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INTRODUCTION 
 

Pancreatic cancer is a highly aggressive disease and one 

of leading cause of cancer related mortality [1, 2]. Most 

pancreatic cancer patients are diagnosed at advanced 

stages due to nonspecific symptoms. The treatment 

options of pancreatic cancer are limited [3–5].  

Moreover, most of pancreatic cancer patients are resistant 

 

to current therapies [6, 7], contributing to the worst 

prognosis of pancreatic cancer. The 5-year overall 

survival rate of pancreatic cancer is only 5% -8% [8, 9]. 

Although, mutational landscape [10], gene expression 

[11], microRNA signature [12] and lncRNA expression 

profiling [13] are used as biomarkers for patients with 

pancreatic cancer, effective new diagnostic and 

prognostic biomarkers are badly needed [14].  
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ABSTRACT 
 

Pancreatic cancer is characterized by multiple genomic alterations, including KRAS mutations, TP53 mutations 
and CDKN2A deletion. However, the prognostic relevance of those genomic alterations and associated 
transcriptomic profiling in pancreatic cancer are unclear. Integrated analysis of The Cancer Genome Atlas 
(TCGA) datasets revealed that KRAS mutation, TP53 mutation and CDKN2A deletion were all bad prognostic 
factors in pancreatic cancer. And KRAS mutation, TP53 mutation and CDKN2A deletion were coordinated and 
co-occurred in pancreatic cancer. Transcriptomic analysis showed that MMP14 and PKM2 were both up-
regulated by KRAS mutation, TP53 mutation or CDKN2A deletion. Also, MMP14 and PKM2 were both 
associated with unfavorable outcomes in pancreatic cancer. Compared with normal tissues, MMP14 and PKM2 
were up-regulated in pancreatic cancer tissues. Moreover, MMP14 and PKM2 were highly expressed in high 
grade of pancreatic cancer. Furthermore, MMP14 and PKM2 were correlated with each other, and the 
combination of MMP14 and PKM2 could be used as better prognostic markers than MMP14 or PKM2 alone. At 
last, the high expression and bad prognostic effects of MMP14 and PKM2 in pancreatic cancer were validated 
using tissue microarray. Overall, the genomic alterations and associated transcriptomic profiling analysis 
suggested new prognostic makers of MMP14 and PKM2 in pancreatic cancer. 
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As the collection of genomic data, the biological 

behaviors of drive mutations in pancreatic cancer are 

extensively studied. The first whole-exome sequencing 

study suggests that pancreatic cancer is characterized by 

KRAS mutation, TP53 mutation, CDKN2A deletion 

and SMAD alteration [15]. After that, whole-genome 

sequencing [16], integrated genomic and transcriptomc 

analysis [17], including efforts from TCGA network 

[18] validate the KRAS, TP53 mutations and CDKN2A, 

SMAD copy number alterations in pancreatic cancer. 

KRAS mutation is required for the initiation and 

maintenance of malignant state of pancreatic cells by 

regulation of metabolism and senescence [19–21]. 

KRAS mutation also cooperates with TP53 mutation 

[22] or SMAD4 alteration [23] to promote the metas-

tasis of pancreatic cancer. Moreover, pancreatic cancer 

patients with KRAS mutation, TP53 mutation, 

CDKN2A deletion and SMAD alteration tend to have 

worse clinical outcomes [24–26]. However, some long-

term survivors of pancreatic cancer patients are not 

determined by the genetic mutations [27]. So, the 

synergism of KRAS mutation, TP53 mutation, 

CDKN2A deletion and SMAD alteration in the 

prognosis of pancreatic cancer still need to be 

illustrated. Furthermore, the prognostic effects of 

genomic alterations associated transcriptomic profiling 

in pancreatic cancer are unknown.   

 

In the present study, using large cohorts of pancreatic 

cancer patients derived from TCGA datasets and Gene 

Expression Omnibus (GEO) datasets, the prognostic 

significance of KRAS mutation, TP53 mutation, 

CDKN2A deletion and SMAD alteration was 

determined. Also transcriptomic profiling associated 

with KRAS mutation, TP53 mutation and CDKN2A 

deletion and their prognostic effects were identified and 

validated in pancreatic cancer. 

 

RESULTS 
 

Prognostic relevance of genomic alterations in 

patients with pancreatic cancer 

 

Pancreatic cancer is characterized with KRAS and TP53 

mutation, CDKN2A deletion and SMAD4 alteration. 

First, we determined the prognosis of those genomic 

alterations using TCGA Pancreatic adenocarcinoma 

(PAAD) datasets. We found that KRAS mutation, TP53 

mutation and CDKN2A deletion were all associated 

with the clinical overall survival of patients with 

pancreatic cancer (Figure 1A). Patients with KRAS 

mutation, TP53 mutation or CDKN2A deletion 

demonstrated worse prognosis compared with patients 

without KRAS mutation, TP53 mutation or CDKN2A 

deletion (Figure 1A). Moreover, compared with TP53 

mutation or CDKN2A deletion, KRAS mutation was a 

more significant prognostic factor (Figure 1A). 

However, there was no different clinical overall survival 

between pancreatic cancer patients with or without 

SMAD4 alterations (Figure 1A).  

 

Similar conclusions were derived from univariate cox 

regression analysis. KRAS mutation, TP53 mutation 

and CDKN2A deletion were all prognostic factors in 

patients with pancreatic cancer in TCGA datasets 

(Figure 1B), while, SMAD4 alteration was not 

associated with the clinical outcomes of pancreatic 

cancer patients (Figure 1B).  

 

Coordination and co-occurrence of the genomic 

alterations in patients with pancreatic cancer 

 

Using multivariate cox regression analysis, we 

determined the association of KRAS mutation, TP53 

mutation and CDKN2A deletion in the prediction of 

overall survival in pancreatic cancer patients. We found 

that KRAS mutation was an independent prognostic 

factor (Figure 1B). However, TP53 mutation and 

CDKN2A deletion were interconnected and were not 

independent prognostic factors (Figure 1B).   

 

Next, we tested the combination of KRAS mutation and 

TP53 mutation in determining the overall survival of 

patients with pancreatic cancer. Patients with both 

KRAS mutation and TP53 mutation had worst 

prognosis than patients with KRAS mutation or TP53 

mutation, or without mutations (Figure 2A). Moreover, 

patients with both KRAS mutation and CDKN2A 

deletion also had worst prognosis than patients with 

KRAS mutation or CDKN2A deletion, or without 

alterations (Figure 2A). Results derived from 

multivariate cox regression and Kaplan-Meier analysis 

suggested the coordination of KRAS mutation, TP53 

mutation and CDKN2A deletion in the predication of 

overall survival of pancreatic cancer patients. 

 

Furthermore, genetically, KRAS mutation, TP53 

mutation and CDKN2A deletion were also connected. 

Among the 175 pancreatic cancer patients in TCGA 

PAAD datasets, 117 patients were with KRAS mutation, 

108 patients were with TP53 mutation and 87 patients 

were with CDKN2A deletion (Figure 2B). Interestingly, 

90 pancreatic cancer patients (51%) were with both 

KRAS and TP53 mutations, 77 pancreatic cancer patients 

(44%) were with both KRAS mutation and CDKN2A 

deletion, and 66 pancreatic cancer patients (37%) were 

with both TP53 mutation and CDKN2 deletion (Figure 

2B). Statistic analysis showed that the co-occurrence of 

KRAS mutation, TP53 mutation and CDKN2A deletion 

was significant (Figure 2B). However, SMAD4 alteration 

was not significantly co-occurred with TP53 mutation or 

CDKN2A deletion (Figure 2B).  
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Identification of genomic alterations associated 

transcriptomic profiling 

 

The genomic alterations may influent the expression 

levels of hundred genes to promote the development of 

pancreatic cancer. Next, the genes regulated by KRAS 

mutation, TP53 mutation or CDKN2A deletion were 

identified. We found that 4799 genes were differentially 

expressed in pancreatic cancer patients with or without 

KRAS mutation. 3157 genes were differentially 

expressed in pancreatic cancer patients with or without 

TP53 mutation. And 3740 genes were regulated by 

CKDN2A deletion (Figure 3A). Among all the 

differentially expressed genes, 1575 genes were 

commonly regulated by KRAS mutation, TP53 

mutation and CDKN2A deletion (Figure 3A). And those

 

 

 

Figure 1. Prognostic relevance of genomic alterations in patients with pancreatic cancer. (A) Kaplan-Meier plots demonstrated 
the prognostic effects of KRAS, TP53, CDKN2A and SMAD4 alterations in patients with pancreatic cancer in TCGA PAAD datasets. The log-rank 
test was used to determine the different overall survival between patients with (red) or without (blue) genomic alterations. (B) Univariate 
and multivariate cox regression were used to test the prognostic significance of KRAS, TP53, CDKN2A and SMAD4 alterations in patients with 
pancreatic cancer in TCGA PAAD datasets. The log-rank test was used to determine the overall survival P-value. HR, hazard ratio; CI, 
confidence interval. 
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genes classified the pancreatic cancer patients into two 

different clusters with different genomic KRAS, TP53 

and CDKN2A alterations (Figure 3B). 

 

We further determined the enriched signaling 

pathways associated with KRAS mutation, TP53 

mutation and CDKN2A deletion. Consistent with the 

TP53 mutation in pancreatic cancer, we found that 

TP53 signaling pathway was most significantly en-

riched (Figure 3C). We also found that cell cycle, 

pathways in cancer, Hippo signaling pathway and Wnt 

signaling pathway were associated with KRAS 

mutation, TP53 mutation or CDKN2A deletion in 

pancreatic cancer (Figure 3C). 

 

Some pancreatic cancer patients are with ERBB2 

amplification [16, 18]. We found that ERBB2 

expression was also up regulated by KRAS, TP53 and 

CDKN2A alterations. In pancreatic cancer patients with 

KRAS mutation, TP53 mutation or CDKN2A deletion, 

the expression levels of ERBB2 were relatively higher 

(Figure 3D). Although, SMAD4 was not genetically 

 

 
 

Figure 2. Coordination and co-occurrence of the genomic alterations in patients with pancreatic cancer. (A) Kaplan-Meier plots 
demonstrated the different overall survival of pancreatic cancer patients with different genomic alterations. P values were generated from 
Log-rank test. (B) Oncoprint demonstrated the co-occurrence of KRAS, TP53, CDKN2A and SMAD4 alterations in patients with pancreatic 
cancer derived from TCGA PAAD datasets. Each line represented one patient. 
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Figure 3. Identification of genomic alterations associated transcriptomic profiling. (A) Venn diagram depicted the number of 
commonly regulated genes by KRAS mutation, TP53 mutation and CDKN2A deletion in TCGA PAAD datasets. (B) Unsupervised clustering 
heatmap demonstrated the commonly regulated genes by KRAS mutation, TP53 mutation and CDKN2A deletion in TCGA PAAD datasets. Up-
regulated (red), down-regulated (green) and unchanged (black) genes were delineated. (C) Functional pathway enrichment analysis of KRAS 
mutation, TP53 mutation and CDKN2A deletion commonly regulated genes using DAVID. The most significantly enriched pathways were 
shown. (D) Box plots showed the ERBB2 expression levels (log2 normalization count) in TCGA pancreatic cancer patients with or without 
genomic alterations. P values were performed using Student’s t test. (E) Box plots showed the SMAD4 expression levels (log2 normalization 
count) in TCGA pancreatic cancer patients with or without genomic alterations. 
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co-occurred with TP53 and CDKN2A, the expression 

levels of SMAD4 were also relatively higher in 

pancreatic cancer patients with KRAS mutation, TP53 

mutation or CDKN2A deletion (Figure 3E). 

 

MMP14 and PKM2 are regulated by KRAS 

mutation, TP53 mutation and CDKN2A deletion and 

associated with the prognosis of patients with 

pancreatic cancer 

 

Next, we determined the prognostic relevance of the 

1575 commonly regulated genes by KRAS mutation, 

TP53 mutation and CDKN2A deletion. Kaplan-Meier 

survival analysis revealed that 884 genes (56%) were 

significantly associated with the clinical overall survival 

of patients with pancreatic cancer derived from TCGA 

PAAD datasets (Figure 4A). We used another three 

GEO datasets GSE71729, GSE78229 and GSE79668 to 

further validate the prognostic relevance of the KRAS 

mutation, TP53 mutation and CDKN2A deletion 

commonly regulated genes. 151 genes out of the 1575 

genes were demonstrated prognostic effects in 

GSE71729 dataset. 167 genes in GSE78229 and 338 

genes in GSE79668 were also associated with the 

prognosis of patients with pancreatic cancer (Fig4. A). 

Interesting, we found six genes E2F7, CDC6, MMP14, 

PLK1, VASP and PKM2 were significantly correlated 

with the prognosis of patients with pancreatic cancer in 

TCGA, GSE71729, GSE78229 and GSE79668 datasets 

(Figure 4A). 

 

E2F7, CDC6, MMP14, PLK1, VASP and PKM2 were 

up-regulated in patients with KRAS, TP53 or CDKN2A 

alterations (Figure 4B). Moreover, MMP14 and PKM2 

were clustering with each other as demonstrated in the 

heatmaps (Figure 4B). Expression levels of MMP14 and 

PKM2 were further illustrated in the box plots (Figure 

4C). Compared with patients without KRAS, TP53 or 

CDKN2A alterations, MMP14 and PKM2 were highly 

expressed in pancreatic cancer patients with KRAS, 

TP53 or CDKN2A alterations (Figure 4C). Moreover, 

the higher expression levels of MMP14 and PKM2 were 

correlated with the worse prognosis in patients with 

pancreatic cancer in TCGA, GSE71729, GSE78229 and 

GSE79668 datasets (Figure 4D).  

 

Validation of the prognosis of MMP14 and PKM2 in 

three GEO datasets 

 

Additionally, the prognostic effects of MMP14 and 

PKM2 were further validated using GSE21520, 

GSE28735 and GSE57495 datasets. In GSE21510 and 

GSE28735 datasets, the higher expression level of 

MMP14 was associated with worse prognosis in 

patients with pancreatic cancer (Figure 5A). Although 

less significantly, patients with higher expression level 

of MMP14 was related to bad clinical outcomes in 

GSE57495 dataset (Figure 5A).  

 

In GSE21520 and GSE57495 datasets, higher 

expression level of PKM2 was also associated with 

worse prognosis in patients with pancreatic cancer 

(Figure 5B). However, there was no prognostic effect of 

PKM2 in pancreatic cancer patients in GSE28735 

dataset (Figure 5B). Moreover, other genes E2F7, 

CDC6, PLK1 and VASP showed litter or no prognostic 

significance in GSE21520, GSE28735 and GSE57495 

datasets. Those results highlighted that MMP14 and 

PKM2 were important prognostic markers in patients 

with pancreatic cancer. 

 

Expression levels of MMP14 and PKM2 in normal 

and malignant pancreatic tissues 
 

The expression levels of E2F7, CDC6, MMP14, PLK1, 

VASP and PKM2 in normal and malignant pancreatic 

tissues were investigated in GSE15471, GSE16515, 

GSE28735, GSE53452, GSE56560, GSE60646, 

GSE62452, GSE71729 and GSE71989 datasets. As 

illustrated in the heatmaps, MMP14 and PKM2 were up-

regulated in malignant pancreatic tissues in all nine 

datasets (Figure 6). Moreover, MMP14 and PKM2 were 

closely clustered into a small sub-group (Figure 6). The 

other four genes E2F7, CDC6, PLK1and VASP were also 

up-regulated in malignant pancreatic tissues (Figure 6). 

 

Expression levels of MMP14 and PKM2 in different 

subtypes of patients with pancreatic cancer. 
 

Pancreatic cancer is a heterogeneous disease. We then 

assessed the expression levels of MMP14 and PKM2 in 

pancreatic cancer patients with different subtypes. 

Compared with T2 stage, the expression levels of 

MMP14 was relatively higher in patients with T3 stage 

(Figure 7A). Also, MMP14 was highly expressed in 

stage II and grade 3 pancreatic cancer patients (Figure 

7A). However, there were no different expression levels 

of PKM2 in different stages of patients with pancreatic 

cancer. Only, compared with grade 2, the expression 

levels of PKM2 were relatively higher in patients with 

grade 3 (Figure 7A).  Compared with grade 2, the 

higher expression levels of MMP14 and PKM2 in grade 

3 subtype of pancreatic cancer patients were also 

observed in GSE78829 dataset (Figure 7B).  

 

We also tested whether KRAS mutation, TP53 mutation 

and CDKN2A deletion were associated with the therapy 

responsiveness in patients with pancreatic cancer. In 

TCGA PAAD datasets, 70% pancreatic cancer patients 

with KRAS mutations were un-responsive to cancer 

therapy, while, 49% patients without KRAS mutations 

were un-responsive to cancer therapy (Figure 7C). 
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Figure 4. MMP14 and PKM2 are regulated by KRAS mutation, TP53 mutation and CDKN2A deletion and associated with the 
prognosis of patients with pancreatic cancer. (A) Venn diagram depicted that six genes E2F7, CDC6, MMP14, PLK1, VASP and PKM2 
were associated with the prognosis of patients with pancreatic cancer in TCGA, GSE71729, GSE78229 and GSE79668 datasets. (B) 
Unsupervised clustering heatmap demonstrated the expression levels of E2F7, CDC6, MMP14, PLK1, VASP and PKM2 in TCGA PAAD datasets. 
(C) Box plots showed the MMP14 and PKM2 expression levels (log2 normalization count) in TCGA pancreatic cancer patients with or without 
genomic alterations. P values were performed using Student’s t test. (D) Kaplan-Meier survival analysis was used to compare the overall 
survival of MMP14 or PKM2 highly expressed patients (red) with MMP14 or PKM2 lowly expressed patients (black) in TCGA, GSE71729, 
GSE78229 and GSE79668 datasets. P values were generated from Log-rank test.  
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Statistically, KRAS mutation was significantly 

associated with the therapy responsiveness (Figure 7C). 

Similarly, pancreatic cancer patients with CDKN2A 

deletion were prone to become therapy un-responsive 

(Figure 7C). Corresponding to the higher un-

responsiveness of pancreatic cancer patients with KRAS 

mutation or CDKN2A deletion, we found that MMP14 

and PKM2 were highly expressed in drug un-responsive 

patients (Figure 7D). 

 

Combined prognostic significance of MMP14 and 

PKM2 in patients with pancreatic cancer 

 

Next, we determined the connections of MMP14 and 

PKM2 in patients with pancreatic cancer. First, 

Spearman correlation demonstrated positive correlations 

of MMP14 and PKM2 in GSE71729, GSE78229 and 

TCGA datasets (Figure 8A). Patients with high 

expression levels of MMP14 were also with high 

expression of PKM2. Second, using multivariate cox 

regression analysis, we determined the association of 

MMP14 and PKM2 in overall survival prediction. We 

found that, MMP14 and PKM2 were not independent 

prognostic factors in TCGA PAAD datasets (Figure 

8B). We thought that the combination of MMP14 with 

PKM2 could be used as better prognostic markers in 

patients with pancreatic cancer. Based on the average 

expression levels of MMP14 and PKM2, pancreatic 

cancer patients were divided into MMP14 and PKM2 

high expression group or MMP14 and PKM2 low 

expression group. We found that patients with both high 

MMP14 and PKM2 expression levels were with lowest 

 

 
 

Figure 5. Validation of the prognosis of MMP14 and PKM2 in three GEO datasets. (A) Kaplan-Meier survival analysis was used to 
compare the overall survival of MMP14 highly expressed patients (red) with MMP14 lowly expressed patients (black) in GSE21250, GSE28735 
and GSE57495 datasets. P values were generated from Log-rank test. (B) Kaplan-Meier survival analysis was used to compare the overall 
survival of PKM2 highly expressed patients (red) with PKM2 lowly expressed patients (black) in GSE21250, GSE28735 and GSE57495 datasets. 
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overall survival in patients with pancreatic cancer 

(Figure 8C). Patients with the both low expression 

levels of MMP14 and PKM2 had better clinical overall 

survival in TCGA datasets (Figure 8C). Those results 

suggested the combined prognostic significance of 

MMP14 and PKM2 in patients with pancreatic cancer. 

 

Validation of the expression and prognostic 

significance of MMP14 and PKM2 in pancreatic 

cancer by tissue microarray 
 

Further, using commercial tissue microarray, we 

determined the protein expression levels of MMP14 and 

 

 
 

Figure 6. Expression levels of MMP14 and PKM2 in normal and malignant pancreatic tissues. Heatmaps demonstrated the 
expression levels of E2F7, CDC6, MMP14, PLK1, VASP and PKM2 in normal and malignant pancreatic tissues in GSE15471, GSE16515, 
GSE28735, GSE53452, GSE56560, GSE60646, GSE62452, GSE71729 and GSE71989 datasets. Up-regulated (red) and down-regulated (blue) 
genes were delineated. 
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PKM2 in Chinese pancreatic cancer patients. Totally, 

60 pancreatic cancer tissues and adjacent normal tissues 

were tested. The representative immunohistochemical 

features of the stained sections of MMP14 and PKM2 

were shown in Figure 9A. We found that compared with 

the adjacent normal tissues, MMP14 and PKM2 were 

strongly and positively stained in pancreatic cancer 

tissues (Figure 9A). 

 

The protein expression levels of MMP14 and PKM2 in 

pancreatic cancer tissues were also varied significantly. 

We identified 18 pancreatic cancer tissues were with 

high MMP14 expression and 40 pancreatic cancer 

tissues were with low MMP14 expression (Figure 9A). 

Also, we found that 35 PKM2 highly expressed and 22 

PKM2 lowly expressed pancreatic cancer tissues 

(Figure 9A). Consistent with the bad prognosis of 

 

 
 

Figure 7. Expression levels of MMP14 and PKM2 in different subtypes of patients with pancreatic cancer. (A) Box plots 
demonstrated the expression levels of MMP14 and PKM2 in different subtypes of patients with pancreatic cancer in TCGA datasets. P values 
were determined using Student’s t test. (B) Box plots demonstrated the expression levels of MMP14 and PKM2 in different grades of patients 
with pancreatic cancer in GSE78829 dataset. (C) Contingency graphs showed the number of patients with KRAS or CDKN2A alterations in 
different clinical responsiveness. P values were determined by Chi-square test. (D) Box plots demonstrated the expression levels of MMP14 
and PKM2 in treatment responsive or un-responsive patients with pancreatic cancer. 
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MMP14 and PKM2, pancreatic cancer patients with 

higher expression of MMP14 or PKM2 had more 

unfavorable clinical overall survival (Figure 9B). 

 

Previously, we demonstrated the positive correlations of 

MMP14 and PKM2 at mRNA expression levels in 

GSE71729, GSE78229 and TCGA datasets (Figure 8A). 

In the immunohistochemical features, we found that in 

the 18 pancreatic cancer tissues with highly stained 

sections of MMP14, 83% pancreatic cancer tissues were 

also with highly stained sections of PKM2 (Figure 9C). 

Those results further confirmed the correlation of 

MMP14 and PKM2 in pancreatic cancer. Furthermore, 

we showed that pancreatic cancer patients with both 

high MMP14 and PKM2 stained sections were with 

lowest overall survival (Figure 9D). All those results 

were consistent with our previous results derived from 

TCGA and GEO datasets. 

 

DISCUSSION 
 

The development of pancreatic cancer is driven by 

KRAS, TP53, CDKN2A and SMAD4 genetic 

alterations through a particular sequence [28, 29]. 

KRAS mutation and CDKN2A deletion are occurred in 

the initiating stage of pancreatic cancer [30, 31]. In 

contrast, TP53 mutation and SMAD alteration are 

occurred in the later tumor progression [32], which 

promote the metastasis of pancreatic cancer cells [33]. 

Moreover, the invasive phenotypes of pancreatic cancer 

are required the coordination of KRAS, TP53 and 

SMAD alterations [22, 23]. Furthermore, study of 356 

 

 
 

Figure 8. Combined prognostic significance of MMP14 and PKM2 in patients with pancreatic cancer. (A) Spearman correlation of 
MMP14 and PKM2 expression levels in GSE71729, GSE78229 and TCGA datasets. (B) Multivariate cox regression was used to test the 
prognostic significance of KRAS, TP53, CDKN2A and SMAD4 alterations and MMP14 and PKM2 expression in patients with pancreatic cancer 
in TCGA datasets. The log-rank test was used to determine the overall survival P-value. (C) Kaplan-Meier plotters demonstrated the different 
overall survival of pancreatic cancer patients with high expression levels of MMP14 and PKM2 and pancreatic cancer patients with low 
expression levels of MMP14 and PKM2 in TCGA dataset. Log-rank test was used to determine the P values. 
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Figure 9. Validation of the expression and prognostic significance of MMP14 and PKM2 in pancreatic cancer by tissue 
microarray. (A) Representative photographs of immunohistochemical features of the stained sections of MMP14 and PKM2 in pancreatic 
cancer tissues and adjacent normal tissues. (B) Kaplan-Meier survival analysis was used to determine the different overall survival of 
pancreatic cancer patients with highly stained MMP14 or PKM2 (red) and pancreatic cancer patients with low stained MMP14 or PKM2 
(blue). P values were generated from Log-rank test. (C) Contingency graphs showed the number of pancreatic cancer patients with both high 
MMP14 and PKM2 expression. P values were determined by Chi-square test. (D) Kaplan-Meier plotters demonstrated the different overall 
survival of pancreatic cancer patients with different expression levels of MMP14 and PKM2. 
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patients from Dana-Farber/Brigham and Women’s 

Cancer Center [24] and our results derived from the 

TCGA PAAD datasets showed that the KRAS, TP53 

mutation and CDKN2A deletion were synergistically 

determined the clinical overall survival of patients with 

pancreatic cancer. Previously, SMAD4 gene mutation 

was reported to be associated with the poor prognosis of 

patients with pancreatic cancer [34]. However, our results 

suggested that SMAD4 alteration was not related to the 

overall survival of pancreatic cancer. Based on our 

results, molecular assessment of KRAS, TP53 and 

CDKN2A alterations may help guiding the prognosis of 

patients with pancreatic cancer. 

 

Driver genetic alterations, like KRAS and TP53 

mutation, may affect hundred genes to induce the 

transformation of normal cells into malignant cells. 

Using TCGA PAAD datasets, we identified 1575 genes 

commonly regulated by KRAS mutation, TP53 

mutation and CDKN2A deletion in pancreatic cancer. 

Pancreatic cancer is a heterogeneous disease, and results 

derived from one cohort patients may not be repeated in 

other group of patients [35]. To avoid this 

inconsistence, we used 7 datasets to determine the 

prognostic effects of the commonly regulated genes and 

used 9 datasets to test the expression levels of the 

commonly regulated genes in normal and malignant 

pancreatic cancer tissues. Those integrated analysis 

revealed the prognostic significance of MMP14 and 

PKM2 in patients with pancreatic cancer. Previous 

results showed that MMP14 binding protein MTCBP-1 

regulated the metastasis of pancreatic tumor cells [36] 

and PKM2 was over-expressed in pancreatic cancer 

[37]. However, the associations of MMP14, PKM2 and 

overall survival of pancreatic cancer patients were 

unclear. In present study, we showed that MMP14 and 

PKM2 were up-regulated by KRAS, TP53 mutation or 

CDKN2A deletion and the higher expression levels of 

MMP14 and PKM2 were associated with the worse 

prognosis. MMP14 combined with PKM2 could be used 

as prognostic marker in patients with pancreatic cancer.  

 

Overall, by integrated analysis of TCGA and GEO 

datasets, our results provide deep understandings of 

how the KRAS, TP53, CDKN2A and SMAD4 genetic 

alterations and their related genes influence the clinical 

overall survival of pancreatic cancer patients. Our 

results also suggest new prognostic markers of 

MMP14 and PKM2 in pancreatic cancer. Furthermore, 

the prognostic effects of MMP14 and PKM2 are 

validated in Chinese pancreatic cancer patients. 

Although, the functions and correlations of MMP14 

and PKM2 in pancreatic cancer patients require further 

elucidation, the combination of MMP14 and PKM2 

could be used as better biomarkers to predict the 

overall survival of pancreatic cancer patients. 

MATERIALS AND METHODS 
 

The TCGA Pancreatic adenocarcinoma (PAAD) gene 

expression, gene mutation and clinical information 

datasets were downloaded from TCGA hub (https:// 

tcga.xenahubs.net). The gene expression series matrix of 

pancreatic cancer patients and clinical overall survival 

datasets were downloaded from the GEO website 

(https://www.ncbi.nlm.nih.gov/geo), including 

GSE21520, GSE28735, GSE57495, GSE71729, 

GSE78229 and GSE79668 datasets. The gene expression 

series matrix of pancreatic normal and malignant tissues 

was downloaded from GSE15471, GSE16515, 

GSE28735, GSE53452, GSE56560, GSE60646, 

GSE62452, GSE71729 and GSE71989 datasets. 

 

Oncoprints of KRAS mutation, TP53 mutation, 

CDKN2A deletion and SMAD alteration 
 

The genomic tendency of KRAS mutation, TP53 

mutation, CDKN2A deletion and SMAD alteration in 

patients with pancreatic cancer were downloaded from 

cbioportal (version 3.2.0, http://www.cbioportal. 

org/index.do) based on the TCGA PAAD datasets. 

 

KRAS mutation, TP53 mutation, CDKN2A deletion 

associated transcriptomic profiling 
 

The KRAS mutation, TP53 mutation, CDKN2A 

deletion regulated genes were determined using paired 

Student’s t test based on TCGA RNA-seq datasets. 

 

GEO data processing 
 

The GEO expression datasets were processed using R 

software (version 3.5.0, https://www.r-project.org/). Data 

splitting, applying and combining was applied by ‘plyr’ 

package (version 1.8.5), based on the constructions 

downloaded from bioconductor (https://cran.r-project.org/ 

web/packages/plyr/index.html). 

 

Venn diagram 

 

KRAS mutation, TP53 mutation, CDKN2A deletion 

commonly regulated genes were described by Venn 

diagrams which were generated from comparing lists tool 

VENNY 2.1 software (http://bioinfogp.cnb.csic.es/tools/ 

venny/index.html). 

 

Kyoto Encyclopedia of Gens and Genomes (KEGG) 

signaling pathway enrichment analysis 
 

The enriched KEGG signaling pathways were 

determined using The Database for Annotation, 

Visualization and Integrated Discovery (DAVID) web-

site (version 6.8; https://david.ncifcrf.gov). Enrichment 

https://tcga.xenahubs.net/
https://tcga.xenahubs.net/
https://www.ncbi.nlm.nih.gov/geo
http://www.cbioportal.org/index.do
http://www.cbioportal.org/index.do
https://www.r-project.org/
https://cran.r-project.org/web/packages/plyr/index.html
https://cran.r-project.org/web/packages/plyr/index.html
http://bioinfogp.cnb.csic.es/tools/venny/index.html
http://bioinfogp.cnb.csic.es/tools/venny/index.html
https://david.ncifcrf.gov/
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results with P-value < 0.05 were considered to be 

statistically significant. 

 

Heatmap presentation 
 

The heatmaps were generated by ‘pheatmap’ package 

(version 1.0.12) using R software. The basic usage of 

‘pheatmap’ was downloaded from bioconductor 

(https://cran.r-project.org/web/packages/pheatmap/). 

The ‘average’ method was used to determine the 

clustering scale. The ‘correlation’ method was used to 

determine the clustering distance.  

 

Survival analysis  
 

Kaplan-Meier estimator was generated by ‘survival’ 

package (version 3.1-8) in R statistics software to reveal 

the prognostic effects of the genomic alterations and 

MMP14 and PKM2 expression. The “survival” package 

and the basic usage were downloaded from bioconductor. 

P values were determined using Log-rank test. 

 

Univariate and multivariate cox regression 
 

Univariate and multivariate cox regression analysis 

were carried out by R software “survival” package. 

Log-rank test was used to calculate the P values. 

 

Spearman correlation 
 

Spearman correlation was determined by “lm” method in 

R software to study the correlation between MMP14 and 

PKM2 expression in patients with pancreatic cancer. 

 

Immunohistochemistry  

 

The protein expression levels of MMP14 and PKM2 in 

Chinese pancreatic cancer tissues were detected by 

immunohistochemistry using commercial tissue 

microarray (HPanA120Su02, Shanghai OUTDO 

Biotech). 60 pancreatic cancer tissues and 60 

corresponding adjacent normal tissues were tested. 

Rabbit anti-MMP14 antibody (PA1-38193, Thermo-

Fisher) and rabbit anti-PKM2 antibody (D78A4, Cell 

Signaling Technology) were used as primary antibodies. 

Normal rabbit immunoglobulin G (Abcam) was used as 

a negative control. The protocol of immunohisto-

chemistry was previously described [38]. The stained 

intensity of MMP14 and PKM2 was determined by 

three pathologists from Shanghai Changhai Hospital in 

a blinded manner. 

 

Statistical analysis 
 

The box plots were generated from GraphPad Prism 

software (version 5.0). Statistical analysis was 

performed using the paired Student’s t test using R 

software. P value less than 0.05 was chosen to be 

significantly different. 
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