] and the

tumor is staged using the Musculoskeletal

Tumor Society staging scheme [108] or the

American Joint Commission on Cancer (AJCC)

system. In the AJCC system, the tumor is

described based on four important factors

represented by letters [109]: T (primary tumor

size), N (spread to regional lymph nodes), M

(metastasis), and G (grade). Each letter is then

assigned a particular number (e.g., T1) that
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describes the tumor’s pathologic extent (T, N,

and M) and histological appearance (G). Once

assigned its corresponding TxNxMxGx code,

the tumor can then be grouped into its

corresponding stage, with Stage 1A being the

most localized and Stage IVB the most invasive.

This information can be used to determine

prognosis, assess response to therapy, and

monitor disease progression [110].

Osteosarcoma subtypes include osteoblastic,

chondroblastic, fibroblastic, small cell,

telangiectatic, high-grade surface,

extra-skeletal, and other lower-grade forms

including periosteal and parosteal [111]. Based

upon their histological appearances, OS

subtypes can be grouped into three categories:

high-grade, intermediate-grade, and low-grade.

Parosteal OS is a low-grade subtype that is

fibroblastic in appearance and limited to the

bone surface; however, with time, it may

progress to involve deeper structures. For this

and other low-grade subtypes, treatment

involves surgery alone and carries a favorable

prognosis. Periosteal OS is chondroblastic on

histology and is the only subtype that falls into

the intermediate-grade category. Depending on

extent of invasion, treatment for

intermediate-grade OS often includes systemic

chemotherapy. High-grade OS, which includes

the classic osteoblastic subtype, is the

fastest-growing and most aggressive group. The

majority of OS subtypes fall under this category

and include osteoblastic, chondroblastic,

fibroblastic, small cell, telangiectatic,

high-grade surface, and extra-skeletal.

Telangiectatic OS is notable for its profuse

vascularity and scant osteoid production,

which often complicates tissue biopsy and

radiographic identification, respectively [112].

Telangiectatic OS also carries with it an

anatomical predilection to the epiphyseal

region of the bone. All high-grade OS should

be considered micrometastatic at diagnosis and

treated with surgery and systemic

chemotherapy.

TREATMENT

The current standard for osteosarcoma

treatment employs neoadjuvant

chemotherapy, surgery, and then

post-operative adjuvant chemotherapy.

Table 1 OS serological and radiological test properties with diagnostic applications

Test Sensitivity Specificity Application

Serum ALP [95] 0.78 0.94 Correlation (r = 0.5) with tumor volume

Most descriptive for osteoblastic subtype

Serum LDH [95] 0.82 0.97 Correlation (r = 0.4) with tumor volume

Describes tumor metabolic demand

Spiral CT [195] 0.75 1.00 Pulmonary metastases

FDG-PET [195] 0.5 0.98 Pulmonary metastases; confirmation of CT abnormality

PET/CT [196] 0.95 0.98 Bony metastases (examination-based analysis)

BS [196] 0.76 0.97 Bony metastases (examination-based analysis)

PET/CT ? BS [196] 1.00 0.96 Bony metastases (examination-based analysis)

FDG-PET/CT [197] 0.947 Not reported Initial staging or assessment of recurrent disease
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Multiple different chemotherapy regimens

containing anywhere from two to seven drugs

have been used [97, 113, 114]. The four drugs

that have shown consistent activity are

cisplatin, doxorubicin, high-dose methotrexate

with leucovorin rescue, and isofosfamide with

or without etoposide. A recent meta-analysis

showed that patients who were treated with

three drugs had a superior outcome to those

that received two drugs. However, there was no

benefit in using four drugs compared to three

drugs [115]. Indeed, adding standard or

high-dose ifosfamide significantly increased

toxicity while having negligible effects on

outcome [116, 117], which was recently

confirmed by an international trial that

showed that there was no benefit in adding

high-dose ifosfamide plus etoposide to the

cisplatin, doxorubicin, methotrexate

combination (MAP) [118]. Therefore, MAP

multi-agent chemotherapy is the first-line

treatment and the standard of care at the

present time. For a more thorough

investigation of OS chemotherapeutics, please

refer to the meta-analysis conducted in 2011 by

Anninga et al. [115].

Neoadjuvant (pre-operative) chemotherapy

greatly increases relapse-free survival (RFS) of

patients with non-metastatic disease [119, 120].

Furthermore, it allows for tumor categorization

into histological response subgroups, which has

significant prognostic and clinical value and

provides the opportunity to alter the

post-operative treatment strategies [121]. The

goal for a positive treatment with neoadjuvant

chemotherapy is to achieve at least 90%

necrosis on the surgically resected tumor

[121]. If the percent necrosis is below 90% at

resection after neoadjuvant treatment, then the

post-resection adjuvant chemotherapy regimen

can be altered. However, changing the

chemotherapy regimen post-operatively based

on response has not been shown to have a

positive impact on patient outcome [118];

indeed, another finding from the EURAMOS-1

randomized control trial series has reported

increased toxicity and secondary malignancies

from intensifying chemotherapy regimens

(adding both ifosfamide and etoposide to MAP

therapy, i.e., MAPIE) for poor responders [122].

For full treatment guidelines with detailed

workup flow charts, please refer to the NCCN

guidelines for bone cancer, Version 2.2017 [99].

SURGERY AND RADIATION
THERAPY

Surgical excision usually involves tumor

resection with negative margins, as multiple

studies have linked positive margins with an

increased risk of local recurrence (LR) and

inferior survival [123]. Classically, Enneking

et al. described four different types of surgical

margins: intralesional, marginal, wide, and

radical [108]. An intralesional margin, as the

name suggests, is obtained when the specimen

is taken from within the tumor itself. Although

these margins have little therapeutic utility,

they are often used for biopsies and have

diagnostic purposes. Marginal and wide

margins remove the lesion en bloc, with wide

leaving a substantial border of normal tissue.

This border of normal tissue surrounding the

tumor is absolutely paramount in the treatment

of OS. Despite these definitions, however, the

proper margin to obtain on a case-by-case basis

has been continually met with controversy; to

date, no general consensus has been born out of

the literature. In 2012, a retrospective cohort of

47 patients found no significant difference in LR

between groups with close (tumor\5 mm from

resection margin) and wide (tumor[5 mm from

resection margin) margins [124]. The following

year, Jeon et al. suggested that negative tumor
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margins correlate with significantly lower risks

of LR in bone and perineurovascular resection

planes while having little influence on LR in

soft tissue [125]. Furthermore, there is also

evidence to support that the risk of LR is

higher in patients treated with closer margins

[112]. In either case, when adequate margins

cannot be achieved, amputation should be

considered [126]. Naturally, limb-salvage is

greatly preferred over amputation; over 85% of

patients are candidates for this type of

procedure [127–130].

In patients with disseminated disease, the

complete resection of pulmonary metastases is

vital when possible [131, 132], as lung

metastectomy has been shown to significantly

prolong survival in this population [133, 134].

Patients with recurrent unresectable metastases

usually have poorer prognoses, even when

treated aggressively with pre-operative

chemotherapy [135]. For recurrent or

refractory disease, some studies have suggested

that incorporating etoposide into the

chemotherapy treatment regimen may be

beneficial [136]; however, these data are

controversial and associated with severe

toxicities [137]. Whenever possible, surgical

resection of recurrent disease is first-line over

systemic therapy, which is less effective and

reserved for unresectable cases [20]. Radiation

therapy may also be used to help clear

microscopic or minimal residual disease when

substantial surgical resection is not possible

[138]; however, for a majority of cases,

radiation is not used.

NEW THERAPEUTIC APPROACHES

New effective OS therapies have plateaued over

the last several decades; this lack of new

treatment strategies is reflected by unchanging

survival rates [3, 139]. As OS cells tend to

exhibit extreme genetic pleomorphism,

therapeutic attempts to target specific cell

receptors and intracellular signaling molecules

have not significantly increased survival. In

addition, and likely as a result of its

pleomorphism, OS cells exhibit strong

chemotherapy resistance, most notably in the

15–20% of patients initially presenting with

detectable metastases at the time of diagnosis

[15], and who consequently have the poorest

prognoses [17–22]. Therefore, MAP adjuvant

treatment strategies have had minimal

beneficial effects on this subset of patients

[140]; as such, a number of alternative

therapeutic modalities have been investigated.

Various biologics and small molecules have

been used to target cell-surface receptors and

downstream signaling pathways involved in OS

pathogenesis. For example, as HER2 is often

expressed in a subset of OS cell lines and has

been associated with poorer prognoses [141], a

phase II trial was conducted using trastuzumab

to target HER2-positive OS; however, despite

minimal drug reactions and additional toxicity,

no significant difference in groups was observed

[142]. Pappo et al. conducted a similar phase II

trial targeting another receptor commonly

expressed by malignant cells, IGF-1R [143];

again, clinical responses were underwhelming

[144]. The PI3K/mTOR pathway [145, 146] and

mitogen-activated protein kinases [146, 147]

have also recently been recognized as potential

targets and their therapeutic significance is

currently under investigation.

Over the past few decades, increasing

evidence has suggested that platelets and other

mesenchymal cells, notably the PDGFR-alpha-R

for OS [148], can assist tumor cell pathogenesis

[149]. Indeed, Labelle et al. [150] showed that

platelet-tumor cell interactions, mediated by

activation of transforming growth factor

(TGF)-beta/SMAD (small mothers against
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decapentaplegic) and nuclear factor

(NF)-kappa-B, could promote metastasis by

inducing an epithelial–mesenchymal-like

transition. As such, Takagi et al. [151] was able

to significantly inhibit platelet-induced OS cell

proliferation by blocking Akt-mediated

downstream signaling using sunitinib.

Likewise, sunitinib has since been shown to

reduce tumor burden and lung metastasis in

mice [152]; however, the clinical significance of

these initial data is yet to be determined.

Elucidating the mechanisms of OS’s robust

chemoresistance has yielded other potentially

promising therapeutic targets. Recently, it has

been shown that HMGB1-induced autophagy

contributes to OS chemotherapy resistance

[153]; hence, this and other

chemoresistance-promoting pathways provide

the means for new therapeutic approaches and

their inhibitors deserve further investigation.

Other potential therapeutics currently under

investigation include zoledronic acid [154] and

even the natural phenolic compound,

curcumin [155].

Due to the vast heterogeneity of OS

molecular profiles [35–40, 63, 64], the future

of OS treatment may be moving away from

targeted anti-oncogenic paradigms and toward

more generalized immunomodulatory/

immunoeditory approaches [156]. Cancer

immunotherapy, although still in its infancy,

attempts to enhance tumor immunogenicity

and stimulate tumorocidal activity, thereby

reallocating the burden of disease clearance

back to the patient’s own body. Nonspecific

immunogens, cytokines, adoptive T-cells,

vaccines, oncolytic virotherapies, and

checkpoint blockades have all shown potential

therapeutic promise [157]. If deemed clinically

advantageous, these new immunotherapeutics

will likely be administered as adjuvants and

integrated into the current standard of care.

Muramyl tripeptide (MTP), which has been

shown to activate NF-jB [158] and increase

circulating levels of TNF alpha and

interleukin-6 (IL-6) in patients with OS [159],

can be packaged within liposomes [160] and

injected [161, 162]. This liposomal product

(Mifamurtide) allows for particle ingestion by

monocytes and macrophages and the

subsequent activation of their cytotoxic

function against tumor cells [163].

Tumor-associated macrophages, although

mostly thought of as being pro-tumorigenic

[164], have been found to play a potentially

significant role in preventing metastasis in

high-grade OS [165]. In patients with no

clinically detectable metastases and in those

with resectable disease, the addition of

Mifamurtide to multi-agent chemotherapy has

been shown to significantly increase event-free

survival (EFS) and overall survival with a 29%

reduction in the mortality rate at 8 years [166].

The addition of Mifamurtide also improved the

outcomes of patients who presented with

metastases at the time of diagnosis [167]. A

therapeutic synergism of MTP with zoledronic

acid on primary tumor progression has also

been suggested [168].

There have also been attempts to target

immunotherapy directly to the lungs via the

use of aerosols, which have the potential benefit

of lowering systemic toxicity by being delivered

directly to the site of action [169]. OS relapse

most commonly occurs as pulmonary

metastasis [105], with patient survival often

being below 30% [170, 171] and as low as 14%

[20] in these cases. Granulocyte–macrophage

colony stimulating factor (GM-CSF), a molecule

with multiple roles in immune regulation and

phagocyte maturation [172], was recently used

in a phase II trial of post-relapse OS patients to

investigate its effect on disease-free survival

(DFS). However, despite the ability to reach
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adequately high doses with minimal side

effects, no significant improvement in survival

was seen [173]. While these results are

disappointing, they may indicate that the

immunomodulatory effects of GM-CSF alone

were not enough to influence a tumorocidal

environment. Unfortunately, there was no

investigation of whether GM-CSF treatment

resulted in any biologic effect on the lung

tumor nodules. Therefore, it is hard to assess

whether this therapy resulted in the desired

effect in terms of activating an immune

response in the lung. Thus, the possibility

remains that the lack of therapeutic effect was

secondary to the inability of GM-CSF to

stimulate an immune response in the lung.

Indeed, there is growing evidence to support

that the chemical profile of tumor

microenvironments comprises an

astonishingly complex constellation of

signaling molecules in various distributions

[174, 175] and it is highly possible that further

manipulation may be necessary to achieve an

effective tumorocidal environment [176]. As

such, Zeidner et al. and Wang et al. have

shown that combinations of GM-CSF with

interferon (IFN) and IL-12 therapy improved

outcomes for chronic myeloid leukemia

patients [177] and increased antitumor effects

against murine hepatocellular carcinoma [178],

respectively. Another more recent

immunotherapeutic attempt at combating OS

pulmonary metastasis with combination

immunotherapy included aerosol IL-2 with

adjuvant natural killer (NK) cell infusions,

which has shown enhanced efficacy compared

to IL-2 or NK cell infusions alone [179]. Other

cytokines, including IL-15 and IL-12, have been

shown to increase natural killer cell-mediated

lysis of chemotherapy-resistant OS cells [180]

and suppress pulmonary metastasis formation

[181], respectively.

IFN immunotherapy has also shown

promise in the treatment of OS. IFN-a, while

initially recognized for its ability to inhibit

viral replication, is now used in the treatment

of a variety of different solid and

hematological cancers [182]. In OS, it has

been shown to suppress tumor invasion as

well as enhance the cytotoxic effects of

cisplatin [183]. In 2015, Bielack et al.

conducted an international randomized,

controlled trial comparing the efficacy of

MAP therapy alone versus MAP plus pegylated

interferon alpha-2b in 2260 registered patients;

however, the results were complicated by

insufficient patient adherence and no

statistical difference in outcome was found

[184]. In 2015, Gao et al. revealed that

IFN-lambda1, a relatively new member of the

interferon family [185], inhibits the invasive

properties of MG-63 human osteosarcoma cell

lines in vitro [186]. Another in vitro study

showed that INF-gamma can enhance the

ability of cd T cells to target and kill HOS

and U2OS OS cell lines [187].

As it is now widely accepted that tumors

often promote suppression of the immune

system in order to facilitate their pathogenesis

[188], many immunotherapies have shown

promise by targeting immunoregulatory

cell-surface markers. Programmed death ligand

1 (PD-L1) and cytotoxic

T-lymphocyte-associated protein 4 (CTLA-4)

are surface receptors involved in

down-regulating the cytotoxic T cell response

[189–191] and their blockade has been

implicated in the treatment of a variety of

cancers [192]. Interestingly, combined blockade

of PD-L1 and CTLA-4 has been shown not only

to completely eliminate metastatic

osteosarcoma in murine models but also to

induce immunity to further inoculation

[193, 194].
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CONCLUSIONS

Over the past 25 years, altering or intensifying

the chemotherapy regimens for newly

diagnosed osteosarcoma patients has failed to

improve the 65–70% long-term survival. The

only success in improving patient outcomes was

the addition of Mifamurtide to the three-drug or

four-drug regimen. Combining Mifamurtide

with chemotherapy increased long-term

survival from 70 to 78% at 8 years [166] and

improved the outcome of patients who

presented with metastases at diagnosis [167].

This improvement shows that immunotherapy

is effective against this cancer. As OS therapies

move forward over the next 5 years, it is likely

that both immunostimulation and suppression

blockade immunotherapies will play emerging

roles. The genetic heterogeneity and

morphological adaptability of OS necessitates a

more comprehensive treatment approach, as the

disease’s molecular repertoire is too vast to be

treated successfully by targeted therapies alone.

Successful treatment will almost certainly

require a combination of these different

techniques to best achieve an effective

tumorocidal environment; the key will lie in

recognizing what specific role each immune cell

plays and how best to assist its function.
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49. Patiño-Garcı́a A, Piñeiro ES, Dı́ez MZ, Iturriagagoitia
LG, Klüssmann FA, Ariznabarreta LS. Genetic and
epigenetic alterations of the cell cycle regulators and
tumor suppressor genes in pediatric osteosarcomas.
J Pediatr Hematol Oncol. 2003;25(5):362–7.

50. Miller CW, Aslo A, Tsay C, Slamon D, Ishizaki K,
Toguchida J, Koeffler HP. Frequency and structure
of p53 rearrangements in human osteosarcoma.
Cancer Res. 1990;50(24):7950–4.

51. Overholtzer M, Rao PH, Favis R, Lu XY, Elowitz MB,
Barany F, Levine AJ. The presence of p53 mutations
in human osteosarcomas correlates with high levels
of genomic instability. Proc Natl Acad Sci.
2003;100(20):11547–52.

52. Miller CW, Aslo A, Won A, Tan M, Lampkin B,
Koefflar HP. Alterations of thep53, Rb andMDM2
genes in osteosarcoms. J Cancer Res Clin Oncol.
1996;122(9):559–65.
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Chott A. Expression of platelet-derived growth
factor-AA is associated with tumor progression in
osteosarcoma. Mod Pathol. 2003;16(1):66–71.

149. Nash GF, Turner LF, Scully MF, Kakkar AK. Platelets
and cancer. Lancet Oncol. 2002;3(7):425–30.

150. Labelle M, Begum S, Hynes RO. Direct signaling
between platelets and cancer cells induces an
epithelial-mesenchymal-like transition and
promotesmetastasis.CancerCell. 2011;20(5):576–90.

151. Takagi S, Takemoto A, Takami M, Oh-hara T, Fujita
N. Platelets promote osteosarcoma cell growth
through activation of the platelet-derived growth
factor receptor-Akt signaling axis. Cancer Sci.
2014;105(8):983–8.

152. Kumar RMR, Arlt MJ, Kuzmanov A, Born W, Fuchs
B. Sunitinib malate (SU-11248) reduces tumour
burden and lung metastasis in an intratibial
human xenograft osteosarcoma mouse model. Am
J Cancer Res. 2015;5(7):2156.

153. Huang J, Liu K, Yu Y, Xie M, Kang R, Vernon PJ, Ni J.
Targeting HMGB1-mediated autophagy as a novel
therapeutic strategy for osteosarcoma. Autophagy.
2012.

154. Ouyang Z, Li H, Zhai Z, Xu J, Dass CR, Qin A, Dai K.
Zoledronic acid: pleiotropic anti-tumor mechanism

and therapeutic outlook for osteosarcoma. Curr
Drug Targets. 2015.

155. Chang R, Sun L, Webster TJ. Short communication:
selective cytotoxicity of curcumin on osteosarcoma
cells compared to healthy osteoblasts. Int J
Nanomed. 2014;9:461–5.

156. Mori K, Rédini F, Gouin F, Cherrier B, Heymann D.
Osteosarcoma: current status of immunotherapy
and future trends (Review). Oncol Rep.
2006;15(3):693–700.

157. Wan J, Zhang X, Liu T, Zhang X. Strategies and
developments of immunotherapies in osteosarcoma
(Review). Oncol Lett. 2016;11(1):511–20.

158. Ortega RA, Barham W, Kumar B, Shann SY, Yull F,
Giorgio TD. Reprogramming tumor associated
macrophages toward an anti-tumor phenotype by
targeting the NF-jB pathway using novel targeted
nanotherapeutics. Cancer Res. 2013;73(8
Supplement):3981.

159. Kleinerman ES, Jia SF, Griffin J, Seibel NL, Benjamin
RS, Jaffe N. Phase II study of liposomal muramyl
tripeptide in osteosarcoma: the cytokine cascade
and monocyte activation following administration.
J Clin Oncol. 1992;10(8):1310–6.

160. Meyers PA, Chou AJ. Muramyl
tripeptide-phosphatidyl ethanolamine
encapsulated in liposomes (L-MTP-PE) in the
treatment of osteosarcoma. In: Current advances
in osteosarcoma. Springer International Publishing;
2014. p. 307–21.

161. Lammers TGGM, Hennink WE, Storm G.
Tumour-targeted nanomedicines: principles and
practice. Br J Cancer. 2008;99(3):392–7.

162. Fang J. Nano-or submicron-sized liposomes as
carriers for drug delivery. Chang Gung Med J.
2006;29(4):358–62.

163. Kleinerman ES, Erickson KL, Schroit AJ, Fogler WE,
Fidler IJ. Activation of tumoricidal properties in
human blood monocytes by liposomes containing
lipophilic muramyl tripeptide. Cancer Res.
1983;43(5):2010–4.

164. Mantovani A, Sozzani S, Locati M, Allavena P, Sica
A. Macrophage polarization: tumor-associated
macrophages as a paradigm for polarized M2
mononuclear phagocytes. Trends Immunol.
2002;23(11):549–55.

165. Buddingh EP, Kuijjer ML, Duim RA, Bürger H,
Agelopoulos K, Myklebost O, Cleton-Jansen AM.
Tumor-infiltrating macrophages are associated with
metastasis suppression in high-grade osteosarcoma:
a rationale for treatment with macrophage

Rheumatol Ther (2017) 4:25–43 41



activating agents. Clin Cancer Res.
2011;17(8):2110–9.

166. Meyers PA, Schwartz CL, Krailo MD, Healey JH,
Bernstein ML, Betcher D, Kleinerman E.
Osteosarcoma: the addition of muramyl tripeptide
to chemotherapy improves overall survival—a
report from the Children’s Oncology Group. J Clin
Oncol. 2008;26(4):633–8.

167. Chou AJ, Kleinerman ES, Krailo MD, Chen Z,
Betcher DL, Healey JH, Womer RB. Addition of
muramyl tripeptide to chemotherapy for patients
with newly diagnosed metastatic osteosarcoma.
Cancer. 2009;115(22):5339–48.

168. Biteau K, Guiho R, Chatelais M, Taurelle J,
Chesneau J, Corradini N, Redini F. L-MTP-PE and
zoledronic acid combination in osteosarcoma:
preclinical evidence of positive therapeutic
combination for clinical transfer. Am J Cancer Res.
2016;6(3):677.

169. Jia SF, Worth LL, Densmore CL, Xu B, Duan X,
Kleinerman ES. Aerosol gene therapy with PEI IL-12
eradicates osteosarcoma lung metastases. Clin
Cancer Res. 2003;9(9):3462–8.

170. Strauss SJ, McTiernan A, Whelan JS. Late relapse of
osteosarcoma: implications for follow-up and
screening. Pediatr Blood Cancer. 2004;43(6):692–7.

171. Chi SN, Conklin LS, Qin J, Meyers PA, Huvos AG,
Healey JH, Gorlick R. The patterns of relapse in
osteosarcoma: the memorial Sloan-Kettering
experience. Pediatr Blood Cancer.
2004;42(1):46–51.

172. Hamilton JA. GM-CSF in inflammation and
autoimmunity. Trends Immunol. 2002;23(8):403–8.

173. Arndt CA, Koshkina NV, Inwards CY, Hawkins DS,
Krailo MD, Villaluna D, Bell SA. Inhaled GM-CSF for
first pulmonary recurrence of osteosarcoma; effects
on disease free survival and immunomodulation: a
report from the Children’s Oncology Group. Clin
Cancer Res Off J Am Assoc Cancer Res.
2010;16(15):4024.

174. Wilson J, Balkwill F. The role of cytokines in the
epithelial cancer microenvironment. In: Seminars
in cancer biology, vol. 12, no. 2. Academic Press;
2002. p. 113–120.

175. Dranoff G. Cytokines in cancer pathogenesis and
cancer therapy. Nat Rev Cancer. 2004;4(1):11–22.

176. Lasfar A, Abushahba W, Balan M, Cohen-Solal KA.
Interferon lambda: a new sword in cancer
immunotherapy. Clin Develop Immunol.
2011;2011:349575.

177. Zeidner JF, Gladstone DE, Zahurak M, Matsui WH,
Gocke C, Jones RJ, Smith BD.
Granulocyte-macrophage colony stimulating
factor (GM-CSF) enhances the clinical responses to
interferon-a (IFN) in newly diagnosed chronic
myeloid leukemia (CML). Leuk Res. 2014;38(8):
886–90.

178. Wang Z, Qiu SJ, Ye SL, Tang ZY, Xiao X. Combined
IL-12 and GM-CSF gene therapy for murine
hepatocellular carcinoma. Cancer Gene Therapy.
2001;8(10):751–8.

179. Guma SR, Lee DA, Yu L, Gordon N, Hughes D,
Stewart J, Kleinerman ES. Natural killer cell therapy
and aerosol interleukin-2 for the treatment of
osteosarcoma lung metastasis. Pediatr Blood
Cancer. 2014;61(4):618–26.

180. Buddingh EP, Schilham MW, Ruslan SEN, Berghuis
D, Szuhai K, Suurmond J, Hogendoorn PC.
Chemotherapy-resistant osteosarcoma is highly
susceptible to IL-15-activated allogeneic and
autologous NK cells. Cancer Immunol
Immunother. 2011;60(4):575–86.

181. Worth LL, Jia SF, Zhou Z, Chen L, Kleinerman ES.
Intranasal therapy with an adenoviral vector
containing the murine interleukin-12 gene
eradicates osteosarcoma lung metastases. Clin
Cancer Res. 2000;6(9):3713–8.

182. Belardelli F, Ferrantini M, Proietti E, Kirkwood JM.
Interferon-alpha in tumor immunity and
immunotherapy. Cytokine Growth Factor Rev.
2002;13(2):119–34.

183. Zhao J, Wang M, Li Z, Chen J, Yin Z, Chang J, Wang
S. Interferon-a suppresses invasion and enhances
cisplatin-mediated apoptosis and autophagy in
human osteosarcoma cells. Oncol Lett.
2014;7(3):827–33.

184. Bielack SS, Smeland S, Whelan JS, Marina N, Jovic
G, Hook JM, Nadel H. Methotrexate, doxorubicin,
and cisplatin (MAP) plus maintenance pegylated
interferon alfa-2b versus MAP alone in patients with
resectable high-grade osteosarcoma and good
histologic response to preoperative MAP: first
results of the EURAMOS-1 good response
randomized controlled trial. J Clin Oncol.
2015;33(20):2279–87.
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